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Chemotherapy-induced peripheral neuropathy (CIPN) is a serious dose-limiting toxicity

of many anti-neoplastic agents, especially paclitaxel, and oxaliplatin. Up to 62% of

patients receiving paclitaxel regimens turn out to develop CIPN. Unfortunately, there are

so few agents proved effective for prevention or management of CIPN. The reason for

the current situation is that the mechanisms of CIPN are still not explicit. Traditional

Chinese Medicine (TCM) has unique advantages for dealing with complex diseases.

Wen-Luo-Tong (WLT) is a TCM ointment for topical application. It has been applied

for prevention and management of CIPN clinically for more than 10 years. Previous

animal experiments and clinical studies had manifested the availability of WLT. However,

due to the unclear mechanisms of WLT, further transformation has been restricted. To

investigate the therapeutic mechanisms of WLT, a metabolomic method on the basis

of UPLC- MS was developed in this study. Multivariate analysis techniques, such as

principal component analysis (PCA) and partial least squares discriminate analysis (PLS-

DA), were applied to observe the disturbance in the metabolic state of the paclitaxel-

induced peripheral neuropathy (PIPN) rat model, as well as the recovering tendency of

WLT treatment. A total of 19 significant variations associated with PIPN were identified

as biomarkers. Results of pathway analysis indicated that the metabolic disturbance of

pathways of linoleic acid (LA) metabolism and glycerophospholipid metabolism. WLT

attenuated mechanical allodynia and rebalanced the metabolic disturbances of PIPN by

primarily regulating LA and glycerophospholipid metabolism pathway. Further molecular

docking analysis showed some ingredients of WLT, such as hydroxysafflor yellow A

(HSYA), icariin, epimedin B and 4-dihydroxybenzoic acid (DHBA), had high affinity to

plenty of proteins within these two pathways.
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INTRODUCTION

Chemotherapy-induced peripheral neuropathy (CIPN) is a
common treatment-related adverse effect ofmany anti-neoplastic
agents. It is a serious dose-limiting toxicity characterized
by distal, symmetrical, sensory peripheral neuropathy. These
sensory neuropathy symptoms generally present as paraesthesia,
numbness and/or pain, which severely affect the patient’s quality
of life (QOL). Although recent advances in cancer treatment
have led to prolonged survival of patients, many treatment-
related adverse effects remain unsolved (Wolf et al., 2008;
Hershman et al., 2011, 2014). There are few established agents
recommended for the prevention or management of CIPN
to cancer survivals undergoing anti-neoplastic treatment with
neurotoxic agents (Hershman et al., 2014), such as paclitaxel,
oxaliplatin, vinorelbine, et al. Paclitaxel, as an effective anti-
neoplastic agent, is widely used as first-line treatment for various
types of cancer, including of breast, ovarian, and non-small
cell lung cancer. However, CIPN is a significant problem for
patients receiving paclitaxel regimens. Up to 62% of patients
turn out to develop CIPN after paclitaxel regimens (Lee and
Swain, 2006; Argyriou et al., 2008; Reyes-Gibby et al., 2009).
It has been reported that mitochondrial damage (André et al.,
2000; Bernardi et al., 2006; Flatters and Bennett, 2006; Martin
et al., 2009), intraepidermal nerve fibers degeneration (Flatters
and Bennett, 2006), ion channels alteration (Xiao et al., 2007;
Nieto et al., 2008; Zhang et al., 2014), transient receptors
potential (TRP) family (Alessandri-Haber et al., 2008; Materazzi
et al., 2012), inflammation and immune status (Ledeboer et al.,
2007; Dutra et al., 2015; Li D. et al., 2015) are associated
with paclitaxel-induced peripheral neuropathy (PIPN). However,
the mechanisms remain unclear. An explicit mechanism is
the precondition of discovery for eutherapeutic drug or
treatment, thus it’s very important and urgent to understand its
mechanism.

After more than several decades of efforts, the treatment
against cancer and its complications still appears far from being
satisfying. It has gradually become clear that the “one gene-
one target-one drug” model has failed for drug discovery. It
appears that monotherapy strategy will be replaced by rational
combination targeted therapy (Haefner, 2006). It is necessary
to analyze the systems’ response to drug treatments, not just
one target or pathway. Therefore, is very important to reveal
the abnormal metabolisms through a systematic perspective
for understanding the mechanisms of disease, as well as for
developing drugs. Metabolomics is a collection of powerful
tools for detecting, identifying and quantifying the endogenous
metabolites that are involved in the metabolisms, and then
interpreting biological changes of the internal environment
(Nicholson and Lindon, 2008). It has been increasingly used in
the researches aiming to explore the mechanisms of diseases
or treatments, as it could provide comprehensive metabolic
information of organisms (Weckwerth, 2003, 2010; Glinski and
Weckwerth, 2006; Fang and Gonzalez, 2014; Wang et al., 2015).

Currently, drug combinations and multi-target therapies
have been proposed as a promising therapeutic strategy for
improving anti-neoplastic effects, and relieving the side effects.
Traditional Chinese Medicine (TCM) deals with diseases from

the perspective of holism. The TCM decoctions are commonly
composed of several herbs with complex constituents of
compound. Metabolomics has been used as important technique
for interpreting pharmacological mechanisms of TCM formulae
under the guidance of systematic theory (Li et al., 2011; Li and
Zhang, 2013). Indeed, there have been an increasing number
of TCM studies applying metaboliomics (Lu et al., 2014; Cao
et al., 2015; Wang et al., 2015, 2017). Wen-Luo-Tong (WLT)
is an herbal formula ointment for topical application. It had
been applied to prevention and management for CIPN in
clinical practice for more than 10 years. The formula was
constituted by epimedium herb, geranium wilfordii, cassia
twig, and carthamus tinctorius (Table 1). The components are
supposed to act synergistically to achieve the TCM treatment
principle ofWarming andActivatingMeridian, Promoting Blood
Circulation and Alleviating Pain. Moreover, previous clinical trial
and animal experiment manifested it had effect of analgesic and
neuroprotection over CIPN. The clinical trial showed that after 7
days WLT treatment, numerical rating scale (NRS) in trial group
was significantly decreased while control group did not. And
the response rate of pain relief was 85.07% in trial group while
44.12% in control group (p < 0.01). In addition, symptoms of
75.00% subjects in trial group were improved by grading, while
35.29% in control group. The animal experiment showed WLT
treatment alleviated oxaliplatin-induced mechanical allodynia
and mechanical hyperalgesia. Degenerations in the nuclear, and
nucleolar areas of neurons in dorsal root ganglion (DRG) were
attenuated. In the spinal dorsal horn, hypertrophy and activation
of glial fibrillary acidic portein (GFAP) positive astrocytes were
averted, and the level of GFAP mRNA decreased significantly
(Lou et al., 2008, 2014; Deng et al., 2017). Therefore, decipher
the mechanisms of WLT based on metabolomics will provide a
global insight into the actions of neurotoxic agents and WLT,
which helps to understand the mechanisms and further helps to
discovery new drug or treatment.

Our study aimed to investigate the metabolic disturbances
of PIPN through untargeted metabolomic assays. Additionally,
taking WLT as probe, metabolomic alterations were analyzed to
provide some clues for CIPN mechanism explorations.

MATERIALS AND METHODS

Paclitaxel and WLT Preparation
Paclitaxel (6 mg/ml, Beijing Union Pharmaceuticals, Beijing,
China) was diluted with saline (1:3) (Li D. et al., 2015).
WLT decoction was authenticated by both Ethics Committee

TABLE 1 | Constituents of WLT.

Botanical name English name Used plant

parts

Weight per

dose (g)

Epimedium brevicornum

Maxim.

Epimedium herb Dried

overground

parts

30

Geranium wilfordii Maxim. Geranium wilfordii Dried

overground

parts

20

Cinnamomum cassia Presl. Cassia Twig Dried twig 15

Carthamus tinctorius L. Carthamus tinctorius Dried flower 10
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and Pharmaceutical Department of China-Japan Friendship
Hospital. Herbs of WLT (Table 1) were purchased from
pharmacy of China-Japan Friendship Hospital (Beijing, China).
WLT decoction was prepared into granula with individual
package (composes and dosage of each package showed
in Table 1) by the Pharmaceutical Department of China-
Japan Friendship Hospital, following the technological process
shown in Supplementary Figure 1. (Manufacturer production
lot number: 201610211416).

Animal Experiments and Sample Collection
Female Sprague-Dawley rats weighing 160–200 g were purchased
from Beijing Vital River Laboratory Animal Technology Co., Ltd.
(Beijing, China). All rats were housed in automatically controlled
environmental conditions, using a 12 h light–dark cycle (lights on
from 08:00 to 20:00) with free access to food andwater. All animal
experiment protocols were approved by the Animal Care and
Welfare Committee of China-Japan Friendship Hospital (Beijing,
China), approval No. 160105. The investigation was conducted in
accordance with the ethical principles of animal use and care.

After 3 days adaption, rats were randomly allocated into three
groups as follows: PTX, WLT, Control. Animals of PTX and
WLT were intraperitoneally (i.p.) injected (8 mg/kg, cumulative
dose of 24 mg/kg) on 3 alternate days (d1, 4, 7) (Li D. et al.,
2015). Animals of Control received an equivalent volume of
saline. One package ofWLT (Table 1) was dissolved into 1,000ml
deionized water (40◦C) before application. Animals in WLT
group shared one batch of WLT solution together. Animals
took pediluvium of WLT or water for 30min, twice a day
(Supplementary Figure 4). The intervention was initiated 1 day
before paclitaxel administration and lasted for 11 days (d0-10).
Rats in PTX and Control took pediluvium of deionized water.
The route of operation was as follow: behavioral test, pediluvium,
intraperitoneal injection (Deng et al., 2016).

Mechanical paw withdrawal threshold (PWT) was tested
before, during, and after paclitaxel treatment (d0, 2, 4, 6, 8, and
10) by an experimenter blinded to treatment groups (Li D. et al.,
2015). Rats were placed in elevated plexiglas chambers upon
a wire mesh floor and allowed to acclimate for 15min prior
to measuring the PWT. PWT was tested using calibrated von
Frey filaments according to the “up and down” method (Dixon,
1980; Chaplan et al., 1994). The development of mechanical
allodynia was evidenced by a significant (p < 0.05) reduction in
mean absolute PWT (g) at forces that failed to elicit withdrawal
responses before treatment (baseline or D0). PWT testing was
done prior to any other administration or intervention.

Blood and tissue samples were collected on day 10 after tests
and interventions. Rats were anesthetized with intraperitoneal
injection of sodium pentobarbital (50 mg/kg). Blood samples
were centrifuged at 3,000 rpm for 10min. Then 500 µL plasma
was extracted. All the samples were stored in a −80◦C freezer
for further analysis. L4–6 spinal cord segments were removed,
fixed in 4% paraformaldehyde overnight, embedded in paraffin
and cut into 5µm thickness sections. The scheme of the whole
experiment was shown in Figure 1.

Immunohistochemistry
Sections of the L4–6 spinal cord were processed for
immunohistochemistry using a primary antibody against
Chemokine (C-X3-C motif) ligand 1 (CX3CL1) (1:200,
Bosterbio, China). Following incubation overnight at 4◦C,
sections were incubated in a horseradish peroxidase-conjugated
secondary antibody for 4 h at room temperature. The color was
developed with 3,3′-diaminobenzidine (DAB).

Instrumentation for LC-MS
An ultra-performance liquid chromatography-electrospray
ionization-mass spectrometer (UPLC-ESI-MS) was used. It was

FIGURE 1 | Experimental design. Animals of Control, PTX and WLT received paclitaxel/saline injection and WLT/water pediluvium during the experiment. The PIPN

model was constructed by administration of paclitaxel at 8 mg/kg by intraperitoneal injection on d1, 4, 7. WLT solution was given tropically by pediiluvium twice a day

for 11 consecutive days (d0-10). The behavior assay was monitored every other day (d0, 2, 4, 6, 8, 10). The rats were finally euthanized on day 10. Plasma and spinal

cord samples were collected for preparation and analysis.
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FIGURE 2 | WLT attenuated Paclitaxel-induced Peripheral Neuropathy. (A) Paw withdraw threshold (PWT) of PTX and WLT group was decreased significantly after

injection of paclitaxel (8 mg/kg, i.p.). Statistical difference had been shown since day 4. Compared with PTX group, WLT attenuated the mechanical allodynia.

Significant difference was shown since day 6 (p < 0.05). (B) Immunochemistry staining showed that paclitaxel induced up-regulation of CX3CL1 expression in

neurons and dendrites. The expression of CX3CL1 in WLT was down-regulated.
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equipped with hybrid quadrupole Orbitrap mass spectrometer
and ThermoFisher Scientific Q Exactive (Thermo Fisher
Scientific, Inc., Waltham, MA, United States). The sample
solutions were separated using a HSS C18 column (2.1 ×

100mm, 1.7µm, Waters) at 45◦C. For C18 separation, mobile
phase A was water and mobile phase B was acetonitrile. Both A
and B contained 0.1% formic acid and 1 mmol/L ammonium
acetate. The flow rate was 300 µL/min and the injection volume
was 1 µL. The positive and negative HESI-II spray voltages were

3.7 and 3.5 kV, respectively, the heated capillary temperature
was 320◦C, the sheath gas pressure was 30 psi, the auxiliary

gas setting was 10 psi, and the heated vaporizer temperature
was 300◦C. Both the sheath gas and the auxiliary gas were
nitrogen. The collision gas was also nitrogen at a pressure of 1.5

mTorr. The parameters of the full mass scan were as follows: a
resolution of 70,000, an auto gain control target under 1× 106, a

maximum isolation time of 50ms, and an m/z range 150–1,500.

The calibration was customized for the analysis of Q Exactive to
keep the mass tolerance of 5 ppm. The parameters of the dd-MS2
scan were as follows: a resolution of 17,500, an auto gain control
target under 1 × 105, a maximum isolation time of 50ms, a loop

count of top 10 peaks, an isolation window of m/z 2, normalized

collision energy of 30V and an intensity threshold under 1 ×

105. The LC-MS system was controlled using Xcalibur 2.2 SP1.48
software (Thermo Fisher Scientific, United States), and data were
collected and processed with the same software.

All data obtained from the assays in the two systems of
both positive and negative ion modes were processed using
Progenesis QI data analysis software (Nonlinear Dynamics,
Newcastle, UK) for imputing raw data, peak alignment, picking,
and normalization to produce peak intensities for retention
time (tR) and m/z data pairs. The ranges of automatic peak
picking for the C18 assays were between 0.7 and 19min. Then,
the adduct ions of each “feature” (m/z, tR) were deconvoluted,
and these features were identified in the human metabolome

database (HMDB, http://www.hmdb.ca/) and Lipidmaps (http://
www.lipidmaps.org/).

Quality Control
To monitor the system’s stability and performance as well as the
reproducibility of the samples, quality control samples (QCs)
were prepared by pooling equal volumes of each sample. The
pretreatment of QCs was in accord with real samples. For
repeatable metabolic analyses, three features of the analytical
system must be stable: (i) retention time, (ii) signal intensity and
(iii) mass accuracy. In this study, three QCs were continuously
injected at the beginning of the run. QCs are then injected
at regular intervals throughout the analytical run in order to
provide data from which repeatability can be assessed. The
features were selected based on their coefficients of variation
(CVs) with QCs; features with CVs over 15 % were eliminated.

Statistical Analysis
Statistical analysis of behavioral test was performed using SPSS
19.0 (IBM, USA). Results of pathological scores were analyzed
using IPP 6.0 (Intel, USA). The multivariate data analysis,
principal component analysis (PCA) and partial least squares
discriminate analysis (PLS-DA) were conducted by EZinfo
3.0 (Umetrics, Sweden). Metabolism pathway analysis was
conducted by MetaboAnalyst 3.0 (http://www.metaboanalyst.
ca/). Enzymes related to metabolites were collected by HMDB
4.0 (http://www.hmdb.ca/). Protein-protein interactions with
confidence >0.9 in the STRING 10.5 (https://string-db.org) were
used to construct a network containing relationships between
enzymes and proteins. The structures of WLT ingredients
were downloaded from PubChem (http://pubchem.ncbi.nlm.
nih.gov). The structures of proteins were obtained from
the Protein Data Bank (PDB, https://www.rcsb.org/). Protein
structures not available from PDB was homology modeled
by (https://www.swissmodel.expasy.org) docking was carried

FIGURE 3 | PLS-DA Plots of PIPN Metabolic Disturbances. The PLS-DA plots showed clear separation between Control and PTX. (A) Positive: R2X = 0.799,

Q2 = 0.642. (B) Negative: R2X = 0.906, Q2 = 0.847.
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out with Discovery Studio 3.5 (BIOVIA, USA). Parametric
data was analyzed by ANOVA or Student’s t-test for, and
non-parametric data by Mann–Whitney U-test or Kruskal-
Wallis. Differences were considered the results with P-
values < 0.05.

RESULTS

WLT Attenuated Paclitaxel-Induced
Peripheral Neuropathy
Consistent with previous studies (Huang et al., 2014; Li D. et al.,
2015), administration with paclitaxel (3 × 8 mg/kg, cumulative

dose 24 mg/kg, equivalent to average dose of clinical practice)
induced marked mechanical allodynia (Figure 2A). The PWT
of both WLT and PTX was greatly decreased compared with
Control group. However, co-administrated with WLT alleviated
PWT decrease. PWT of PTX group was decreased significantly
from 20.5 ± 5.88 to 4.5 ± 0.93 g. Statistical difference between
PTX and Control had been shown since day 4. While that of
WLT group was from 20.5 ± 5.88 to 8.0 ± 1.07 g. Statistical
difference between PTX and WLT had been shown since day
6. According to previous studies, it had been revealed that
up-regulation of CX3CL1 was involved with the neuropathic
pain induced by nerve injury. Immunochemistry staining of our

TABLE 2 | Significantly differential metabolites.

HMDB Code name m/z Retention time (min) p-value VIP FC

(+) HMDB06461 Linoelaidyl carnitine 424.342 7.49 0.04 1.04 2.093

HMDB10391 LysoPC(20:1(11Z)) 550.397 9.32 0.02 3.13 2.323

HMDB10393 LysoPC(20:3(5Z,8Z,11Z)) 546.356 8.25 0.02 2.63 1.983

HMDB10384 LysoPC(18:0) 546.353 9.07 0.02 1.02 1.743

HMDB10394 LysoPC(20:3(8Z,11Z,14Z)) 546.355 8.18 0.05 3.94 1.763

HMDB10404 LysoPC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)) 568.338 8.26 0.001 1.14 3.421

HMDB29888 Sorbitan stearate 448.363 8.59 2.06E-11 1.17 ↑↑

HMDB30965 9-Octadecenal 284.295 10.45 0.04 1.10 2.345

HMDB37543 (±)-(Z)-2-(5-Tetradecenyl) cyclobutanone 282.279 9.75 0.04 2.53 4.452

(–) HMDB00673 Linoleic acid 279.233 9.73 0.05 1.38 2.602

HMDB00682 Indoxyl sulfate 212.002 4.78 0.03 3.02 2.010

HMDB08039 PC(18:0/18:2(9Z,12Z)) 830.593 7.86 0.01 2.58 1.175

HMDB08135 PC(18:2(9Z,12Z)/18:0) 830.592 8.12 0.01 1.66 1.155

HMDB08431 PC(20:4(5Z,8Z,11Z,14Z)/18:0) 854.592 8.52 0.05 4.27 1.235

HMDB10397 LysoPC(20:5(5Z,8Z,11Z,14Z,17Z)) 586.316 7.58 0.05 1.71 1.533

HMDB32549 N-Undecylbenzenesulfonic acid 311.169 10.32 0.02 1.04 1.122

HMDB34297 Ricinoleic acid 297.243 8.50 0.001 1.76 3.391

HMDB60924 Suprofen S-oxide 321.044 5.64 0.05 1.04 2.390

HMDB62551 4-ethylphenylsulfate 201.022 5.66 0.05 2.49 1.970

FIGURE 4 | Metabolites variation analysis. (A) Heatmap of metabolite concentrations. Heatmap showed the relative concentrations of differential metabolites in each

sample. (B) Metabolism Pathway Affected by Paclitaxel Treatment. The result of the significant metabolites analysis showed that paclitaxel primarily disturbed the

linoleic acid and glycerophospholipid metabolisms. Linoleic acid metabolism was a preferred target pathway of paclitaxel (impact 1.0).
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study showed that paclitaxel increased the expression of CX3CL1
in neurons and dendrites of spinal cord sections. Meanwhile,
compared with PTX group, CX3CL1 expression in WLT was
markedly down-regulated (Figure 2B). The results of behavioral
test and immunochemistry demonstrated that WLT attenuated
paclitaxel-induced peripheral neuropathy.

Metabolic Disturbances of
Paclitaxel-Induced Peripherial Neuropathy
PCA manifested paclitaxel induced obvious metabolic
disturbances. QCs were applied in assessing system stability.
The PCA plots showed a clear discrimination between
Control and PTX groups, while QCs highly clustered
(Supplementary Figure 2), indicating that the PIPN model
was successfully duplicated and our analytical method was of
good reproducibility and stability.

To identify the significant metabolic disturbances of PIPN,
PLS-DA models of PTX and Control were further performed.
The score plots demonstrated a satisfactory separation between
Control and PTX (Figure 3A, positive: R2X = 0.799, Q2 = 0.642;
Figure 3B, negative: R2X = 0.906, Q2 = 0.847). The variable
importance in the projection (VIP) value of each variable in
the model was ranked according to its contribution to the
classification. The VIP list of the retention time-exact mass pairs
was obtained from the PLS-DA using EZinfo 3.0. To select the
potential biomarkers worthy of preferential study in the next step,
these differential metabolites were validated using the Student’s
t-test. The critical p-value was set to 0.05 for the significantly
different variables in this study. Following the criteria above,
19 differential metabolites were identified (Table 2). Most
of the metabolites were lipids (3 phosphatidylcholines and
6 lysophospholipid), fatty acid or organic acid (LA, N-
Undecylbenzenesulfonic acid, and Ricinoleic acid), ketones ((±)-
(Z)-2-(5-Tetradecenyl) cyclobutanone and Suprofen S-oxide). To

show the variation trend of the significant metabolites, a heatmap
was drawn according to relative concentrations of the differential
metabolites (Figure 4A). As shown in Figure 4A, 12 metabolites
were down-regulated in PTX, including all the PCs and lysoPCs,
Indoxyl sulfate, Suprofen S-oxide, and 4-ethylphenylsulfate. The
other 7 metabolites were up-regulated. These results revealed the
potential role of lipids in the metabolic response to paclitaxel.

To further investigate the metabolism pathway affected by
paclitaxel treatment, the significant metabolites were analyzed

TABLE 3 | Key enzymes of WLT treatment.

Enzymes Full name Uniprot ID

ASPG 60 kDa lysophospholipase Q86U10

CLC Eosinophil lysophospholipase Q05315

LCAT Phosphatidylcholine-sterol acyltransferase P04180

LPCAT3 Lysophospholipid acyltransferase 5 Q6P1A2

LYPLA1 Acyl-protein thioesterase 1 O75608

LYPLA2 Acyl-protein thioesterase 2 O95372

PLA2G10 Group 10 secretory phospholipase A2 O15496

PLA2G12B Group XIIB secretory phospholipase A2-like protein Q9BX93

PLA2G15 Group XV phospholipase A2 Q8NCC3

PLA2G1B Phospholipase A2 P04054

PLA2G2D Group IID secretory phospholipase A2 Q9UNK4

PLA2G2E Group IIE secretory phospholipase A2 Q9NZK7

PLA2G2F Group IIF secretory phospholipase A2 Q9BZM2

PLA2G3 Group 3 secretory phospholipase A2 Q9NZ20

PLA2G4A Cytosolic phospholipase A2 P47712

PLA2G5 Calcium-dependent phospholipase A2 P39877

PLA2G6 85/88 kDa calcium-independent phospholipase A2 O60733

PLB1 Phospholipase B1, membrane-associated Q6P1J6

PLA2G4B Cytosolic phospholipase A2 beta P0C869

FIGURE 5 | Effects of WLT on Regulating the Metabolic Disturbances. WLT rebalanced most metabolic disturbances caused by paclitaxel.
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using Metaboanalyst 3.0 (http://www.metaboanalyst.ca/), a free,
web-based tool that combines metabolites with the pathway
analysis to help researchers to identify the relevant pathways
under their study conditions (Xia et al., 2015; Xia and Wishart,
2016). Metabolites in Table 2 were input into Metaboanalyst
and the metabolic networks were depicted (Figure 4B). The
result showed that paclitaxel primarily disturbed the LA
metabolism (impact 1.0) and glycerophospholipid metabolism
(impact 0.18), which was in accord with published literatures
(Patwardhan et al., 2010; Wang et al., 2013; Sisignano et al.,
2016). And LA metabolism was considered as a preferred
target pathway of paclitaxel due to its significant impact score.
LA, PC(20:4(5Z,8Z,11Z,14Z)/18:0), PC(18:0/18:2(9Z,12Z)),
PC(18:2(9Z,12Z)/18:0) were key metabolites of LA
metabolism pathway. While LysoPC(20:5(5Z,8Z,11Z,
14Z,17Z)), LysoPC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)), LysoPC(20:3
(8Z,11Z, 14Z)), LysoPC(18:0), LysoPC(20:3(5Z,8Z,11Z)),

LysoPC(20:1(11Z)) were key metabolites of glycerophospholipid
metabolism pathway (Supplementary Figure 3). Thus, paclitaxel
induced peripheral neuropathy by primarily targeting LA
metabolism and glycerophospholipid metabolism pathways.

WLT Rebalanced the Metabolic
Disturbances
WLT treatment rebalanced the alteration of most metabolites
disturbed by paclitaxel. The expression of 14 disturbed
metabolites appeared to be rebalanced, including most of the
key metabolites in LA metabolism and glycerophospholipid
metabolism pathways (Figure 5). Especially, LA,
PC(20:4(5Z,8Z,11Z,14Z)/18:0), LysoPC(20:3(5Z,8Z,11Z)),
LysoPC(20:3(8Z,11Z,14Z)), LysoPC(20:5(5Z,8Z,11Z,14Z,17Z)),
LysoPC(20:1(11Z)), LysoPC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)),
LysoPC(18:0) were rebalanced after WLT treatment. In addition,

FIGURE 6 | Interaction Networks of Enzymes and Proteins. (A) Functional interaction networks of the key enzymes were collected and input into the STRING

database to analyze interactions between them (interaction score = 0.9). Pla2g15, lypla1, and plb1 were 3 most interactive enzymes. Functional interaction networks

of pla2g15 (B), lypla1 (C), plb1 (D). Only proteins with highest confidence (interaction score = 0.9) were considered as possible targets network for the metabolites.
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indoxyl sulfate, linoelaidyl carnitine, 4-ethylphenylsulfate, and
Suprofen S-oxide were also regulated by WLT treatment.

To investigate the underlying mechanism of WLT, the
metabolite–protein interaction networks were constructed.
Nineteen enzymes related to the regulated metabolites were
collected from HMDB (Table 3). Next, interaction networks
of the enzymes and proteins were constructed by STRING.
Interactions with highest confidence (interaction score = 0.9)
were considered as active interactions (Figure 6A). As shown,
pla2g15, lypla1, and plb1 were 3 most interactive enzymes. Their
interaction networks of the enzymes and proteins were analyzed
(Figures 6B–D). Correspondingly, the 27 proteins with highest
confidence (interaction score= 0.9) were considered as possible
targets network for the metabolites (Table 4). Additionally, the
metabolite-related enzymes and proteins were mapped in the
biological pathways to explore the metabolite-related signal
pathways in DAVID 6.8. The 2 important biological pathways,
including LA metabolism pathway, and glycerophospholipid
metabolism pathway, were showed in Figure 7. The potential
targets of WLT were marked in the pathways.

To further investigate the affinity between ingredients and
potential targets of WLT, molecular docking was performed. A
previous pharmaceutical study of WLT identified that HSYA,
icariin, epimedin B and 4-DHBA (Table 5) penetrated through
the skin, and they had significant protective effects on Schwann
cells after injured by chemotherapy (Lin et al., 2017). Therefore,
molecular docking was performed between these 4 active
ingredients and the potential protein network to predict the
probable targets of WLT against PIPN. The docking results
revealed that there were high affinities betweenHSYA and alox15,
alox5, cept1, cyp2c7, pla2g1b, pla2g10, pla2g4a, pla2g4d, pla2g7,
and ptgs1. Similarly, high affinities were seen between Epimedin
B, Icariin and alox5, chpt1, pla2g1b, pla2g4a, pla2g7, ptgs1, as
well as between 4-DHBA and most key proteins except pafah2,
pla2g16 (Table 6).

DISCUSSION

CIPN is a serious dose-limiting toxicity of many anti-
neoplastic agents, especially paclitaxel and oxaliplatin. Because
the mechanisms are not explicit, there is hardly any effective
agent for the prevention or management of CIPN. Previous
studies showed that WLT, a topical applied ointment with
herbal formula, was helpful to prevent and alleviate CIPN.
This study was aimed to explore the mechanisms behind it.
We identified 19 significant changed metabolites of PIPN,
most of which were lipids (LysoPCs or PCs), organic acids,
and ketones. Metabolism pathway study demonstrated that
paclitaxel induced peripheral neuropathy mainly by targeting
LA metabolism pathway and glycerophospholipid metabolism
pathway. Correspondingly, WLT attenuated symptoms of PIPN
by primarily rebalancing these two pathways. As a pilot study,
we explored the methodology of metabolomics and network
pharmacology on PIPN. The findings of pathways and potential
targets might provide important clues for further mechanism
studies and clinical improvement.

TABLE 4 | Key proteins of WLT.

Proteins Full Name Uniprot ID

alox15 Arachidonate 12-lipoxygenase,

leukocyte-type

Q02759

alox5 Arachidonate 5-lipoxygenase P12527

cept1 Choline/ethanolaminephosphotransferase 1 Q6AXM5

chpt1 Cholinephosphotransferase 1 Q66H21

Cyp4f6 Cytochrome P450 4F6 P51871

cyp2c7 Cytochrome P450 2C7 P05179

lypla1 lysophospholipase 1 P70470

fads2 Fatty acid desaturase 2 Q9Z122

lpcat1 Lysophosphatidylcholine

acyltransferase 1

Q1HAQ0

lpcat2 Lysophosphatidylcholine

acyltransferase 2

P0C1Q3

lpcat3 Lysophospholipid acyltransferase 3 Q5FVN0

lpcat4 lysophosphatidylcholine

acyltransferase 4

D3ZR52

pafah2 Platelet-activating factor

acetylhydrolase 2, cytoplasmic

P83006

pla2g1b Phospholipase A2 P04055

pla2g10 Group X secretory phospholipase A2 Q9QZT3

pla2g15 Group XV phospholipase A2 Q675A5

pla2g16 Group XVI phospholipase A1/A2 P53817

pla2g4a Cytosolic phospholipase A2 P50393

pla2g4b Cytosolic phospholipase A2 beta D4A1I6

pla2g4d cytosolic phospholipase A2 group IVD D3ZQH6

pla2g5 Calcium-dependent phospholipase

A2

P51433

pla2g6 85/88 kDa calcium-independent

phospholipase A2

P97570

pla2g7 Platelet-activating factor

acetylhydrolase

Q5M7T7

plb1 Phospholipase B1,

membrane-associated

O54728

ptgs1 Prostaglandin G/H synthase 1 Q63921

ptgs2 Prostaglandin G/H synthase 2 P35355

ENSRNOG00000048252 Selenoprotein I M0R5Z5

CIPN is a complex topic. Although the anti-neoplastic
features are well described, no explicit pathophysiological
process can be identified to explain the various neuropathies
(Addington and Freimer, 2016). The neurotoxic side effects
may be related to multifactorial metabolism pathways. Studies
have documented that processes of neurotransmitter signaling,
such as glutamate and γ-aminobutyric acid, are involved with
CIPN occurrence (Cata et al., 2006; Carozzi et al., 2015).
Caspase signaling is also found to contribute to PIPN, leading
to the generation of reactive oxygen species (ROS), as well as
potential apoptosis (Park et al., 2004). Additionally, pathways
activate inflammatory cytokines, such as TNF-α, MAPK, and
CX3CL1, are involved with CIPN as well (Cavaletti et al.,
2000; Zhang et al., 2010; Brandolini et al., 2017). Moreover,
recent evidences indicated that activation of TRPV1 during
chemotherapy sensitizes pain pathways. Recent studies identified
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FIGURE 7 | Biological Pathways of WLT treatment. (A) Pathway of linoleic acid metabolism. (B) Pathway of glycerophospholipid metabolism. The red stars mark

potential targets of WLT in pathways.

members of the TRP family of ion channels (TRPV1, TRPA1, and
TRPV4) as contributors to mechanical allodynia during PIPN.
However, it remains unclear which endogenous mediators were

involved with paclitaxel-induced activation or sensitization of
TRP channels, as paclitaxel cannot directly activate TRP channels
(Alessandri-Haber et al., 2008; Chen et al., 2011; Jang et al.,
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TABLE 5 | Effective ingredients of WLT.

Pub.Chem CID Chemical Name Molecular

Formula

Molecular

Weight

(g/mol)

6443665 Hydroxysafflor Yellow A C27H32O16 612.537

5318997 Icariin C33H40O15 676.668

5748393 Epimedin B C38H48O19 808.783

1491 2,4-dihydroxybenzoic acid C7H6O4 154.121

2012; Materazzi et al., 2012; Hara et al., 2013; Boyette-Davis
et al., 2015; Li Y. et al., 2015). In present study, we found
that LA metabolism pathway was a key pathways contributed
to PIPN. LA is a doubly unsaturated fatty acid, also known
as an omega-6 fatty acid. It is used in the biosynthesis of
prostaglandins (via arachidonic acid) and cell membranes. This
finding is supported by other studies. Paclitaxel is an inducer of
some Cytochrome-P450 epoxygenases (e.g., CYP2C8, CYP2C9),
which can metabolize ω-6 fatty acids, such as arachidonic acid
(AA) and LA (Dai et al., 2001). Another study identified that 9,10-
EpOME (9,10-epoxy-12Z-octadecenoic acid), a CYP metabolite
of LA, was strongly synthesized in DRGs after paclitaxel
injection. Injection of 9,10-EpOME alone caused significant
reduction of the mechanical thresholds of wild-type mice too.
Further, decreasing 9,10-EpOME concentrations in DRGs and
in plasma reversed mechanical hypersensitivity in paclitaxel
treated mice (Sisignano et al., 2016). Glycerophospholipid are
the main component of neural membranes. The main function
of glycerophospholipids in the neural membranes is to provide
stability, permeability and fluidity through specific alterations
in their compositions (Glynn, 2013; Ruiz et al., 2015). Previous
study demonstrated that the proportion of glycerophospholipid
decreased significantly in diabetic neuropathy rats (Kuruvilla and
Eichberg, 1998).

According to TCM theory, CIPN was blamed to Meridian
obstruction due to cold congealing. Consequently, based on
syndrome differentiation and the holistic theory, WLT was
developed to act the effect of Warming and Activating Meridian,
Promoting Blood Circulation, and Alleviating Pain. It was
constitute of four herbs, which were epimedium herb, geranium
wilfordii, cassia twig, and carthamus tinctorius. Respectively,
epimedium herb, acting as Monarch (the most important
constituent), was used to tonify Kidney Yang and dispel Wind-
Damp. Geranium wilfordii, acting as Minister (the second
important constituent), was used to expel Wind and dredging
Collat. cassia twig, acting as Assistance (a constituent helps
Monarch or/and Minister to achieve their effects), was used
to warm and activate Meridian and reinforce Yang to promote
the flow of Qi. Carthamus tinctorius, acting as Assistance (a
constituent helps Monarch or/and Minister to achieve their
effects), was used to promote blood circulation and remove
Meridian obstruction. The herbs of WLT were supposed to act
synergistically and achieve the effect of Warming and Activating
Meridian, Promoting Blood Circulation and Alleviating Pain.
Meanwhile, some pharmacological studies of herbs also indicated
that constituents of WLT could be helpful for alleviating

TABLE 6 | Results of docking.

Proteins PDB ID 1491 5318997 5748393 6443665

alox15 5ir4 16.1623 46.5708 NA 57.8408

alox5 3v99 15.7621 62.2073 71.1117 51.3596

cept1 5d92* 15.2359 NA NA 34.4516

chpt1 5d92* 15.2041 37.4455 40.2172 NA

cyp4f6 5uec 21.0602 NA NA 7.03

cyp2c7 5w0c 23.4282 NA NA 64.0791

lypla1 5sym 26.2005 NA NA −9.59725

fads2 5xee* 13.479 NA NA NA

lpcat1 5b8i* 20.3833 NA NA −72.6425

lpcat2 5kym* 23.3109 NA NA NA

lpcat3 2lr8* 16.0385 NA NA NA

lpcat4 5kym* 16.7664 NA NA NA

pafah2 1vyh −43.3331 NA NA NA

pla2g1b 1j1a 21.5994 63.113 63.7937 61.0024

pla2g10 5g3m 26.2186 NA NA 49.1851

pla2g15 4x95 25.5394 NA NA NA

pla2g16 4fa0 −215.668 NA NA NA

pla2g4a 1cjy 27.2278 47.1398 57.0373 49.8278

pla2g4b 5iz5* 25.2277 NA NA NA

pla2g4d 5irz 16.0884 −40.2617 NA 58.2197

pla2g5 1fb2* 28.7858 NA NA NA

pla2g6 6aun 27.5994 NA NA NA

pla2g7 5lp1 20.3099 60.1397 55.1504 50.5743

plb1 5w7a* 25.9975 NA NA NA

ptgs1 1cqe* 14.1959 61.0679 67.2021 62.1509

ptgs2 5ikq 24.6126 NA NA NA

*Template of homology modeling.

neuropathy (Kou et al., 2013; Sun et al., 2016). A study showed
that epimedium extract promotes peripheral nerve regeneration
in rats (Oh et al., 2015). Another study showed icariin, a
flavonoid glycosides extracted from epimedium herb, promoted
the expression of nNOs after neural injury (Shindel et al.,
2010). It was also reported that cassia twig, geranium wilfordii
and carthamus tinctorius had anti-inflammatory, antioxidative,
neurorotective and analgesic effects (Gan et al., 2010; Wang
et al., 2014; Yue et al., 2014; Gunawardena et al., 2015; Huang
et al., 2015; Jo et al., 2017). According to previous study, we
took 4 active ingredients of WLT as probe to conduct molecular
docking with potential targets obtained from metabolomic
analysis. Published literatures showed their neuroprotective
effects. A study revealed that HSYA showed neuroprotection
through attenuating oxidative stress, inflammatory response,
and neural apoptosis (Pei et al., 2017). Another study showed
that Icariin could be a potential agent for the treatment
of paclitaxel-induced neuropathic pain in a SIRT1-dependent
manner (Gui et al., 2018). Another study suggested that 3,4-
DHBA prevented neuronal cell damage by interfering with
the increase of Ca2+ (Ban et al., 2007). The docking results
showed complex interactions between them, demonstrating
the characteristics of multi-components and multi-targets. The
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ingredients showed high affinity to most proteins, except pafah2,
pla2g16, and ENSRNOG00000048252. Some proteins showed
complex interactions withmore than 1 ingredient, such as alox15,
alox5, cept1, chpt1, cyp4f6, cyp2c7, pla2g1b, pla2g10, pla2g4a,
pla2g4d, pla2g7, and ptgs1. The acting sites in LA pathway and
glycerophospholipid pathway of these proteins were marked in
Figure 7.

CONCLUSION

In this study, LC-MS based non-targeted metabolomics method
revealed the metabolic disturbances induced by paclitaxel, and
the effects of WLT on alleviating PIPN. Paclitaxel primarily
disturbed the LA and glycerophospholipid metabolism pathways
to induce peripheral neuropathy. Further study demonstrated
that WLT attenuated PIPN by regulating these two pathways in
the manner of multi-target interference.
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