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Abstract
Hematological malignancies, including chronic myeloid leukemia (CML), exhibit ASXL1 muta-
tions; however, the function and molecular mechanism of these mutations remain unclear. 
ASXL1 was originally identified as tumor suppressor gene, in which loss of function causes 
myelodysplastic syndrome (MDS). ASXL1 mutations are common and associated with disease 
progression in myeloid malignancies including MDS, acute myeloid leukemia, and similarly in 
CML. In MDS, ASXL1 mutations have been associated with poor prognosis; however, the im-
pact of ASXL1 mutations in CML has not been well described. A 31-year-old male was diag-
nosed as CML-chronic phase (CP). Laboratory findings showed a white blood cell count of 
187,200/µL, with asymptomatic splenomegaly. Blast count was 5.0% in peripheral blood and 
7.3% in bone marrow. There was no additional chromosomal abnormality except for t(9;22)
(q34;q11.2) by chromosomal analysis. At onset, the Sokal score was 1.4, indicating high risk. 
The patient received tyrosine kinase inhibitor (TKI) therapy, comprising nilotinib ∼600 mg/day, 
bosutinib ∼600 mg/day, ponatinib ∼45 mg/day, and dasatinib ∼100 mg/day. Nevertheless, 
after 1.5 years of continuous TKI therapy, the best outcome was a hematological response. 
Although additional chromosomal aberrations and ABL1 kinase mutations were analyzed re-
peatedly before and during TKI therapy, known genetic abnormalities were not detected. 
Thereafter, the patient underwent bone marrow transplantation from an HLA 7/8 matched 
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unrelated donor (HLA-Cw 1 locus mismatch, graft-versus-host direction). The patient achieved 
neutrophil engraftment, 18 days after transplantation, leading to complete remission with an 
undetectable level of BCR-ABL1 mRNA. The patient, however, died from graft-versus-host 
disease and thrombotic microangiopathy after 121 days. Gene sequence analysis of his CML 
cell before stem cell transplantation revealed ASXL1 mutations. Physiologically, ASXL1 contrib-
utes to epigenetic regulation. In the CML-CP patient in this case report, ASXL1 mutation con-
ferred resistance to TKI through obscure resistance mechanisms. Even though a molecular 
mechanism for TKI resistance in ASXL1 mutation in CML has remained obscure, epigenetic 
modulation is a plausible mode of CML disease progression. The clinical impact including 
prognosis of ASXL1 for CML is underscored. And the treatment strategy of CML with ASXL1 
mutation has not been established. A discussion of this case was expected to facilitate treat-
ment options. © 2020 The Author(s).

Published by S. Karger AG, Basel

Introduction

Chronic myeloid leukemia (CML) is a myeloid clonal disease driven by the bcr-abl fusion 
gene, which creates a constitutively active tyrosine kinase. This led to the development of 
BCR-ABL1 tyrosine kinase inhibitors (TKIs), which provided long-term remission and 
improved life expectancy of TKI-treated CML patients [1]. The mechanism of TKI resistance 
in CML, caused by mutation of the BCR-ABL1 kinase domain has been extensively investigated 
[2]. Importantly, the BCR-ABL1 kinase-independent resistance mechanism due to newly 
acquired mutations or other genetic aberrations has been reported in a minority of TKI-
resistant CML cases [3]. One such mutation was found in ASXL1, a histone-binding protein 
located on chromosome 20q11.2, that disrupts chromatin by enhancing or repressing gene 
transcription [4]. Then ABL1 kinase-dependent resistance may promote a change of a patient’s 
TKI treatment strategy. As a while, however, it is obscure how much impact the BCR-ABL1 
kinase-independent resistance brings on CML therapy plan.

Originally identified from sequence analysis of myelodysplastic syndrome (MDS) patients 
[5], mutations in ASXL1 were a nonspecific genetic abnormality, associated with poor prog-
nosis not only in MDS [6] but also in bcr-abl-negative myeloproliferative neoplasms [6]. Muta-
tions in ASXL1 have been found in the accelerated phase or blast phase [7] and in CML-chronic 
phase (CP) [8]. Surprisingly, several ASXL1 mutations have also been reported in healthy 
people [9–11], indicating the pleiotropic nature of ASXL1. We present a case of CML-CP 
resistant to various TKIs and discuss the association between mutations in ASXL1 and TKI 
resistance in CML.

Case Presentation

A 31-year-old male was diagnosed as CML-CP after an annual occupational health 
check-up revealed leukocytosis (WBC 187,200/µL), which was subjected to a further exami-
nation. The physical examination at his diagnosis revealed giant splenomegaly (palpable 15 
cm below costal margin). Blast count was 5.0% in peripheral blood and 7.3% in bone marrow. 
There was no additional chromosomal abnormality except for t(9;22)(q34;q11.2) by chromo-
somal analysis. The patient’s Sokal score was 1.5 indicating high risk, Hasford score was 
1,332.4 indicating intermediate risk, EUTOS score was 134 indicating high risk, and ELTS 
score was 2.0877 indicating intermediate risk. A month after the diagnosis, the patient 
underwent TKI therapy comprising nilotinib up to 600 mg/day, followed by 600 mg bosu-
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tinib, 45 mg ponatinib, and 100 mg dasatinib maximum daily dose. Laboratory data prior to 
TKI treatment are shown in Table 1. None of the TKIs exerted a clinical response, except for 
ponatinib, which yielded a hematological response (Fig. 1). No known mutations in the ABL1 
kinase domain were detected after TKI therapy, prompting sequencing analysis. We performed 
targeted panel sequencing, by using prior-stem cell transplantation sample, which includes 
377 genes implicated in myeloid malignancies. This analysis revealed a frameshift mutation 
in ASXL1 on chromosome 20q11. The patient underwent a stem cell transplantation with 
bone marrow donated by an unrelated HLA 7/8-matched (HLA-Cw1 locus mismatched, GVH 
direction) male from the Japan Marrow Donor Program. Tacrolimus and short-term metho-
trexate were used for graft-versus-host disease (GVHD) prophylaxis. On the 18th day after 
transplantation, the patient received neutrophil engraftment followed by reticulocyte 
engraftment 14 days later and platelet engraftment 22 days later. The patient achieved 
complete remission, with the bone marrow showing undetectable levels of BCR-ABL1 mRNA 

WBC 125,200 /µL
Stab. 11.5 %
Seg. 31.0 %
Lym. 3.5 %
Mono. 0.0 %
Eos. 6.0 %
Baso. 6.5 %
Blast 6.5 %
Promyelo. 1.0 %
Myelo. 26.5 %
Metamyelo. 7.5 %

RBC 327×104 /μL
Hb 9.3 g/dL
Hct 30.4 %
MCV 93.0 fL
MCHC 30.6 %
PLT 51.0×104 /μL
CRP 1.20 mg/dL
TP 6.0 g/dL
Alb 4.1 g/dL
BUN 15.2 mg/dL
Cr 0.68 mg/dL
UA 6.2 mg/dL
T-Bil 0.6 mg/dL
GOT 14 U/L
GPT 17 U/L
ALP 235 U/L
γ-GTP 28 U/L
CPK 12 U/L
CHE 181 U/L
LDH 601 U/L
Na 140 mmol/L
K 4.5 mmol/L
Cl 105 mmol/L
PT 70 %
PT-INR 1.17
APTT 46.5 s
FIB 311 mg/dL
ATⅢ 72 %
FDP 3 μg/mL
D-dimer 1.0 μg/mL

Table 1. Laboratory data before 
tyrosine kinase inhibitor 
treatment
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by RT-PCR (International Scale). Despite treatment, the patient died on the 121st day from 
GVHD and thrombotic microangiopathy, which developed after the patient presented with 
GVHD.

Discussion

Physiologically, ASXL1 encodes a chromatin-binding protein involved in epigenetic regu-
lation [12] by recruiting the polycomb repressive complex 2 (PRC2), a histone methyltrans-
ferase, which regulates gene activity by trimethylation of lysine 27 on histone 3 (H3K27me) 
[13,14]. Mutations in ASXL1 were originally reported and conferred poor prognosis in MDS 
[15] and chronic myelomonocytic leukemia (CMMoL) [5]. Frameshift mutations or nonsense 
mutations in exon 12 of ASXL1 abrogate protein expression [12] and consequently disrupt its 
function as a tumor suppressor, often in a variety of hematological malignancies [8]. Muta-
tions in ASXL1 contribute to oncogenesis in hematopoietic cells, especially leukemogenesis, 
and promote myeloid transformation through loss of PRC2-mediated gene repression in MDS 
and CMMoL [12,16].

ASXL1 mutations are common and associated with disease progression in acute myeloid 
leukemia (AML) [17] and similarly in CML, where ASXL1 mutations might be associated with 
poor prognosis and acute transformation [5]. Variation in prognosis and survival associated 
with ASXL1 mutations is seen across studies [18]. ASXL1 mutations are commonly associated 
with clonal hematopoiesis in healthy individuals [9–11], indicating that ASXL1 mutation may 

Fig. 1. The patient’s clinical course. Nilotinib administration had an adverse effect on white blood cell and 
platelets, but did not diminish the bcr-abl fusion gene. The switch to bosutinib and dasatinib therapy did not 
change the response. The patient responded only to ponatinib treatment, which achieved a hematological 
response with 18% of bcr-abl1 FISH. However, no durable response was available. Hematopoietic stem cell 
transplantation yielded a molecular response without detection of major BCR-ABL1 mRNA by RT-PCR. The 
patient died of transplantation-related mortality, GVHD and TMA on the 121st day after transplantation. 
FISH, fluorescence in situ hybridization; GVHD, graft-versus-host disease; HSCT, hematopoietic stem cell 
transplantation; PLT, platelet; TMA, thrombotic microangiopathy; WBC, white blood cells.
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be a pre-leukemic event in hematopoiesis. Accumulating evidence points to a role for ASXL1 
mutations in leukemogenesis during early hematopoietic events in many hematological 
malignancies, as described in AML [18] and CML [19,20]. In the latter case, mutations in 
ASXL1 occur early in CML stem cells, prior to bcr-abl translocation stage [19], as these cells 
clonally evolve [20]. This is considered an intrinsic event, rather than a bcr-abl fusion, which 
occurs after myeloid lineage differentiation [20].

In the two-hit model of AML development, class I mutation confers a proliferative or 
survival advantage, and class II mutations result in impaired myeloid differentiation as a 
secondary event [21]. Class II mutations in ASXL1 lead to its loss of function, impairing gran-
ulomonocytic differentiation in early human hematopoietic progenitors and contributing to 
leukemogenesis. Indeed, silencing of ASXL1 impairs the granulomonocytic lineage potential 
of human CD34+ progenitor cells by altering its gene expression profile, but not proliferation 
and apoptosis [11,14]. Alternatively, ASXL1 mutations might enhance other leukemogenesis 
pathways via other mechanisms, including epigenetic regulation.

ASXL1 plays a key role in epigenetic regulation of gene expression through methylation 
of histone H3K27, and disruption of ASXL1 drives myeloid malignancies [22]. Also, ASXL1 
mutations may affect epigenetic regulation by inhibiting ubiquitination of lysine 119 at 
histone H2A (H2AK119). This may contribute to leukemogenesis though this remains to be 
proven [23]. Thus, even though a molecular mechanism for TKI resistance in ASXL1 mutation 
in CML has remained obscure, epigenetic modulation is a plausible mode of CML disease 
progression.

ASXL1 mutations occur early in CML stem cells, prior to bcr-abl translocation stage, and 
therefore, there might not be a high risk of treatment failure following TKI therapy [20]. The 
patient received hematopoietic stem cell transplantation and went into remission. This 
optimal response could have been prolonged without TKI maintenance therapy. Taken 
together, ASXL1 mutation might follow the HSCT trait as observed in this CML-CP case, which 
does not progress for years.

Conclusions

Whole exome sequence facilitated a clinical decision in this patient who went into 
remission. Though the clinical impact of ASXL1 for CML is still under investigation, mutated 
ASXL1 possibly explain the TKI resistance mechanism. This case illustrated the necessity of 
HSCT in ASXL1 mutation-associated TKI-resistant CML-CP. In future, a discussion of CML with 
mutated ASXL1 will facilitate treatment options.
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