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Abstract: Background. The use of teledermatology has spread over the last years, especially during
the recent SARS-Cov-2 pandemic. Teledermoscopy, an extension of teledermatology, consists of
consulting dermoscopic images, also transmitted through smartphones, to remotely diagnose skin
tumors or other dermatological diseases. The purpose of this work was to verify the diagnostic
validity of images acquired with an inexpensive smartphone microscope (NurugoTM), employing
convolutional neural networks (CNN) to classify malignant melanoma (MM), melanocytic nevus
(MN), and seborrheic keratosis (SK). Methods. The CNN, trained with 600 dermatoscopic images
from the ISIC (International Skin Imaging Collaboration) archive, was tested on three test sets: ISIC
images, images acquired with the NurugoTM, and images acquired with a conventional dermatoscope.
Results. The results obtained, although with some limitations due to the smartphone device and
small data set, were encouraging, showing comparable results to the clinical dermatoscope and
up to 80% accuracy (out of 10 images, two were misclassified) using the NurugoTM demonstrating
how an amateur device can be used with reasonable levels of diagnostic accuracy. Conclusion.
Considering the low cost and the ease of use, the NurugoTM device could be a useful tool for general
practitioners (GPs) to perform the first triage of skin lesions, aiding the selection of lesions that
require a face-to-face consultation with dermatologists.

Keywords: telemedicine; teledermoscopy; convolutional neural networks

1. Introduction

The term telemedicine derives from the Greek word tele meaning distant. The appli-
cation of telemedicine to dermatology is known as teledermatology (TD), which can be
classified into real-time teledermatology (VTC) and store-and-forward teledermatology
(SAF) [1].

VTC consists of a live video consultation with the patient, whereas SAF consists of
image transmission from the patient to the teleconsultant as the first step, then is followed
by a plan of action about diagnosis or management from the consultant. Sometimes, TD
can be a hybrid and combine elements of real-time and store-and-forward TD; moreover,
TD can use mobile phones and so is defined as mobile-teledermatology [1].

An extension of TD includes teledermoscopy (TDSC), in which doctors consult dermo-
scopic images transmitted electronically. With dermoscopic patterns being well established,
especially for skin malignancies, the combination of TD with TDSC has shown to get better
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effectiveness than only TD consultations. Indeed, TDSC has been found acceptable and
effective in triage and the early detection of skin cancers [1].

Smartphone-based TDSC has improved the quality of capture, storage, and trans-
mission of clinical images. The literature in this field has grown steadily over the past
20 years thanks to the development of a large number of dermatology-related mobile appli-
cations [1,2] and portable dermatoscopes that can be connected to smartphones [3–5]. TD
and TDSC using smartphones are useful not only for patients but also for dermatologists
to collectively discuss complex cases by social media platforms [1].

The usefulness of TD has also been highlighted by several studies during the recent
SARS-Cov-2 pandemic. Thanks to it, patients suffering from chronic diseases or patients
who present the appearance or modification of skin lesions have been able to continue to
be assisted, even if remotely [6–8].

Recently, many studies have shown high levels of concordance in the diagnosis and
management plan between TD and face-to-face (FTF) consultation [9]. For skin cancer,
the diagnostic accuracy of FTF consultation remains higher when compared with TD [10].
However, a small-scale, randomized controlled trial comparing all TD modalities and FTF
examination found an 85% and 78% concordance in diagnosis and treatment recommended,
respectively [2,11].

This work was integrated into the TDSC context since the usefulness of a smart-
phone device in the acquisition of images of melanocytic and non-melanocytic skin lesions
was evaluated.

Over the last few years, the implementation of deep learning and convolutional
neural networks (CNNs) for medical image classification has grown exponentially [12].
Recent studies have also shown high levels of accuracy for the classification of skin lesions,
including tumors, using CNNs [12].

In this work, we analyzed a smartphone microscope device (NurugoTM Derma),
equipped with a special app, developed by the South Korean company NurugoTM, and able
to provide high-resolution images of skin lesions. The images acquired by the NurugoTM

Derma were classified by employing a convolutional neural network (CNN) for the dis-
tinction between malignant melanoma (MM), melanocytic nevus (MN), and seborrheic
keratosis (SK). To understand the reliability of this device, conventional dermoscopic
images of the same lesions were also classified using the same CNN.

2. Materials and Methods
2.1. Devices’ and Images’ Acquisition

For the acquisition of dermoscopic images, a contact dermatoscope HEINE Delta 20T
(Figure 1A) was connected to a professional reflex camera (NIKON E4500, Figure 1B) with
a photo adapter (SLR HEINE).
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ages acquired with the smartphone microscope burdened by the glare effect in order to 
circumscribe the portion not contaminated by the reflection artifacts (Figure 3). 

Figure 1. (A) Contact dermatoscope HEINE Delta 20T; (B) Professional reflex camera NIKON E4500.

For the acquisition of smartphone images, the NurugoTM Derma was used, an amateur
device consisting of a lens that allows skin examination at a microscopic level by conveying
the light emitted by the smartphone flash through a system of reflecting prisms (Figure 2A).
This device employs a specific app for iOS and Android called “Nurugo Box” and is
compatible with most smartphones on the market (in our specific case, iPhones 6, 6s, and



Diagnostics 2021, 11, 451 3 of 13

7). It is attached to the smartphone through a plastic clip, correctly aligning the camera
and flash (Figure 2B,C).
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Figure 2. (A) Nurugo TM Derma; (B) Nurugo TM Derma attached to the smartphone; (C) Example
of smartphone microscope applied to skin.

Since the device was designed for amateur use, it has some limitations:

(1) Shadow effect: due to not being able to compress the lesions directly using the Nurugo
microscope (Figure 3A);

(2) Glare effect: due to the light of the smartphone flash reflected off of the skin (Figure 3B);
(3) The inability to acquire epiluminescence images (the flash of common smartphones

does not produce polarized light and, therefore, does not allow the visualization of
the structures under the epidermis); and

(4) Impossibility of applying immersion oil to cancel the reflection of light (the device
has no support downstream of the lens).
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Figure 3. (A) Example of original image; (B) Example of original image with Hough transform result;
(C) Cropped image.

In this study, the last two limitations were overcome using a transparent laboratory
slide placed between the smartphone microscope and the skin in order to apply a liquid
interface on the skin.

In this way, the images showed the underlying skin structures but remained heavily
burdened by the glare effect, which reduced the field of view (FOV), limiting it to a circular
area of 3 mm2. Therefore, from a single acquisition, it was possible to obtain only a small
portion of the lesion. For large lesions, more images were acquired, moving the position of
the microscope on the lesion.

2.2. Processing

All the images acquired by the dermatoscope had a central circular area with the
lesion inside and a large area of black pixels; the images were cropped and rescaled to have
the same FOV as the smartphone microscope images. A segmentation algorithm based on
the circular Hough transform [13] was developed for the epiluminescence images acquired
with the smartphone microscope burdened by the glare effect in order to circumscribe the
portion not contaminated by the reflection artifacts (Figure 3).
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The dermoscopic and NurugoTM images were acquired at Dermatologic Clinic (Mag-
giore della Carità Hospital, University of Eastern Piedmont, Novara) and the image analysis
was carried out by engineers of the Polytechnic of Turin (Biolab, PolitoBIOMed Lab, Depart-
ment of Electronics and Telecommunications).

The data set analyzed included 18 images of malignant melanomas (MM), 39 melanocytic
nevi (MN), and 21 seborrheic keratoses (SK). All lesions were acquired both with the
conventional contact dermatoscope and with the NurugoTM microscope, with and without
laboratory glass slide (Figures 4–6).

Diagnostics 2021, 11, x FOR PEER REVIEW 4 of 13 
 

 

 
Figure 3. (A) Example of original image; (B) Example of original image with Hough transform 
result; (C) Cropped image. 

The dermoscopic and NurugoTM images were acquired at Dermatologic Clinic (Mag-
giore della Carità Hospital, University of Eastern Piedmont, Novara) and the image anal-
ysis was carried out by engineers of the Polytechnic of Turin (Biolab, PolitoBIOMed Lab, 
Department of Electronics and Telecommunications). 

The data set analyzed included 18 images of malignant melanomas (MM), 39 mela-
nocytic nevi (MN), and 21 seborrheic keratoses (SK). All lesions were acquired both with 
the conventional contact dermatoscope and with the NurugoTM microscope, with and 
without laboratory glass slide (Figures 4–6). 

 
Figure 4. Image of a malignant melanoma acquired through: (A) contact dermatoscope; (B) 
Nurugo TM microscope without laboratory glass; (C) Nurugo TM microscope with laboratory glass. 
The arrows in Figure 4A and Figure 4B clearly point out where the shadow effect and glare effect 
can be easily seen. 

 
Figure 5. Image of a melanocytic nevus acquired through: (A) contact dermatoscope; (B) Nurugo 
TM microscope without laboratory glass; (C) Nurugo TM microscope with laboratory glass. 

Figure 4. Image of a malignant melanoma acquired through: (A) contact dermatoscope;
(B) Nurugo TM microscope without laboratory glass; (C) Nurugo TM microscope with laboratory
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Figure 6. Image of a seborrheic keratosis acquired through: (A) contact dermatoscope; (B) Nurugo TM

microscope without laboratory glass; (C) Nurugo TM microscope with laboratory glass.

The image acquisition was done in the surgery room before excision for malignant
melanoma and atypical nevi, and during routine dermatological visits for benign lesions.



Diagnostics 2021, 11, 451 5 of 13

The images were encoded to maintain the anonymity of the patients (only adults), who
signed the relative informed consent to participate in the study. Each lesion was evaluated
by three different expert dermatologists and classified based on visual clinical and dermo-
scopic parameters. For malignant melanoma and atypical nevi, the definitive diagnosis
was obtained by histological examination. For benign lesions, it was determined according
to dermoscopic parameters. The present study was conducted according to the Declaration
of Helsinki and it was approved by the Local Ethical Committee on 12 December 2018
(protocol CE 173/18; Acronym Teledermatology).

2.3. CNN Classification Algorithm

There are various pretrained models of CNNs in the literature, which can be employed
for transfer learning, which is useful when only a small database is available.

The creation of CNN involves several stages (Figure 7):

(1) Training phase in which networks learn from the examples provided (training-set
images for learning and validation-set images to test the learning level).

(2) Evaluation of the final performances on the test set images to understand the model’s
ability to classify new images, not used during training.

(3) In our study, transfer learning was applied using three different CNN architectures:
AlexNet, GoogleNet, and ResNet [14]. The AlexNet [15] employed a series of convo-
lutional layers to extract a higher-level representation of the image content. The
GoogleNet [16] was organized to concatenate convolutional layers having different
kernel sizes. The ResNet [17] adopted skip connections and batch normalization to
perform the classification task.

(4) Finally, we created an ensemble model that combined the predictions of the three
deep networks (AlexNet, GoogleNet, and ResNet). Specifically, the probability of the
ensemble model was obtained as the average of the three output probabilities from
each single CNN. Then, the final, predicted label was equal to the predicted label
with maximum probability over all classes (MM, MN, SK).
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Figure 7. Flowchart for the classification of skin lesion images. Three different CNNs’ (AlexNet,
GoogleNet, and ResNet) were employed for classification. Then, an ensemble model averaged all the
CNNs’ predictions to obtain the final label of the image. MM: malignant melanoma, MN: melanocytic
nevus, SK: seborrheic keratosis.

All these CNNs were trained on an open-source collection of dermatological images,
the ISIC (International Skin Imaging Collaboration) archive [18]. A sub-data set from the
entire database was employed (MSK ISIC), using only MM, MN, and SK images (Table 1)
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that presented resolution and dimensions similar to those acquired by the smartphone
microscope and cropped with the FOV radius of 3 mm. This significantly reduced the size
of the training set, as only images with a visual ruler on the image were able to be included.

Table 1. Composition of the training set and the different data test sets employed in this study.

Set Images MN (Images) MM (Images) SK (Images)

Training-set 200 200 200
Test set 1 * 35 25 37
Test set 2 ◦ 39 18 21
Test set 3 § 39 18 21

* Images from MSK ISIC but different from those of the training set. ◦ Images of skin lesions acquired with a
contact dermatoscope. § Images acquired with Nurugo Derma.

Finally, the CNNs were tested on three different test sets, as shown in Table 1, to
evaluate the performance variations between the different methodologies, identifying the
most reliable in the recognition of the different types of images generated by the different
devices. In particular, the images acquired at the Dermatologic Clinic were used in the CNN
testing phase, to verify the diagnostic validity of the images of the same lesions acquired
with NurugoTM Derma compared to those acquired with the clinical dermatoscope.

To validate the classification, the following parameters were evaluated: (1) accuracy;
(2) sensitivity and specificity; (3) positive (PV+) and negative (PV−) predictive value; and
(4) F1 score (measure of total model accuracy by combining precision and recall), where the
MM images were considered as true positives and the MN and SK images were considered
as true negatives.

Furthermore, a receiver operating curve (ROC) analysis was done and the area under
the curve (AUC) was computed for each classification method.

In Figure 8 a block diagram of the proposed approach is shown.
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Figure 8. Block diagram of proposed approach.

3. Results

For each test set, we computed the performance of: (1) three expert dermatologists (D1,
D2, D2); (2) a machine learning algorithm [19] based on traditional texture analysis [20]; (3)
three deep neural networks (AlexNet, GoogleNet, ResNet), and (4) ensemble model.

3.1. Performance on ISIC Images (Test Set 1)

From the performance analysis (Table 2), it emerged that the ensemble model method-
ology guarantees the best results overall.

To quantify the reliability of the methods previously described, a comparison was
subsequently made between the performances achieved by texture analysis combined with
a K-Nearest Neighbor (KNN) classifier, individual CNN architectures, the ensemble model,
and those obtained by three different dermatologists on the same data set comprised of the
ISIC images (i.e., test set 1).
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Table 2. Performances of the three dermatologists (D1, D2, D3) on test set 1 and automated algorithms
(texture analysis, AlexNet, GoogleNet, ResNet, ensemble model).

Method Accuracy Sensitivity Specificity PV+ PV− F1

D1 68.0% 36.0% 74.7% 51.3% 93.3% 63.5%
D2 70.1% 32.0% 97.0% 80.0% 78.0% 46.0%
D3 75.3% 44.0% 94.0% 73.3% 81.6% 55.0%

Texture analysis 48.5% 44.0% 66.7% 37.9% 72.0% 40.7%
AlexNet 76.0% 80.0% 77.6% 54.1% 92.2% 64.5%

GoogleNet 74.0% 88.0% 76.4% 56.4% 94.8% 68.8%
ResNet 74.0% 80.0% 77.3% 54.1% 92.0% 64.5%

Ensemble model 79.8% 84.0% 81.6% 60.0% 93.9% 70.0%

The comparison between the values of the three CNNs, the ensemble model, and
those obtained by the dermatologists demonstrated that the ensemble model approach
showed better levels of accuracy, sensitivity, and F1 score than both the individual CNNs,
except GoogleNet in terms of sensitivity, and the evaluation of experts while obtaining
lower scores regarding specificity.

All CNNs were in line with the experts, and the ensemble model even exceeded
their performance, not only in terms of sensitivity, but also in overall accuracy, PV-, and
F1 score. It is possible to assert that all the individual CNNs were moderately accurate
classifiers, far more advanced than texture analysis with a KNN. In particular, as expected,
the ensemble model that combined the predictions of the three deep networks gave forth
the best overall performance.

The ROC curve of test set 1 can be seen in Figure 9A.

Figure 9. ROC analysis of the three test sets. (A) test set 1, ISIC images; (B) test set 2, new dermato-
scopic images; (C) test set 3, Nurugo TM images.

3.2. Performance on Dermatoscope Images (Test Set 2)

To quantify the ability to recognize images acquired with various devices and differ-
ent from those used for training, the three methodologies were tested using the test set
2, containing images acquired at the Dermatologic Clinic with the contact dermoscope
previously described (Table 3).

Table 3. Performances of dermatologists and automated methods on test set 2.

Method Accuracy Sensitivity Specificity PV+ PV− F1

D1 94.9% 83.3% 79.7% 93.8% 95.2% 88.2%
D2 93.6% 88.9% 78.1% 84.2% 96.6% 86.5%
D3 92.3% 83.3% 79.2% 83.3% 95.0% 83.3%

Texture analysis 31.6% 21.1% 53.3% 25.0% 48.0% 22.9%
AlexNet 56.1% 69.7% 52.5% 44.2% 76.2% 54.1%

GoogleNet 55.1% 81.8% 49.1% 49.1% 81.8% 61.4%
ResNet 70.4% 72.7% 79.0% 66.7% 83.3% 69.6%

Ensemble model 57.1% 75.8% 53.5% 48.1% 79.5% 58.8%
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As expected, since the various methodologies were trained on a limited data set
coming from the large ISIC database, the different architectures showed difficulties in
recognizing lesions that presented lower quality in terms of pixel/mm resolution. The
presence of artifacts such as bubbles and lack of focus contributed to making the classi-
fication even more difficult. Similarly to test set 1, the images were manually classified
by three different expert dermatologists. As observed in Table 3, the performance of the
dermatologists were overall higher compared to all automated methods, including the
ensemble model. Among the different CNNs, GoogleNet showed the highest sensitivity,
but ResNet proved to be more stable with a higher F1 score than all models and a specificity
in line with the experts. Nevertheless, it should also be specified that some dermatoscope
images looked familiar to the experts, who had been able to observe the clinical appearance
of the lesions before surgical excision, which certainly contributed to bias of the manual
results against the CNNs’ performance.

The ROC curve of test set 1 can be seen in Figure 9B.

3.3. Performance on NurugoTM Derma Images (Test Set 3)

Finally, we evaluated the diagnostic utility of the images acquired in epiluminescence
with the NurugoTM Derma, verifying if they could be interpreted as well as dermatoscope
images by a CNN.

The images acquired with this device presented, as previously stated, several chal-
lenges, such as the presence of numerous air bubbles, the lack of focus if not acquired
properly, and the presence of streaks probably attributable to the physical composition of
the laboratory slide. Table 4 shows the performances achieved by the different dermatolo-
gists and automated algorithms.

Table 4. Performances of dermatologists and automated methods on test set 3.

Method Accuracy Sensitivity Specificity PV+ PV− F1

D1 92.3% 77.8% 80.6% 87.5% 93.5% 82.4%
D2 88.5% 66.7% 82.6% 80.0% 90.5% 72.7%
D3 87.2% 72.2% 80.9% 72.2% 91.7% 72.2%

Texture analysis 48.4% 48.3% 50.7% 27.4% 71.7% 35.0%
AlexNet 67.9% 58.6% 85.5% 63.0% 83.1% 60.7%

GoogleNet 70.5% 65.5% 84.5% 63.3% 85.7% 64.4%
ResNet 75.9% 69.0% 90.3% 74.1% 87.8% 71.4%

Ensemble model 83.9% 72.4% 97.3% 91.3% 90.1% 80.8%

It is possible to note how, like test set 1 and test set 2, texture analysis did not provide
convincing results. Instead, individual CNNs showed promising performance in terms of
specificity, but they failed to rival the experts in terms of accuracy and sensitivity. However,
the combination of the predictions of the individual deep networks, implemented by
the ensemble model, succeeded in balancing the gaps of the individual CNN. It showed
performance in line with the experts in terms of accuracy and sensitivity but scoring far
higher in specificity and competing in PV+, PV-, and F1 score.

Despite the lack of focus, the streaks caused by the slide, and the air bubbles caused
by the interface fluid, the Ensemble model proved to be a solid and effective classifier on
these types of images acquired with a smartphone.

Looking at the performances of the dermatologists, it was possible to notice how,
despite having tested the same images, acquired with a different device (NurugoTM Derma),
they were slightly worse than in test set 2 (lower F1 score in all three cases), showing how
the artifacts produced by the device represented a limitation factor for both deep learning
automated algorithms and clinicians.

The ROC curve of test set 1 can be seen in Figure 9C.
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4. Discussion

In this study we evaluated the possibility of making accurate diagnoses of melanocytic
and non-melanocytic skin lesions on images acquired by the smartphone camera using
the NurugoTM Derma amateur device and on images of the same lesions acquired by a
portable dermoscope and a digital camera, using deep neural networks. The purpose was
to provide information on the clinical and diagnostic validity of the NurugoTM Derma
device, in the context of TDSC. Indeed, the current health situation, consequent to the
COVID-19 pandemic, causes the growing need to acquire images of skin lesions even with
amateur and low-cost devices. On the other hand, the quality of the images is essential to
be able to discriminate suspicious lesions that need to be subjected to further investigation.

Our results showed that the ensemble model trained on the images of the ISIC
database [18] obtained a maximum prediction accuracy of 79.8% and a maximum F1
score of 70%, even exceeding the performances achieved by the three dermatologists who
examined the same images (average accuracy of 71% and average F1 score of 55%). As for
dermoscopic images, the maximum accuracy was achieved by the ResNet model (70.4%),
while the maximum F1 score was 69.6%.

Finally, with the images acquired through NurugoTM Derma, the ensemble model
reached an overall accuracy of 83.9%, a sensitivity of 72.4%, a specificity of 97.3%, and
an F1 score of 80.8%. The results obtained are encouraging, demonstrating how also an
amateur device can be helpful for clinical analysis, with all the related limits and possibly
implementing improvements and measures that can increase its performance.

To the best of our knowledge, to date there are no comparable literature studies that
have used similar devices. However, some considerations on NurugoTM Derma can be
made, analyzing some studies of the last decade about TD and TDSC.

Recently, Munoz-Lopez et al. [21] (2021) conducted a prospective, real-life study with
the aim of assessing an AI (artificial intelligence) algorithm’s performance, published by
Han et al. in 2020 [22], for the diagnosis of skin diseases. Patients submitted photographs of
one or more skin conditions acquired using a smartphone prior to or during a TD evaluation.
The AI web application, following the upload of the images, output three diagnoses ranked
in order of probability. Finally, the algorithm’s performance was compared to those of
physicians with different levels of experience. Similarly to our findings, the accuracy of
the algorithm’s diagnosis was inferior to the accuracy of dermatologists. Nonetheless, the
authors concluded that the use of the AI web application could be a valuable collaborative
tool, enhancing the confidence and accuracy of physicians.

The algorithm of Han et al. had already been tested by Navarrete-Dechent in March
2018 [22], submitting to the web application 100 selected images of biopsied cutaneous
melanomas, basal cell carcinoma, and squamous cell carcinoma originated from Caucasian
patients. Overall, the computer classifier matched histopathological diagnosis only in
29 out of 100 lesions (29%), suggesting that CNN training requires the largest data sets
including the full spectrum of human population and clinical presentations.

In 2012, Lamel et al. [23] evaluated the diagnostic concordance between FTF consul-
tations and TD in patients undergoing screening for skin cancers. Clinical images were
transmitted through a smartphone, without device integrated into the camera. Digital
images of 137 skin lesions were acquired using Google Android G1 (HTC Corporation,
Taoyuan, Taiwan), a smartphone with an integrated 3.2-megapixel autofocus camera,
equipped with the ClickDerm app (Click Diagnostics, Boston, MA), developed to facilitate
the remote diagnosis of skin diseases by dermatologists. During this study, one dermatolo-
gist performed the FTF evaluations, while another dermatologist assessed digital images
captured by the smartphone, with a diagnostic concordance of 62%. In our study, the
diagnostic accuracy of the teledermatologist (average accuracy of D1, D2, D3 = 89%) was
higher and comparable to that of the CNN on image recognition of the device under study
using the ensemble model (83%). Moreover, the NurugoTM Derma offers the possibility to
acquire images showing the dermoscopic features of the lesions.
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A further aim of the study by Börve et al. (2013) [5], the main objective, was to
determine the diagnostic accuracy of a mobile TDSC and, subsequently, the diagnostic con-
cordance between TDs and an FTF dermatologist. The study included 62 patients and was
conducted using a smartphone (iPhone 4, Apple Inc., Cupertino, CA, USA), a dermoscope
connected to the smartphone (FotoFinder Handyscope, FotoFinder Systems GmbH, Bad
Birnbach, Germany), a TDSC platform (Tele-Dermis, iDoc24 AB, Gothenburg, Sweden),
and a new iPhone app (iDoc24 AB, Gothenburg, Sweden) installed on the smartphone. The
diagnosis provided by the FTF dermatologist was correct for 46 lesions (66.7%), showing
an accuracy statistically higher than TDs 1 (50.7%) and similar to TDs 2 (60.9%). Based on
this study, it was shown that this mobile TDSC solution allows us to achieve diagnostic
accuracy comparable to that of an FTF dermatologist.

The aim of the study [24] was also to test this app to evaluate its possible usefulness
in the triage of patients with suspicious skin lesions who are referred to dermatologists
by general practitioners (GPs). However, the study showed several limitations, because
only lesions requiring biopsy or excision were included and the TDs were aware of this,
resulting in a possible bias in the assessment. Furthermore, all images were acquired by the
FTF dermatologist, who had experience in the use of imaging equipment, while the image
quality may be lower if smartphones are used by GPs. On the contrary, NurugoTM Derma
is a very intuitive tool, accessible and easy to use even by nonspecialists, who, following
adequate training, could obtain valid images that identify suspicious characteristics. In
fact, the three dermatologists obtained comparable accuracy in test 2 (dermoscopic lesions)
and test 3 (same lesions but acquired with NurugoTM Derma). This shows that for a
specialist the image of the NurugoTM is comparable to that of a traditional dermoscope.
In addition, the ensemble model also performed well in the classification of NurugoTM

images, reaching an accuracy of 84%. Also, NurugoTM Derma is a low-cost device (about
$50), very intuitive and practical, which could be positively accepted by GPs and integrated
into clinical practice. Therefore, we believe that this can be a valid screening tool and
that its use can allow the patients’ referral with greater appropriateness, discriminating
the degree of urgency. In fact, only patients with suspicious or malignant lesions can be
urgently referred to a specialist consultation.

Likewise, a recent Norwegian pilot study (Houwink et al., 2020) [25] tested an app
(Askin®) for smartphones, that allows clinical and dermatoscopic photographs of various
skin lesions to be taken and then sent to the dermatologist. Dermatoscopic images were
obtained using a dermoscopy lens (AskinScope®), to be fixed to the smartphone camera.
In this study, the diagnoses obtained by the dermatologists included not only pigmented
skin lesions and benign or malignant tumors but also inflammatory skin conditions (i.e.,
infections, eczema, or chronic ulcers) and uncertain diagnosis lesions (i.e., lesions in which
the clinical diagnosis was not possible and differential diagnoses were suggested). It
was estimated that the app reduced the need for specialist assessment by around 70%.
Therefore, TD and TDSC can be part of a triage system in which patients with suspicious
skin lesions can be referred more quickly and correctly to the specialist.

However, at the moment, NurugoTM Derma is intended for nonmedical use and,
therefore, further studies are needed for its validation and to overcome its limitations.

The biggest current limitation is that to obtain dermoscopic-like images, a laboratory
slide must be used. However, this approach involved several limitations on the acquired
images in this study:

(1) The FOV of the image was excessively restricted by the artifact caused by the glass.
(2) The bubbles created by the interface liquid interfered with the image interpretation.
(3) The use of the slide itself complicated image acquisition, rendering it more time consuming.

As the results showed, the NurugoTM Derma could be useful as a tool to perform the
first triage of skin lesions through a visual analysis of the acquired images, but the current
CNN architectures and performances are limiting and the database must be expanded
upon to evaluate changes in accuracy and performance improvements.
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Similarly, for each of the numerous nonprofessional apps currently available, the
possible limitations need to be explained.

Wolf et al. in 2013 [26] published a review in which four of the most downloaded
apps on smartphone platforms were analyzed, for a total of 188 lesions, belonging to
one of the following categories: invasive melanoma, melanoma in situ, lentigo, benign
nevus, dermatofibroma, seborrheic keratosis, and hemangioma. Of these lesions, 60 were
melanomas, while the remaining 128 were benign. The comparison with histology showed
a sensitivity ranging from 6.8% to 98.1% and specificity from 30.4% to 93.7%. Therefore, it
is also necessary to emphasize the potential dangers of these apps for users who completely
rely on them without a critical evaluation. So, users must be aware that the app evaluates
the risk that a lesion may be benign or malignant but does not make a diagnosis of certainty.
Most of the apps are designed for educational rather than diagnostic purposes and, to
date, no method based on an automated algorithm for the analysis of skin lesions shows a
sensitivity higher than FTF.

Also, even when used by dermatologists, TDSC has a few limits [27]: The first is the
inability to perform a complete full-body examination on patients, with the risk of losing
accidentally diagnosed melanomas. If mobile TDSC is used by GPs, there may be a risk
of underdiagnosis of clinically significant lesions that are not appreciated by the referring
physician. From this is derived the legal risk caused by under- and misdiagnosis. To reduce
these complications, a specific training for dermoscopy and use of TDSC devices needs to
be adopted, particularly for GPs. On the other side, the present device could be useful for
the fast evaluation of a single, and possibly recently appeared, lesion the patient points out,
thus allowing to quickly make a clinical decision.

Another limit is, at least in Italy, the regulation from the point of view of reimburse-
ments of this type of service. The development of business models related to TD and TDCS
must be taken into consideration as well as the ethical and legal aspects.

In literature, four business models are proposed:

(1) Standard fee-for-service reimbursement from insurance.
(2) Capitated service contracts.
(3) Per-case service contracts.
(4) Direct to consumer [1,28]. In the case of Italy, a fee should be set up to be paid by the

patient or by the National Health Service for assisted patients.

5. Conclusions

In conclusion, even if with some limitations, the NurugoTM device could be considered
a low-cost and easy-to-use device to perform the first triage of skin lesions, aiding the
selection of patients who need a face-to-face consultation by dermatologists.

Also, considering the possibility of reaching patients remotely, also in the event
of travel restrictions (such as the recent SARS-Cov-2 pandemic), this method must be
strengthened in the future and applied also to the evaluation and monitoring of other skin
lesions (e.g., non-melanoma skin cancers or inflammatory cutaneous diseases). Regarding
TD and TDSC, our future studies will include increasing the size of the database of images
acquired with both a smartphone device and a clinical dermatoscope and the development
of low-cost and easy-to-use devices that, after adequate training, can be used also by
GPs for the screening of skin lesions that need to be appropriately addressed by a FTF
consultation. Moreover, once a larger data set is acquired, we will continue to train and
improve the automatic classification network.
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