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g Euler Institute, Università della Svizzera italiana, Lugano, Switzerland
h University of Insubria, Como, Italy

A R T I C L E  I N F O

Keywords:
Out-of-hospital cardiac arrest
Spatio-temporal prediction
ST-elevation myocardial infarction
Stroke

A B S T R A C T

Background: Predicting the incidence of time-sensitive cardiovascular diseases like out-of-hospital cardiac arrest 
(OHCA), ST-elevation myocardial infarction (STEMI), and stroke can reduce time to treatment and improve 
outcomes. This study analysed the spatio-temporal distribution of OHCAs, STEMIs, and strokes, their spatio- 
temporal correlation, and the performance of different prediction algorithms.
Methods: Adults who experienced an OHCA, STEMI, or stroke in Canton Ticino, Switzerland from 2005 to 2022 
were included. Datasets were divided into training and validation samples. To estimate and predict the yearly 
per-capita population incidences of OHCA, STEMI, and stroke, the integrated nested Laplace approximation 
(INLA), machine learning meta model (MLMM), the Naïve prediction method, and the exponential moving 
average were employed and compared. The relationship between OHCA, STEMI, and stroke was assessed by 
predicting the incidence of one condition, considering the lagged incidence of the other two as explanatory 
variables.
Results: We included 3,906 OHCAs, 2,162 STEMIs, and 2,536 stroke patients. INLA and MLMM yearly predicted 
incidence OHCA, STEMI, and stroke at municipality level with very high accuracy, outperforming the Naïve 
forecasting and the exponential moving average. INLA exhibited errors of zero or one event in 82%, 87%, and 
72% of municipalities for OHCA, STEMI, and stroke, respectively, whereas ML had errors in 81%, 89%, and 71% 
of municipalities for the same conditions. INLA had a prediction error of 0.87, 0.77, and 1.50 events per year per 
municipality for OHCA, STEMI and stroke, whereas MLMM of 0.70, 0.74, and 1.09 events, respectively. Including 
in the INLA model the lagged absolute values of the other conditions as covariates improved the prediction of 
OHCA and stroke but not STEMI. MLMM predictions were consistently the most accurate and did not benefit 
from the inclusion of the other conditions as covariates. All the three diseases showed a similar spatial pattern.
Conclusions: Prediction of incidence of OHCA, STEMI, and stroke is possible with very high accuracy using INLA 
and MLMM models. A robust spatio-temporal correlation between the 3 pathologies exists. Widespread imple-
mentation in clinical practice of prediction algorithms may allow to improve resource allocation, reduce treat-
ment delays, and improve outcomes.
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Introduction

Among cardiovascular diseases, out-of-hospital cardiac arrest 
(OHCA), acute coronary syndrome (ACS) and stroke represent the main 
causes of out-of-hospital deaths.1 Such diseases share several predis-
posing factors and a common pathogenesis. About two-third of all 
OHCAs are either related to ACS or ST-segment elevation myocardial 
infarction (STEMI).2 In acute stroke patients, myocardial ischemia and 
arrhythmias frequently occur, even in the absence of primary heart 
disease.3 Risks of stroke, ACS and heart failure is also higher in survivors 
of OHCA when compared with population controls.4 In addition, OHCA, 
ACS, and stroke are all considered time-sensitive cardiovascular dis-
eases, meaning that immediate access to the patient and rapid treat-
ments significantly reduce morbidity and mortality, limits neurological 
damage, and improves long-term prognosis.

Evidence is accumulating that the incidence of cardiovascular dis-
eases is influenced not only by time but also by geographic location.5–7

Factors like air pollution, climate, socioeconomic status, and population 
density can all vary by location and impact the occurrence of these 
conditions.6,8,9 Additionally, temporal patterns might vary based on 
demographic changes or fluctuations in environmental stressors.7 For 
this reason, spatio-temporal analysis has been proposed10 to identify 
patterns that may be region-specific or time-dependent, which can helps 
tailor prevention strategies and resource allocation more effectively. An 
immediate application of this approach may be found in the develop-
ment of public health strategies targeting communities at higher risk (e. 
g., awareness campaigns and first aid training) and in the optimization 
of automated external defibrillator (AED) coverage. Spatio-temporal 
analysis has already been applied to identify areas with high OHCA 
incidence and low bystander CPR,11,12 as well as to predict future OHCA 
events with high accuracy at municipality level and at a short time 
horizon.13,14

In contrast to OHCA, there have been no attempts to apply spatio- 
temporal predictive modelling to ACS and stroke. To address the 
knowledge gap in the spatio-temporal distribution of OHCA, STEMI, and 
stroke incidence at municipality level, we implemented statistical and 
machine learning methods and evaluated their performance in predict-
ing the spatio-temporal variation (between municipalities, and between 
years) in the incidence of each of the three pathologies separately. 
Subsequently, to test our hypothesis that STEMI and stroke events can 
enhance the prediction of future OHCA incidence, we conducted a joint 
statistical analysis of the three time-dependent acute cardiovascular 
diseases to understand spatio-temporal correlation. Similarly, we eval-
uated how STEMI and OHCA events can improve the prediction of future 
stroke incidence and how strokes and OHCA can improve the prediction 
of future STEMI incidence. The performance of these advanced statis-
tical and machine learning methods was then compared with simpler 
approaches.

Material and methods

Patient population

All individuals over 18 years old residing in the Canton Ticino of 
Swiss who suffered an OHCA of medical origin, STEMI, or stroke event in 
this region were included in the study. Cases with missing geo-
localization coordinates and patients not residing in Ticino (e.g., tourists 
or occasional workers) were excluded. The exclusion of non-residents 
was on the basis that they were unlikely to be exposed to the same 
contextual influences (e.g. socio-economic and environmental factors) 
that could affect disease incidence.5,6 Given that the analysis focused on 
the possibility of predicting each cardiovascular condition using data 
from others, paediatric patients were excluded because OHCA was rare 
(< 2 %), and no occurrences of STEMI or strokes were recorded in this 
population in our database.

The definition of OHCA excludes cases with non-medical origin and 

obvious and irreversible signs of death (e.g., rigor mortis) for which 
resuscitation efforts are not initiated or when a do-not-resuscitate order 
is in place. OHCA is defined as cessation of cardiac mechanical activity, 
confirmed by the absence of signs of circulation, occurring outside of a 
hospital setting.15 Because the definition of ACS has continuously 
changed over time,16 we restrict our research only to those patients 
presenting with a STEMI. STEMI was defined as persistent chest 
discomfort or other symptoms suggestive of ischemia and ST-segment 
elevation in at least two contiguous leads.17 Stroke was defined as a 
non-transient acute episode of neurological dysfunction caused by an 
acute focal injury of the central nervous system by a vascular cause, 
including cerebral infarction, non-traumatic intracerebral haemorrhage, 
and non-traumatic subarachnoid haemorrhage.18 Diagnosis of STEMI 
and stroke were confirmed during hospital admission. The methodology 
of this study is consistent with the STROBE (Strengthening the Reporting 
of Observational Studies in Epidemiology) checklist for observational 
studies.

Registries

The Ticino Registry of Cardiac Arrest (TIRECA), the STEMI (Preh- 
STEMI) registry, and the Stroke (Preh-Stroke) registry are all web-based, 
prospectively designed, and have the respective goal to monitor OHCA, 
STEMI and stroke events in the Swiss Canton Ticino. These registries are 
designed to identify potential areas for improvement in cardiac and 
neurological emergency care. The TIRECA registry has been described 
previously.19 In short, the registry was established on January 1, 2002; 
however, consecutive, and audited data have been entered starting on 
January 1, 2005. It contains a record of every individual with an 
emergency medical service (EMS)-confirmed OHCA of any aetiology, 
and includes patient’s demographic data, comprehensive EMS-related 
data, detailed bystander and first responder activity including the use 
of AEDs or public access defibrillators as well as pre- and in-hospital 
treatments and outcomes. Prior to April 2009, OHCA events were 
manually geolocated based on the address provided by the ambulance; 
all subsequent OHCAs were automatically geolocated. The STEMI reg-
istry and stroke registry have been activated on January 1, 2009 and 
January 1, 2013 respectively. As for TIRECA, both Preh-STEMI and 
Preh-Stroke registries contain a record of every individual who pre-
sented a STEMI or stroke of any aetiology, and includes patient’s de-
mographic data, comprehensive EMS-related data, pre- and in-hospital 
treatment as well as outcome. Coverage is complete because the EMS is 
activated for all emergencies involving OHCA, suspected ACS, and 
stroke. Moreover, patients who self-present at the hospital with sus-
pected ACS or stroke were also included in the registries, thanks to a 
data-sharing agreement between EMS and hospitals that ensures 
comprehensive data collection across the three registries. The location of 
each medical event was determined by the event location for patients 
where EMS was activated, or by the residence location for patients who 
self-presented at the hospital. Data are collected and stored following 
Good Clinical Practice Guidelines and the relevant legislation governing 
the use of patient data. The investigation complied with the Declaration 
of Helsinki’s principles for physicians engaged in biomedical research 
involving human subjects and was approved by the ethics committee.

Geographical and municipalities data

Canton Ticino, one of the 26 cantons forming the Swiss Confedera-
tion, covers an area of 2,812 square kilometres. As of December 31st, 
2022, the population of Ticino was around 360,000 residents (128 in-
habitants per square kilometre). The canton is divided into 117 mu-
nicipalities that vary in both geographic size (ranging from 0.6 to 218 
square kilometres) and population (ranging from 40 to 63,315 in-
habitants). Some municipalities are small, densely populated urban 
areas, while others are larger, sparsely populated rural regions, with 
population densities ranging from 1.1 to 8,476 inhabitants per square 

A. Auricchio et al.                                                                                                                                                                                                                              Resuscitation Plus 20 (2024) 100810 

2 



kilometre.
Population totals by age and sex were retrieved from the Land Reg-

ister of Canton Ticino (https://www3.ti.ch/DFE/DR/USTAT/index. 
php). To obtain prediction at another relevant, even if spatially 
coarser, level, municipalities were also aggregated according to the 5 
EMS areas available in Canton Ticino. Each EMS area covers approxi-
mately 20 municipalities.

Statistical analysis

The datasets for OHCAs, STEMIs, and strokes were divided into 
training and validation samples. The training datasets for OHCA, STEMI, 
and stroke spanned from 1st January 2005 to 31st December 2021; from 
1st January 2013 to 31st December 2021; from 1st January 2015 to 31st 
December 2020, respectively. The models were tested on cases between 
1st January and December 31, 2022 for OHCA and STEMI, and on cases 
between January 1 and December 31, 2021 for stroke.

To estimate and predict OHCA, STEMI and stroke yearly per-capita 
population incidences, two different models were applied: Integrated 
Nested Laplace Approximation (INLA) and Machine Learning Meta- 
Model (MLMM). In all the models, the outcome considered was the 
per-capita population incidence, and not the absolute number of cases, 
to avoid spurious correlations stemming from population sizes. This was 
achieved by including an offset term in the models, representing the 
population size in each municipality, in each year. The spatio-temporal 
analysis of OHCA using INLA was recently described 10,11,20,21, with the 
only difference that the currently proposed model is more parsimonious, 
since excludes, without loss of forecast precision, the joint spatial and 
temporal component. In brief, INLA is a numerically approximated 
spatio-temporal Bayesian statistical method, and MLMM is an ensemble 
of different machine learning models (e.g., random forest, gradient 
boosting, XGBoost, neural networks, and generalized linear model), in 
which a meta-model combines predictions from different base models to 
produce an improved final prediction. More details are available in the 
Supplemental Methods. All the algorithms and scripts used are available 
in an open-source repository on GitHub.com (https://github.com/Fede 
-stack/Spatio-temporal-distribution-prediction-and-relationship 
-of-three-major-acute-cardiovascular-events/).

INLA and MLMM were each compared with two simpler statistical 
models: the Naïve Prediction and the Exponential Moving Average. The 
Naïve Prediction model predicts next year incidence to be equal to the 
one in the previous time instant, whereas the Exponential Moving 
Average uses an exponential smoothing factor to weight recent data 
more significantly than older data when computing the moving average 
that serves as the prediction.

The goodness of prediction was verified on the test sets by two 
different approaches: 1) the mean absolute error (i.e., the average, over 
all municipalities, of the differences in absolute value between the 
actual and predicted number of OHCAs, STEMIs, and strokes); 2) the Chi 
squared statistic (i.e., the sum, over all municipalities, of the squared 
prediction error, divided by the predicted number of events, and regu-
larized to avoid computational problems with null predictions (the de-
nominator of the statistic is increased by a fixed quantity 0.5).

Finally, the relationship between OHCA, STEMI and stroke was 
assessed by estimating and predicting OHCAs including the lagged 
values of STEMI and stroke among the explanatory variables, to 
appreciate if the knowledge of past STEMI and stroke improved forecast 
of OHCA. A similar exercise is then performed by looking at the pre-
diction of STEMI using lagged values of OHCA and stroke, and at the 
prediction of stroke using lagged values of OHCA and STEMI.

In all models, the percentage of the population divided by age groups 
and the percentage of people for the two sexes are the only external 
covariates used, plus a dummy variable that takes value equal to one in 
correspondence of big cities (Lugano, Bellinzona, Mendrisio, Locarno, 
and Chiasso).

Descriptive statistics were used to summarize data on characteristics 

and outcomes. Categorical data were reported as absolute values and 
percentages, while continuous variables were presented as mean and 
standard deviation. R and Python were used for statistical analysis and 
models implementation.

Results

Population

Throughout the study period, 5,257 OHCAs, 2,556 STEMIs, and 
4,219 S occurred. After excluding OHCA patients not residing in Ticino 
(N = 728), those with a non-medical aetiology (N = 573), age less than 
18 years or missing (N = 31), and missing geolocation data (N = 19), 
3,906 adults constituted the OHCA study population (Supplemental 
Fig. 1). For STEMI, following the exclusion of 376 cases in patients not 
residing in Ticino, six cases with age less than 18 years or missing, and 
12 cases with missing geolocation data, the STEMI population 
comprised 2,162 adults (Supplemental Fig. 1). In the case of stroke, after 
excluding 669 cases occurring in the same patients, 365 cases in patients 
not residing in Ticino, 94 cases of traumatic aetiology, 546 cases of 
transient ischemic attacks, and nine cases with missing geolocation data, 
the stroke analysis included 2,536 adults (Supplemental Fig. 1). 
Repeated cases of STEMI and OHCA were not excluded from the anal-
ysis. The demographic and clinical characteristics of patients with 
OHCA, STEMI, and stroke are presented in Supplemental Table 1.

Accuracy of OHCA, STEMI, and stroke event prediction

Fig. 1 depicts the model performance for each disease. Overall, both 
INLA and MLMM demonstrated high prediction accuracy at the mu-
nicipality level. When utilizing the INLA prediction model, there was an 
error of zero or one event in 96 municipalities (82 %) for OHCA, 102 
municipalities (87 %) for STEMI, and 84 municipalities (72 %) for 
stroke. Similarly, the MLMM exhibited an error of zero or one event in 
98 municipalities (84 %) for OHCA, 100 municipalities (85 %) for 
STEMI, and 83 municipalities (71 %) for stroke (Fig. 1). Notably, from 
the same figure, the largest OHCA prediction errors of 8 and 11 obtained 
with INLA decreased to 4 and 5 with MLMM. The largest STEMI pre-
diction errors only marginally decreased from 7 and 8 STEMIs with INLA 
to 5 and 6 with MLMM. Similar results were reported for the benchmark 
models Naïve and EMA, showing a significantly worse performance for 
OHCA and STEMI (Fig. 1).

In comparison to simpler statistical estimates, INLA and MLMM 
consistently achieved more accurate predictions of OHCAs, STEMIs, and 
strokes, as evidenced by lower mean absolute errors and chi-square 
measures (Table 1). Regarding OHCA, MLMM exhibited a prediction 
error of 0.70 events per year per municipality, making it the most ac-
curate model compared to INLA and simpler statistical methods. INLA 
and the simpler EMA performed similarly, with a prediction error of 
0.87 and 0.88 OHCAs per year per municipality, respectively, but INLA 
had a greater number of predictions with null error.

Concerning STEMI prediction, from the same table, the MLMM 
model demonstrated a prediction error of 0.74 events per year per 
municipality, establishing itself as the most accurate model. INLA out-
performed simpler statistical methods (NP and EMA) to a more signifi-
cant extent. Regardless of the model used, stroke event prediction had 
the highest error compared to OHCA and STEMI. However, MLMM 
exhibited the highest accuracy. Similarly to OHCA, MLMM and INLA are 
particularly better in STEMI and stroke predictions with zero or one 
error.

When predicting events at the level of the EMS area (Fig. 2), MLMM 
was superior or comparable to the other approaches; in contrast, INLA 
overestimated the number of strokes, and both the proposed approaches 
seem to predict better than the simpler NP and EMA methods, for all 
diseases.
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Relationship between OHCA, STEMI, and stroke

Including past STEMIs and strokes as covariates improved the pre-
diction accuracy of OHCA using the INLA model: the prediction error 
decreased from 0.87 (Table 1) to 0.79 (Table 2) OHCAs per year per 
municipality. The inclusion of STEMI and stroke also reduced the largest 
errors from 8 and 11 (Fig. 1) to 6 and 8 (Fig. 4, left). However, for 
municipalities in which past OHCA alone predicted OHCA in 2022 with 
an error of zero or one event, the inclusion of past STEMIs and strokes 
did not improve the model performance.

The prediction error for STEMI with the INLA model remained un-
changed at 0.77 STEMIs per year per municipality (Table 1, Table 2), 
regardless of whether past OHCAs and strokes were included as 

covariates in the prediction. The inclusion of OHCA and stroke reduced 
the largest error from 8 (Fig. 1) to 7 (Fig. 4, middle), but it did not 
increase the number of municipalities where the prediction error was 
zero or one event.

The inclusion of past STEMIs and OHCAs for predicting stroke events 
reduced the prediction error with INLA from 1.50 S per year per mu-
nicipality (Table 1) to 1.42 (Table 2). The incorporation of STEMIs and 
OHCAs improved the performance of the INLA model, reducing the four 
largest errors from 9, 13, 15, and 17 (Fig. 1) to 7, 13, 13, and 14 (Fig. 4, 
right). The number of municipalities with a prediction error of zero or 
one event increased from 84 to 89.

The predictions obtained by MLMM remained the most accurate 
model for OHCA, STEMI, and stroke prediction and were not improved 

Fig. 1. Absolute prediction error (x axis) by number of municipalities (y axis) for out-of-hospital cardiac arrest (OHCA), ST-segment elevation myocardial infarction 
(STEMI) and stroke with Naïve prediction (NP), exponential moving average (EMA), integrated nested Laplace approximation (INLA) and the Machine Learning Meta 
Model (MLMM).

Table 1 
Prediction performance of the four models in terms of mean absolute error and Chi squared statistic (lower values indicate better performance) in different scenarios: 
prediction of out-of-hospital cardiac arrest (OHCA), prediction of ST-segment elevation myocardial infarction (STEMI), prediction of stroke.

OHCA STEMI Stroke

Model Mean absolute 
error

Chi squared 
statistic

Mean absolute 
error

Chi squared 
statistic

Mean absolute 
error

Chi squared 
statistic

Naïve prediction (NP) 0.95 98.31 1.12 207.42 1.61 301.09
Exponential moving average (EMA) 0.88 66.74 0.98 119.32 1.30 145.08
Integrated Nested Laplace Approximation 
(INLA)

0.87 65.57 0.77 83.77 1.50 95.49

Machine learning meta model (MLMM) 0.70 55.84 0.74 78.86 1.09 80.82

A. Auricchio et al.                                                                                                                                                                                                                              Resuscitation Plus 20 (2024) 100810 

4 



by the inclusion of the other two past diseases as covariates (Table 1, 
Table 2).

The OHCA risk map with the INLA prediction of OHCA with the 
auxiliary of past STEMIs and strokes is showed in Fig. 3 (bottom right). 
The observed and predicted numbers of OHCAs, STEMIs, and strokes 
displayed statistically significant spatial variability between 

municipalities. However, all three diseases exhibited a similar spatial 
pattern in their variability (Supplemental Table 2, Fig. 3). The between- 
municipality variability in the predicted number of OHCAs, as well as a 
similar spatial pattern among the three different events, were confirmed 
even when including past STEMIs and strokes as covariates (Supple-
mental Table 2, Fig. 4). Finally, the temporal component was significant 

Fig. 2. Observed and predicted values of out-of-hospital cardiac arrest (OHCA), ST-segment elevation myocardial infarction (STEMI), and stroke with Naïve pre-
diction (NP), exponential moving average (EMA), integrated nested Laplace approximation (INLA) and the Machine Learning Meta Model (MLMM) at emergency 
medical service (EMS) area level.

Table 2 
Prediction performance of the four models in terms of mean absolute error and Chi squared statistic (lower values indicate better performance) in different scenarios: 
prediction of out-of-hospital cardiac arrest (OHCA), prediction of ST-segment elevation myocardial infarction (STEMI), prediction of stroke, using the other two 
diseases as explanatory variables.

OHCA with STEMI and stroke as 
explanatory variables

STEMI with OHCA and stroke as 
explanatory variables

Stroke with OHCA and STEMI as 
explanatory variables

Model Mean 
absolute 
error

Chi squared statistic Mean 
absolute 
error

Chi squared statistic Mean 
absolute 
error

Chi squared statistic

Naïve prediction (NP) 0.95 98.31 1.12 207.42 1.61 301.09
Exponential moving average (EMA) 0.88 66.74 0.98 119.32 1.30 145.08
Integrated Nested Laplace Approximation (INLA) 0.79 58.72 0.77 82.73 1.42 88.50
Machine learning meta model (MLMM) 0.70 56.88 0.74 78.86 1.09 79.92
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for OHCA and STEMI, but not for stroke (Supplemental Table 3). When 
we included in the models the other past conditions for better predic-
tion, we observed less temporal effect, even if still significant for STEMI 
prediction, since in some way captured by the temporal dynamics of the 
other past diseases.

Discussion

To the best of our knowledge, this is the first study assessing the 
spatio-temporal distribution of three time-sensitive cardiovascular dis-
eases: OHCA, STEMI, and stroke. We tested two different methods to 
predict their incidence and respective spatio-temporal distribution at 
the municipality level over a large European region, Canton Ticino, 

Fig. 3. Predicted INLA risk map of Ticino for out-of-hospital cardiac arrest (OHCA), ST-elevation myocardial infarction (STEMI), stroke, and OHCA supported by past 
STEMIs and strokes.

Fig. 4. Absolute prediction error of out-of-hospital cardiac arrest (OHCA) at municipality level (maximum number of municipalities: 117) with the auxiliary of past 
ST-segment elevation myocardial infarction (STEMI) and of past stroke using the integrated nested Laplace approximation (INLA).
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Switzerland, which includes both urban and extensive rural areas, 
characterized by rivers, lakes, valleys, and mountains. The use of INLA 
and MLMM successfully predicted OHCA, STEMI, and stroke with very 
high accuracy, outperforming simpler prediction procedures such as 
Naïve forecasting and the exponential moving average. Notably, the 
prediction of OHCA using INLA significantly improved when STEMI and 
stroke events were added as explanatory variables in the statistical 
model. This suggests the potential existence of a spatio-temporal cor-
relation between the occurrence of OHCAs, STEMIs, and stroke events. A 
final noteworthy finding is the generalizability of the developed meth-
odology, providing the ability to assess and predict the spatio-temporal 
distribution of one of the three considered acute pathologies when only 
basic demographic information, together with the temporal series of 
other acute cardiovascular diseases, are available.

Spatio-temporal distribution and prediction of OHCA, STEMI, and stroke

Numerous studies have conducted spatial or spatio-temporal ana-
lyses to identify clusters (e.g., counties, neighbourhoods) at a higher risk 
of OHCA, OHCA-related mortality, or with an ineffective chain of 
survival.11,12,22–25 Some studies have also aimed to improve resource 
allocation, such as the placement of public access defibrillators for better 
OHCA coverage.21,26–28 More recently, a few studies employed machine 
learning to perform spatio-temporal analyses aimed at forecasting 
OHCA incidence.11,13,14,29 Nakashima et al.5 and subsequently Shimada- 
Sammori et al.13,14 successfully predicted the daily incidence of OHCA of 
cardiac origin using machine learning, analysing data from a very large 
OHCA dataset (the All-Japan Utstein Registry) along with meteorolog-
ical and chronological variables. Nakashima et al.29 further confirmed 
the precision of their model in predicting the daily incidence of OHCA in 
the U.S. population. Taken together, these studies confirm the ability of 
modern machine learning algorithms to predict with high accuracy the 
incidence of OHCA at national and regional level.

Our study tested two different models: a spatio-temporal Bayesian 
model, known as INLA, particularly effective in analysing data that 
varies both in time and space, and the MLMM model that automatically 
optimizes the joint prediction performance of different machine learning 
algorithms. The results of our models showed a very high accuracy and 
prediction ability at municipality level. Compared to the current liter-
ature, our study significantly expands knowledge by applying modern 
prediction algorithms to two other time-sensitive cardiovascular dis-
eases: STEMI and stroke. Both INLA and MLMM exhibited remarkable 
accuracy in predicting STEMI and stroke events individually. Further-
more, INLA and MLMM outperformed simpler prediction techniques 
such as Naïve forecasting and the exponential moving average. Impor-
tantly, by incorporating lagged values of STEMI and stroke events as 
explanatory variables within the INLA statistical model, we achieved a 
substantial improvement in the accuracy of OHCA prediction. These 
results support the inclusion of past cases of STEMI and stroke when 
predicting the future behaviour of OHCA, even when working with 
relatively short time series, as in our setting. This study provides initial 
evidence suggesting a possible spatio-temporal correlation between the 
occurrence of OHCAs, STEMIs, and strokes.

Implications of study findings for clinical practice

OHCA, STEMI, and stroke are all time-sensitive cardiovascular dis-
eases, making the evaluation and prediction of their spatio-temporal 
distribution paramount. Our study establishes the foundation for 
considering OHCA, STEMI, and stroke as proxies for each other con-
cerning spatio-temporal distribution. The demonstration that these 
conditions share common geographical and temporal distributions cre-
ates a unique opportunity for targeted primary prevention strategies and 
treatment interventions. However, predicting stroke incidence was 
consistently more complex across different models. Stroke’s heteroge-
neity, with its varied subtypes and risk factors, may make it harder to 

predict compared to the more homogenous OHCA and STEMI. Stroke 
may also be influenced by a broader range of chronic and acute factors 
that are harder to capture in models. In contrast, OHCA and STEMI share 
several pathophysiological mechanisms; for instance, the most common 
cause of OHCA is acute myocardial infarction. The ability to predict 
OHCA, STEMI, and stroke incidences with high accuracy provides 
decision-makers and healthcare institutions with a powerful tool. Such 
analyses are crucial for improving resource allocation, including the 
strategic placement of EMS, AEDs, and first responders. This can lead to 
increased patrolling in certain areas by small mobile intervention units 
to reduce response times and potentially improve outcomes. Further-
more, this predictive capability can be valuable for public health stra-
tegies targeting communities at higher risk. Initiating local public 
awareness campaigns or conducting focused training campaigns on first 
aid for these time-sensitive cardiovascular diseases can be informed by 
these predictions. Finally, user-friendly algorithms will be made acces-
sible through interactive software, ensuring rapid access to updated 
estimations. The goal is to make information readily available for 
informed decision-making and proactive healthcare interventions.

Comparison of statistical methods used

Another interesting aspect of our study is that we implemented and 
compared INLA, ML, and simpler prediction methods. In contrast, most 
other published studies have primarily used ML methods. It is worth 
noting that statistical and MLMM differ in key aspects beyond their 
different prediction abilities.30 Machine learning algorithms typically 
show an automated ability to search and extract arbitrary complex 
features from data, removing the need to pre-specify features for pre-
diction. Indeed, in our setting, the representations that synthesize the 
behaviour of each municipality, and that can be considered as the 
explanatory variables in the MLMM, are not easy interpretable. Also, 
one notable disadvantage of MLMM compared to INLA lies in the 
complexity of its hyperparameter optimization pipeline, which had an 
execution time of 20 minutes and 18 seconds. In contrast, the INLA 
model completed within 7 seconds under the same computational 
resources.

In future work, we will consider incorporating techniques such as 
permutation feature importance, as well as other explainability methods 
like LIME (Local Interpretable Model-agnostic Explanations)31 and 
SHAP (SHapley Additive exPlanations)32 to quantify the contribution of 
features to model performance. These techniques will help us better 
understand the model’s decision-making process and enhance the 
transparency and interpretability of our models while maintaining the 
predictive power of the MLMM framework.

On the other hand, the explicit factors of age and sex in the INLA 
model are more intuitive and driven by domain knowledge. Explicit risk 
factors in more traditional models can help in gaining an understanding 
of the causes of acute cardiovascular events and in generalizing the 
evidence to new patients and geographies. Furthermore, our results 
confirm that machine learning methods can achieve higher prediction 
accuracy due to higher flexibility but require caution to avoid overfitting 
to data and the subsequent lack of reproducibility. In this regard, our 
joint usage of traditional statistical prediction methods, like INLA, 
alongside machine learning methods, specifically the MLMM method, 
can contribute to providing statistically meaningful predictions and can 
mitigate data-driven false associations in the data that do not correspond 
to clinical evidence.

Strengths and limitations

Our study has several strengths. First, the Ticino Registry of Cardiac 
Arrest (TIRECA), the STEMI registry (Preh-STEMI) and the stroke reg-
istry (Preh-Stroke) are all prospectively designed registries to capture 
every individual who suffer an OHCA, a STEMI or a stroke of any aeti-
ology. They collect detailed and comprehensive demographic, EMS, pre- 

A. Auricchio et al.                                                                                                                                                                                                                              Resuscitation Plus 20 (2024) 100810 

7 



hospital, in-hospital, and outcome data, allowing a complete coverage of 
Canton Ticino, Switzerland and representativeness of the predictive 
models. Second, compared with previous studies, we were able to 
improve the prediction of OHCA by adding STEMI and stroke events as 
covariates.

This study also has some limitations. First, variations over time in 
population density, weather changes, pollution, and the occurrence of 
public events were not considered in our model. These omissions expose 
our findings to the risk of missing confounders that, if appropriately 
included in a statistical model, could either improve or invalidate the 
demonstrated dependence between OHCAs, STEMIs, and strokes. On the 
other hand, limiting the external data used as inputs to the statistical 
models facilitates the implementation of our forecasting methods in 
clinical practice. Second, predictions were computed on a yearly basis 
because shorter-term predictions, although technically possible, were 
not feasible due to the high number of zero cases in small municipalities. 
Third, patients with missing geolocation coordinates were excluded: this 
could potentially bias OHCA incidence estimation and prediction; 
however, this group was extremely small (5 % of the total population), 
thus unlikely to affect our prediction model. Fourth, to avoid an exces-
sive reduction in the sample size, since machine learning models require 
a substantial number of observations for training, the whole studies on 
the three diseases have been conducted on the whole population of 
patients, without discriminating along patients’ features: analyses con-
ducted on sub-populations of patients in predetermined age or sex 
groups could confirm our current findings or reveal different insights.

Conclusions

Prediction of OHCA, STEMI, and stroke incidence was possible with 
very high accuracy in a mixed urban and rural area presenting with 
rivers, lakes, valley, and mountains using INLA and MLMM. Prediction 
performance of OHCA significantly improved when the incidence of 
STEMI and stroke events were added as explanatory variables in the 
INLA statistical model. This suggests the potential existence of a spatio- 
temporal correlation between the occurrence of these time-sensitive 
cardiovascular conditions. Widespread implementation in clinical 
practice of prediction algorithms may allow to improve resource allo-
cation, reduce treatment delays, and improve outcomes.
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