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Simple Summary: Nowadays, the only widely recognized method for evaluating the efficacy of
neoadjuvant chemotherapy is the assessment of the pathological response through surgery. However,
delivering chemotherapy to not-responders could expose them to unnecessary drug toxicity with
delayed access to other potentially effective therapies. Radiomics could be useful in the early detection
of resistance to chemotherapy, which is crucial for switching treatment strategy. We determined
whether tumor radiomic features extracted from a highly homogeneous database of breast MRI can
improve the prediction of response to chemotherapy in patients with breast cancer, in addiction to
biological characteristics, potentially avoiding unnecessary treatment.

Abstract: Objectives: We aimed to determine whether radiomic features extracted from a highly
homogeneous database of breast MRI could non-invasively predict pathological complete responses
(pCR) to neoadjuvant chemotherapy (NACT) in patients with breast cancer. Methods: One hundred
patients with breast cancer receiving NACT in a single center (01/2017–06/2019) and undergoing
breast MRI were retrospectively evaluated. For each patient, radiomic features were extracted
within the biopsy-proven tumor on T1-weighted (T1-w) contrast-enhanced MRI performed before
NACT. The pCR to NACT was determined based on the final surgical specimen. The association
of clinical/biological and radiomic features with response to NACT was evaluated by univariate
and multivariable analysis by using random forest and logistic regression. The performances of
all models were assessed using the areas under the receiver operating characteristic curves (AUC)
with 95% confidence intervals (CI). Results: Eighty-three patients (mean (SD) age, 47.26 (8.6) years)
were included. Patients with HER2+, basal-like molecular subtypes and Ki67 ≥ 20% presented
a pCR to NACT more frequently; the clinical/biological model’s AUC (95% CI) was 0.81 (0.71–0.90).
Using 136 representative radiomics features selected through cluster analysis from the 1037 extracted
features, a radiomic score was calculated to predict the response to NACT, with AUC (95% CI): 0.64
(0.51–0.75). After combining the clinical/biological and radiomics models, the AUC (95% CI) was
0.83 (0.73–0.92). Conclusions: MRI-based radiomic features slightly improved the pre-treatment
prediction of pCR to NACT, in addiction to biological characteristics. If confirmed on larger cohorts,
it could be helpful to identify such patients, to avoid unnecessary treatment.

Cancers 2021, 13, 4271. https://doi.org/10.3390/cancers13174271 https://www.mdpi.com/journal/cancers

https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0002-0374-5054
https://orcid.org/0000-0002-3693-8899
https://orcid.org/0000-0002-4947-9628
https://orcid.org/0000-0002-3437-8939
https://doi.org/10.3390/cancers13174271
https://doi.org/10.3390/cancers13174271
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cancers13174271
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers13174271?type=check_update&version=1


Cancers 2021, 13, 4271 2 of 13

Keywords: radiomics; breast cancer; magnetic resonance imaging; neoadjuvant chemotherapy; oncology

1. Introduction

The markers currently used in patients with breast cancer to differentiate subtypes or
predict treatment responses are traditionally derived from the analysis of a tissue sample,
via biopsy or surgery. Radiomics, through the conversion of standard digital imaging into
mineable, quantitative data expressing different tumor properties, has gained recognition
as a new tool in the field of oncology for noninvasively profiling tumors [1,2]. Particularly,
the biological hypothesis driving radiomics research is the potential to enable spatiotempo-
ral and quantitative measurements of both intra- and intertumoral heterogeneity based
on medical images, providing the basis for the realization of precision oncology [1–3].
The quantification of tumor heterogeneity is crucial indeed, as heterogeneity is a valuable
parameter for differentiating between benign and malignant lesions [4], comparing molec-
ular subtypes of breast cancers [5], and determining a patient’s response to neoadjuvant
chemotherapy (NACT) [6,7].

The analysis of tumor heterogeneity based on medical imaging can potentially be
performed using routinely collected images, such as MRI, without the need for further data
collection [2,3]. Moreover, recent studies have pointed out that the responses to NACT
in breast cancer patients are associated with radiomic features detected in pre-treatment
breast magnetic resonance imaging (MRI) [5–13].

Initially, NACT was used to increase the possibility for surgery in inoperable locally
advanced or inflammatory breast cancer, but in the last few years it has been increasingly
used to treat operable tumors also [14]. Although the ideal outcome is a complete patho-
logical response (pCR) to NACT because of the favorable prognostic value [15], response
rates to NACT vary depending on subtype [16], and up to 30% of patients do not benefit
from NACT and yet suffer from the toxicity and adverse effects associated with treatment
itself [17].

Therefore, there is a need for non-invasive pre-treatment predictors of pCR that can
foresee which breast cancer patients will achieve pCR, which will have residual invasive
disease (RD), and which will not respond at all. Such predictors would allow for improved
stratification of patients into more appropriate treatment regimens, and would prevent
delays in effective treatment for patients who would respond poorly.

Recent studies have indeed demonstrated the feasibility and potential benefits of using
radiomics in pCR prediction, suggesting that radiomic features extracted from non-invasive
imaging examinations, such as pre-treatment MRI, could be associated with the responses
(or lack of responses) to NACT in breast cancer patients [7,8,11].

However, the research is still at an early stage and there is both technological and
methodological variability in the extraction of the radiological features [2,18]. Therefore,
the primary objective of this retrospective study was to determine whether tumors’ radiomic
features extracted from a highly homogeneous database of breast MRI could non-invasively
predict the response to NACT in patients with breast cancer. The radiomic features were
either considered alone or combined with clinical and biological characteristics.

Secondary objectives were to investigate the associations among radiomic features
and (a) the four molecular subtypes of breast cancer which were found in our population;
(b) the expression of Ki67 by tumor cells.

2. Materials and Methods
2.1. Study Design

This retrospective study was approved by an institutional review board (approval
code: IRB 1926/int/2019), and it was conducted with a consecutive series of patients at
a single academic center (a referral center for breast cancer care).
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An original approach integrating radiomic features extracted from pre-treatment
breast MRI and clinical/biological information was proposed to predict pCR to NACT
in our population of biopsy-proven female breast cancer patients. Pathology of surgical
specimens was used as the reference standard for the assessment of tumor response
to NACT.

2.2. Patient Population

Patients with biopsy-proven breast cancer who underwent NACT and breast MRI
between 1 January 2017 and 30 June 2019 were extracted from the database of our center
according to the following inclusion criteria: (a) breast MRI performed only in our center;
(b) NACT planned only in our center; (c) biopsy-proven diagnosis of breast cancer with
histological and immunohistochemical analysis performed before NACT; (d) surgery and
histopathological analysis of surgery specimens performed after NACT in our center.

Exclusion criteria included (a) negation of patient’s consent to use their data for clinical
studies; (b) incomplete or imaging artifacts at MR examination.

2.3. MRI Data Acquisition, Imaging Analysis and Segmentation

Image acquisition details of our 1.5 T MRI scanner protocol are reported in the Table S1 [19,20].
The dynamic study consisted of three-dimensional T1-w gradient-echo sequences acquired
once before and five times after intravenous administration of 0.1 mmol/kg of a gadolinium
chelate at 90 s temporal resolution. The T1-w images were obtained with the following
parameters: repetition time 7.39 ms, echo time 3.44 ms, slice thickness 1.4 mm, slice spac-
ing 0.7 mm, field of view 350 × 350 mm2. The DICOM images of the first phase after
intravenous administration of the gadolinium-based contrast agent were then exported for
processing and anonymized.

The software ITK-SNAP version 3.8.0 (http://itksnap.org, accessed on 20 August 2021)
was used to assess the tumor’s volume of interest (VOI) [21]. The procedure included, firstly,
a manual delineation of the tumor by a dedicated breast radiologist (6 years-experience in
breast imaging, and 2 years-experience in radiomics segmentation), and secondly, semi-
automatic segmentation based on iterative adaptive thresholding. If deemed necessary,
the radiologist made final adjustments manually. The final identified VOI, covering the en-
tire tumor (excluding vessels and hemorrhagic or necrotic foci), was exported in NiFTI
format, and it was used to extract the radiomic features for our analysis.

2.4. Extraction of Radiomic Features

The package PyRadiomics [22] version 2.2.0 was used to normalize the images and
to extract the radiomic features from the VOI identified for each patient. The considered
features included morphological, histogram-based, and textural descriptors. Textural
features and extraction details are shown in Table S2.

2.5. Pathological Examination

The breast cancer tissue was collected by core needle biopsy before NACT. After
NACT, the surgically removed breast tissue was fixed and then embedded in paraffin.
The specimens were cut into thin sections and stained with hematoxylin and eosin.

The determination of Ki-67 expression and the assessment of the hormone receptor
studies such as estrogen receptor (ER), progesterone receptor (PR), and human epidermal
growth factor receptor-2 (HER2) were performed immunohistochemically.

We defined Ki-67 positive staining as Ki-67 staining of 20% or more of cancer cell
nuclei and Ki-67 negative staining was defined as Ki-67 staining of fewer than 20% of
cancer cell nuclei [23]. Regarding hormone receptor status, we defined tumors with <1% of
tumor cells with nuclear staining as ER/PR negative and ≥1% of tumor cells with nuclear
staining as ER/PR positive [24].

http://itksnap.org
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2.6. Determination of Neoadjuvant Treatment Response

The response to NACT was determined based on the final surgical specimen by
a breast pathologist with 15 years of experience.

The histopathologic therapeutic response to NACT were classified in two categories
based on two different dichotomous criteria: (1) pCR when there was no evidence of RD in
the breast or axillary lymph nodes; (2) no pCR or a partial pathological response (namely,
residual microscopic foci of cancer cells larger than the median observed in our sample).

2.7. Statistical Analysis

Baseline characteristics of patients and tumors are expressed as frequencies and
percentages for categorical variables (namely, NACT type; molecular subtype, ER, PR, and
HER2; and Ki67 levels with 20% as the threshold value) and as means and interquartile
ranges for continuous variables (age, Ki-67 levels).

The associations among patient age, tumor biological characteristics, and pCR to
NACT were evaluated by univariate and multivariable logistic regression analysis, and
odds ratios (OR) with 95% confidence intervals (CI) were calculated. The multivariable
model included age, molecular subtype, and Ki-67 levels (as binary variables), and it
was defined as a clinical/biological model. The final multivariable model included only
variables (among the three listed above) that were significantly associated with response
to NACT.

Statistical analysis of the radiomics workflow is summarized in Table S3.
A clinical/biological–radiomic model was constructed by multivariable logistic re-

gression analysis, including both variables selected for the clinical/biological model and
the radiomic score.

The performances of clinical/biological, radiomic, and clinical/biological–radiomic
models were evaluated in terms of area under the receiver operating characteristic (ROC)
curve (AUC) with the 95% CI calculated with 2000 bootstrap resampling. Model cali-
bration was formally assessed via Hosmer–Lemeshow test using five intervals to draw
the calibration plots.

As a sensitivity analysis, we repeated the previous analysis, considering the percent-
age of residual microscopic foci of cancer cells as binary variables, but this time using
the median as the threshold value (as defined in point 2 of the previous section).

To evaluate the predictions of molecular subtype and Ki-67 levels using radiomic
features, we dichotomized the molecular subtype as basal-like vs. all other subtypes
(luminal A, luminal B, and HER2+) and Ki67 levels were based on the 20% threshold value.

We replicated the radiomic analyses described for the primary endpoint, both for
feature reduction and model construction steps. As for response to NACT, the radiomic
scores were calculated as the average (across the repeated folds) predicted probabilities
of the models for each of the considered secondary endpoints. Model performance was
evaluated by AUC and 95% CI, as previously described.

All the analyses were performed using R 4.0 software [25] and p values < 0.05 were
considered statistically significant.

3. Results

Out of 130 patients treated with NACT who underwent breast MRI during the study
period, 83 patients (mean (SD) age: 47.26 (8.6) years) met the inclusion criteria (Figure 1).
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MRI was not technically adequate (1 due to lack of contrast medium administration, 2 due to movement artifacts, 1 due 
to interrupted examination); and 3 patients underwent post-NACT surgery in another hospital. MRI = magnetic resonance 
imaging; NACT = NACT: neoadjuvant chemotherapy. 

Baseline characteristics of the study population and results of the association analysis 
with responses to NACT are reported in Table 1. 

Table 1. Baseline characteristics of the study population and association analysis with response to therapy. 

Characteristics 
Overall Cohort 

(n = 83) 
n Patients (%) 

Responders 
(n = 30) 

n Patients (%) 

Non-Responders 
(n = 53) 

n Patients (%) 
p-Value * OR * (95% CI) 

Age ^ 47.3 (41.1–53.7) 46.5 (41.07–53.8) 47.6 (41.2–52.6) 0.60 0.99 (0.94–1.04) 
NACT Type 

CT 
CT + HT 

65 (81) 
15 (19) 

28 (97) 
1 (3) 

37 (73) 
14 (27) 

Reference 
0.03 

 
1.00 (Reference) 
0.09 (0.01–0.76) 

Molecular Subtypes 
Luminal A 
Luminal B 

Her2-positive 
 

Basal-like 

 
29 (35) 
14 (17) 
17 (20) 

 
23 (28) 

 
3 (10) 
2 (7) 

13 (43) 
 

12 (40) 

 
26 (49) 
12 (23) 

4 (8) 
 

11 (21) 

 
Reference 

0.71 
<0.0001 

 
0.002 

 
 

1.00 (Reference) 
1.44 (0.21–9.81) 

28.17 (5.47–144.96) 
9.46 (2.22–40.24) 

ER 
Positive  
Negative 

 
44 (53) 
39 (47) 

 
6 (20) 
24 (80) 

 
38 (72) 
15 (28) 

 
Reference 

<0.001 

 
1.00 (Reference) 

10.13 (3.46–29.72) 
PR 

Positive  
Negative 

 
41 (49) 
42 (51) 

 
3 (10) 
27 (90) 

 
38 (72) 
15 (28) 

 
Reference 

<0.001 

 
1.00 (Reference) 

22.80 (6.01–86.56) 
HER2 

Positive  
Negative  

 
31 (37) 
52 (63) 

 
15 (50) 
15 (50) 

 
16 (30) 
37 (70) 

 
Reference 

0.08 

 
1.00 (Reference) 
0.43 (0.17–1.09) 

Ki67 ^ 
≥20% 
<20% 

42.3 (25–60) 
13 (16) 
68 (82) 

50.9 (35–67.5) 
29 (97) 

1 (3) 

37.2 (21.5–45) 
39 (73) 
12 (23) 

0.01 
Reference 

0.04 

1.03 (1.01–1.05) 
1.00 (Reference) 
8.92 (1.10–72.56) 

ER = estrogen receptor; CI = confidence Interval; CT = chemotherapy; HT = hormone therapy, NACT = neoadjuvant ther-
apy; OR = odds ratio; PR = progesterone receptor; * univariate logistic regression model; ^ mean (interquartile range). 

Patients with HER2+ and basal-like molecular subtypes presented a pCR to NACT 
more frequently compared to patients with luminal A subtype (OR; 95% CI = 28.17; 5.47–
144.96 and 9.46; 2.22–40.24,). The association of molecular subtype with response to 

Figure 1. Flowchart. Out of 130 women enrolled in our study, 46 patients were subsequently excluded for the following
reasons: for 40 patients the MRI was not performed before the chemotherapy but during or after NACT; for 4 patients
the MRI was not technically adequate (1 due to lack of contrast medium administration, 2 due to movement artifacts, 1 due
to interrupted examination); and 3 patients underwent post-NACT surgery in another hospital. MRI = magnetic resonance
imaging; NACT = NACT: neoadjuvant chemotherapy.

Baseline characteristics of the study population and results of the association analysis
with responses to NACT are reported in Table 1.

Table 1. Baseline characteristics of the study population and association analysis with response to therapy.

Characteristics
Overall Cohort

(n = 83)
n Patients (%)

Responders
(n = 30)

n Patients (%)

Non-Responders
(n = 53)

n Patients (%)
p-Value * OR * (95% CI)

Age ˆ 47.3 (41.1–53.7) 46.5 (41.07–53.8) 47.6 (41.2–52.6) 0.60 0.99 (0.94–1.04)

NACT Type
CT

CT + HT
65 (81)
15 (19)

28 (97)
1 (3)

37 (73)
14 (27)

Reference
0.03

1.00 (Reference)
0.09 (0.01–0.76)

Molecular Subtypes
Luminal A
Luminal B

Her2-positive

Basal-like

29 (35)
14 (17)
17 (20)

23 (28)

3 (10)
2 (7)

13 (43)

12 (40)

26 (49)
12 (23)

4 (8)

11 (21)

Reference
0.71

<0.0001

0.002

1.00 (Reference)
1.44 (0.21–9.81)

28.17 (5.47–144.96)
9.46 (2.22–40.24)

ER
Positive

Negative
44 (53)
39 (47)

6 (20)
24 (80)

38 (72)
15 (28)

Reference
<0.001

1.00 (Reference)
10.13 (3.46–29.72)

PR
Positive

Negative
41 (49)
42 (51)

3 (10)
27 (90)

38 (72)
15 (28)

Reference
<0.001

1.00 (Reference)
22.80 (6.01–86.56)

HER2
Positive

Negative
31 (37)
52 (63)

15 (50)
15 (50)

16 (30)
37 (70)

Reference
0.08

1.00 (Reference)
0.43 (0.17–1.09)

Ki67 ˆ
≥20%
<20%

42.3 (25–60)
13 (16)
68 (82)

50.9 (35–67.5)
29 (97)
1 (3)

37.2 (21.5–45)
39 (73)
12 (23)

0.01
Reference

0.04

1.03 (1.01–1.05)
1.00 (Reference)
8.92 (1.10–72.56)

ER = estrogen receptor; CI = confidence Interval; CT = chemotherapy; HT = hormone therapy, NACT = neoadjuvant therapy; OR = odds
ratio; PR = progesterone receptor; * univariate logistic regression model; ˆ mean (interquartile range).

Patients with HER2+ and basal-like molecular subtypes presented a pCR to NACT
more frequently compared to patients with luminal A subtype (OR; 95% CI = 28.17;



Cancers 2021, 13, 4271 6 of 13

5.47–144.96 and 9.46; 2.22–40.24,). The association of molecular subtype with response to
therapy was also confirmed by higher frequencies of responders among patients with ER
and who were PR negative (p < 0.0001) and patients without HT (p = 0.03). Furthermore,
patients with high Ki67 (≥20%) responded more frequently to therapy than patients with
low (<20%) Ki67 (OR; 95% CI = 8.92; 1.10–72.56) according to univariate analysis, but the as-
sociation was not confirmed through multivariable analysis, after adjusting for molecular
subtype (Table S4). The AUC (95% CI) of the clinical/biological model including the four
classes of molecular subtypes was 0.81 (0.71–0.90).

Figure 2 shows the segmentation process to obtain the VOIs of the tumors for our
radiomics analysis.
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Figure 2. Segmentation process using ITK-SNAP. (a) Contrast-enhanced water suppressed T1-weighted series imported in
ITK-SNAP. (b) Manual delineation of tumor ’s volume by a dedicated breast radiologist. (c) Semiautomatic segmentation
based on iterative adaptive thresholding. (d) The final volume of interest (VOI).

A list of the features extracted from the original (not filtered) images is available in
Table S5. The 1037 extracted radiomic features were first reduced to 405 after discharging
the ones with near zero variance and with near one correlations with other features. Then
they were further reduced to 136 representative features after cluster analysis (Figure S1)
performed with a customized in-house function (Table S6). The top ten radiomic features
that contributed most to response to NACT are reported in Table 2 and include one first-
order feature (range), considering both the original values and the values obtained after
the application of square filter, and seven texture features, one of which (Dependence
Entropy) was included both with original values and after applying square filter.
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Table 2. Predicted importance of the top 10 radiomic features obtained from a random forest for
prediction of response to therapy.

Feature Importance (Gini Index)

wavelet-LL_glcm_SumEntropy 1.348
log-sigma-6-mm-3D_glcm_ClusterShade 1.341

squareroot_glcm_ClusterTendency 1.301
original_firstorder_Range 1.269

log-sigma-6-mm-3D_glcm_DifferenceEntropy 1.252
original_gldm_DependenceEntropy 1.207
square_gldm_DependenceEntropy 1.196

original_glrlm_LongRunHighGrayLevelEmphasis 1.154
exponential_glszm_SizeZoneNonUniformity 1.092

square_firstorder_Range 1.073

The AUC (95% CI) of the radiomic model was 0.64 (0.51–0.75).
Figure 3 shows the comparison among the ROC curves obtained for the clinical/biological

model, the radiomic model, and the clinical/biological–radiomic model.
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Figure 3. ROC curves for prediction of response to therapy according to clinical/biological, radiomic,
and clinical/biological–radiomic models. The clinical/biological model included molecular subtype
as an independent variable.

The AUC (95% CI) of the clinical/biological–radiomic model was 0.83 (0.73–0.92),
which was not significantly higher than the AUC of the clinical/biological model alone
(p = 0.30); otherwise, a significant improvement in the model prediction was observed
in comparison to the radiomic model (p = 0.0002). All the obtained models were well
calibrated (p = 1.00, 0.65 and 0.55 for clinical/biological, radiomic, and clinical/biolog-
ical–radiomic models, respectively). A calibration plot for the complete model is presented
in Figure S2.

Using higher and lower percentages of residual microscopic foci of cancer cells as
response variables (≥2% and <2%, respectively, where 2% was the median value observed
in our sample) did not improve the prediction by radiomic features. Specifically, no
radiomic feature was significantly associated with RD in univariate analysis after FDR
correction, and the random forest (RF) resulted in an AUC (95% CI) of 0.62 (0.48–0.75).

For molecular subtype analysis, three radiomic features (log-sigma-6-mm-3D_firstor-
der_Skewness, lbp-2D_glrlm_ShortRunHighGrayLevelEmphasis, and lbp-2D_glszm_Low-
GrayLevelZoneEmphasis) were found significantly different by molecular subtype after
FDR correction in univariate analysis (Table S7). This result was confirmed through
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multivariable analysis with the predictor importance levels calculated for these radiomic
features, which were among the variables with the ten highest Gini indices (Table 3).

Table 3. Top 10 radiomic variables obtained from the random forest for prediction of molecular subtype and Ki67.

Molecular Subtype Ki67

Feature Importance
(Gini Index) Feature Importance

(Gini Index)

lbp-2D_glrlm_ShortRunHighGrayLevelEmphasis 4.256 squareroot_firstorder_10Percentile 0.608
lbp-2D_glszm_LowGrayLevelZoneEmphasis 2.968 original_firstorder_10Percentile 0.568

original_shape_Flatness 2.550 lbp-2D_firstorder_90Percentile 0.555
lbp-

2D_glszm_SizeZoneNonUniformityNormalized 2.453 lbp-2D_glcm_DifferenceEntropy 0.552

lbp-2D_glcm_ClusterProminence 1.967 wavelet-LL_glcm_Imc2 0.534
lbp-2D_glszm_ZoneEntropy 1.847 logarithm_ngtdm_Strength 0.503

wavelet-
LH_glrlm_LongRunHighGrayLevelEmphasis 1.693 wavelet-HH_glcm_MCC 0.499

log-sigma-6-mm-3D_firstorder_Skewness 1.494 exponential_glcm_InverseVariance 0.483

wavelet-LH_firstorder_Range 1.362 log-sigma-6-mm-
3D_glrlm_ShortRunHighGrayLevelEmphasis 0.478

log-sigma-6-mm-
3D_glszm_LargeAreaLowGrayLevelEmphasis 1.347 log-sigma-6-mm-3D_firstorder_Skewness 0.473

The prediction of the molecular subtype (basal-like vs all other subtypes) according to
radiomic features was moderate, with AUC (95% CI) = 0.73 (0.58–0.85) (Figure 4a).

In addition, no radiomic feature was significantly different by Ki-67 (threshold
value ≥ 20%) after FDR correction in univariate analysis, and the top ten radiomic fea-
tures obtained by multivariable RF are reported in Table 3. The prediction of high Ki67
values according to radiomic features was moderate, with AUC (95% CI) = 0.72 (0.60–0.83)
(Figure 4b).

Finally, we tested the quality of our radiomic study by applying the radiomics quality
score [26], and we obtained an intermediate score level of 19/36 (53%) (Table S8).
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4. Discussion

Finding an appropriate biomarker for predicting whether breast cancer patients could
achieve pCR with NACT before surgery is a key factor in the assessment of therapy.
Currently, the only widely recognized method for evaluating the efficacy of NACT is
the assessment of pCR through surgery after patients undergo a therapy regimen [27],
and recent studies have shown pCR rates of approximately 40–60% after NACT [12].
Accordingly, delivering NACT to non-responders could expose them to unnecessary drug
toxicity and delay access to other potentially effective therapies. Therefore, earlier detection
of resistance to NACT is crucial, in order to switch treatment strategies. The current version
of the clinical practice guidelines by the “American Society of Clinical Oncology” for
women with node-negative estrogenic receptor breast cancer include the use of biomarker
tests to help predict whether patients will benefit from NACT [28,29]. MRI driven radiomic
studies represent a promising and non-invasive approach. Previous studies proposed
prediction models of pCR to NACT in breast cancer based on MRI [8,9,27], and in the last
few years, they showed promising results in the prediction of the pCR by extracting
radiomics features from pre-NACT breast MRI [2,8–10,12,13,30,31].

The AUC (95% CI) of our radiomic model was 0.64 (0.51–0.75), and it was consistent
with the radiomics results of analogous studies reported by Braman et al. (AUC = 0.76;
0.69–0.84) [10] and Liu et al. (AUC = 0.64; no CI reported) [9]. It is lower than the ones
reported in Xiong et al. (AUC = 0.92; 0.84–0.98) [8] and Zhuang et al. (AUC = 0.82;
0.62–1.00) [13]. Although promising, such results are not accurate enough to propose
use in clinical practice as the stand-alone means of predicting pCR to NACT in breast
cancer patients.

Although some recent approaches have explored the direct radiomic estimation of
response from pre-NACT MRI, these approaches often lack well-understood associations
with underlying biological factors [6,7,32,33]. Different molecular subtypes of breast
cancer are associated with different sensitivities to NACT in terms of pCR and long-
term outcomes [16,34]. Accordingly, in our population, HER2+ and basal-like molecular
subtypes showed more likely pCR to NACT compared to the luminal A subtype, and
tumors with high Ki67 (≥20%) responded better to NACT than patients with low Ki67
(<20%). Although a high level of Ki-67 expression showed an association with pCR to
NACT [35], which may explain the high sensitivity of proliferating tumor cells to NACT,
there are discordant results on the role of Ki-67 as a prognostic tool, probably due to
different NACT protocols, heterogeneous patient subtypes, and different Ki-67 standards
and scoring systems. The AUC (95% CI) of our clinical/biological model, including the four
classes of molecular subtypes, was 0.81 (0.71–0.90), thereby confirming that the molecular
subtype gives a good prediction of the response to therapy.

A model which includes both clinical/biological and radiomic features may accurately
distinguish the non-responders from the responders at an early stage. The AUC (95% CI)
of our clinical/biological–radiomic model was 0.83 (0.73–0.92), showing a significant im-
provement in the model prediction compared to the radiomic model (p = 0.0002), though
not significantly higher than the AUC of the clinical/biological model alone (p = 0.30). Our
clinical/biological–radiomic model showed consistent results with other similar combined
models reported in the literature, such as the ones of Fan et al. (AUC = 0.71; no CI re-
ported) [7] and Cain et al. (AUC = 0.71; 0.58–0.83) [12]. Xiong et al. [8] and Zhuang et al. [13]
reported higher performance.

In univariate analysis, no specific radiomic feature was associated with Ki67, but three
radiomic features, namely, log-sigma-6-mm-3D_firstorder_Skewness, lbp-2D_glrlm_ShortRun-
HighGrayLevelEmphasis, and lbp-2D_glszm_LowGrayLevelZoneEmphasis, were found to be
associated with molecular subtype. Notably, these features were not among the top
10 radiomic predictors of response to NACT, suggesting that the radiomic signature is
possibly an independent predictor of response to NACT, thereby measuring something
different from the molecular subtype.
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Concerning a biological interpretation of our results, the radiomic features which are
significantly associated with molecular subtype quantify different aspects of signal intensity
heterogeneity inside the tumor VOI. This suggests that the early uptake and distribution of
contrast medium might behave differently, depending on the molecular subtype of the tu-
mor. Particularly, skewness quantifies the asymmetry of the distribution of signal intensities
around a mean value, possibly showing different proportions of high- or low-uptake areas
for the different molecular subtypes. Moreover, glrlm_ShortRunHighGrayLevelEmphasis and
glszm_LowGrayLevelZoneEmphasis are both texture features which quantify the presence
of short runs of high intensity voxels and the distribution of zones with lower intensity
voxels, respectively. On the other hand, among the radiomic predictors of response to
NACT (Table 2), we found some features that quantify image properties which are different
from those related to molecular subtype, such as the degree of randomness observed when
comparing the voxel intensities within a neighborhood.

In our study, all patients were recruited in a single institute, and therapeutic choices,
MRI image acquisition, and pathological examination were standardized, thereby avoiding
confounding factors due to multicenter analyses. First, we chose to consider as responders
to NACT only tumors with pCR, differently from some similar recent studies [8,13] which
even classified the tumors that showed a RD after NACT as responders (or partial respon-
ders) to NACT [36]. Our choice was motivated because a significantly improved progno-
sis for long-term survival was clearly demonstrated only in breast cancer patients who
achieved pCR; and pCR after NACT was the requirement to allow for breast-conserving
surgery in some patients initially considered candidates for mastectomy only [37]. More-
over, we performed sensitivity analysis with higher and lower percentages of residual
microscopic foci of cancer cells as the responses to give a complete picture of the as-
sociations. On the other hand, the pathobiological features of post-NACT RD may be
determinants of patient outcome too, and they may differ from the pre-NACT features
because resistant tumor cell sub-clones could be selected by therapeutic agents [18]. How-
ever, prognostic biomarkers based on post-NACT breast cancer features are limited, and
pCR is still considered the only currently validated biomarker of survival [1,27].

Methods of statistical analysis included both univariate and multivariable analyses,
with pre-selection of features to reduce feature redundancy, which is a main concern in
radiomics analysis. We chose a conservative clustering criterion, resulting in a relatively
elevated number of clusters with high intra- and inter-cluster correlations, so by selecting
only one feature for each cluster (i.e., the most associated with the outcome), we saved
potential important features with small correlations with other features in the same cluster.
The results were also robust to different statistical classification approaches: we indeed
repeated the model construction with different machine learning methods (Table S3),
obtaining similar results.

This study did not include the assessment of radiomic features’ repeatability and
reproducibility. Repeatability studies could not be performed in vivo, since multiple
patient acquisitions were not performed, nor in silico, since suitable test objects are not
currently available, even if in-house customized breast radiomic phantoms are under
development in our group following a previous experience in the pelvis [38].

A reproducibility investigation was not necessary, since the image database used
for this study was highly homogeneous in relation to all the acquisition and reconstruc-
tion variables, so the extracted radiomic features were considered reproducible within
the boundaries of our specific database. Nonetheless, in light of the generalizability and
external validation of the model, methodological studies will be necessary to test the repro-
ducibility of the radiomic features included in the radiomic score, and dedicated phantom
objects will be useful to this purpose, and for the optimization of intensity scale standard-
ization and magnetic field inhomogeneity correction.

Further limitations included the retrospective nature of the study and the limited
number of patients, which avoided us having to split our database into a training and
a validation set. For small samples, such splitting is not generally recommended, as it is
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dependent on just one train–test split [39]. Accordingly, we applied internal repeated k-fold
cross validation (5 × 10 CV), which is the best method for training a model on multiple
train–test splits, rather than a single one [40]. This gave a better indication of how well
the model will perform on unseen data. However, it is important to note that our findings
should then been validated in further external study, to generalize and validate them.

Moreover, we analyzed characteristics extracted from a segmentation of the tumor
lesion only, without considering the peritumoral tissue. The extraction of radiomic features
from the peritumoral region may include other predictive outcome characteristics, such
as angiogenic and lymphangiogenic activity or infiltration [7,10,34]. We are going to
investigate those characteristics by assessing the variations in model performance when
built-in radiomic features extracted from different isotropic expansions of the VOIs are
used for the analysis.

5. Conclusions

In conclusion, MRI-based radiomic features, when associated with clinical and biolog-
ical data, slightly improved the pre-treatment prediction of pCR to NACT. Further studies
are needed to assess the role of radiomics in the selection of breast cancer patients suited
for NACT, to avoid unnecessary treatment.
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