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Angiogenesis and post-natal vasculogenesis are two processes involved in the formation of new vessels, and both are essential for
tumour growth and metastases. We isolated endothelial cells from human blood mononuclear cells by selective culture. These blood
outgrowth cells expressed endothelial cell markers and responded correctly to functional assays. To evaluate the potential of blood
outgrowth endothelial cells (BOECs) to construct functional vessels in vivo, NOD-SCID mice were implanted with Lewis lung
carcinoma cells subcutaneously (s.c.). Blood outgrowth endothelial cells were then injected through the tail vein. Initial distribution of
these cells occurred throughout the lung, liver, spleen, and tumour vessels, but they were only found in the spleen, liver, and tumour
tissue 48 h after injection. By day 24, they were mainly found in the tumour vasculature. Tumour vessel counts were also increased in
mice receiving BOEC injections as compared to saline injections. We engineered BOECs to deliver an angiogenic inhibitor directly to
tumour endothelium by transducing them with the gene for human endostatin. These cells maintained an endothelial phenotype and
decreased tumour vascularisation and tumour volume in mice. We conclude that BOECs have the potential for tumour-specific
delivery of cancer gene therapy.
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Angiogenesis and vasculogenesis are two distinct processes
involved in the formation of the vascular endothelial system that
occur during embryogenesis and a variety of post-natal events,
such as maturation of the corpus luteum, wound healing,
proliferative retinopathy, rheumatoid arthritis, psoriasis, and
cancer. During angiogenesis new vessels sprout from established
vasculature. Angiogenic signals trigger complex changes in
endothelial cells and extracellular matrix that result in remodel-
ling, migration, and proliferation of pre-existing endothelium. The
process begins with the proliferation of proximal endothelial cells
that form capillary branches, with vessel lumen forming through
anastomotic connections between capillary tips (Mustonen and
Alitalo, 1995; Risau, 1997). Angiogenesis also depends on adhesive
interactions between vascular cells of which multiple adhesion
molecules are involved, such as avb3, avb5, a5b1, and a2b1
integrins; PECAM-1; and VE-cadherin (Heimark et al, 1990;
Lampugnani et al, 1991, 1992; Brooks, 1996).

Vasculogenesis is a process whereby new vessels are assembled
from coalescing and clustering endothelial progenitor cells (i.e.,
angioblasts). Both vasculogenesis and embryonic haematopoiesis are

active in the mesoderm, and both involve descendent cells that
differentiate from a common precursor cell, the haemangioblast
(Coffin and Poole, 1988; Pardanaud et al, 1989; Choi et al, 1998).
Recent studies have found intriguing evidence that vasculogenesis
might play a postnatal role in neovascularisation (Crosby et al, 2000;
Shintani et al, 2001). It has been reported that marrow-derived
endothelial progenitor cells contribute to adult vasculogenesis
(Tamura et al, 2004) and tumour angiogenesis (Rafii et al, 2002;
Peters et al, 2005) by circulating through the vascular system and
incorporating into the wall of newly formed vessels (Marchetti et al,
2002; Rafii and Lyden, 2003). Evidence that vasculogenesis is
involved in neovascularisation has been found in studies on tumour
vessels (Reyes et al, 2002), experimental retinopathy (Grant et al,
2002; Tomita et al, 2004; Butler et al, 2005), myocardial ischaemia
(Kocher et al, 2001, 2006; Botta et al, 2004), wound healing (Asahara
et al, 1999; Crisa et al, 1999), and hindlimb ischaemia (Takahashi
et al, 1999; Kalka et al, 2000; Iwaguro et al, 2002). An important
question that remains unanswered by the literature is whether
circulating endothelial progenitor cells per se or their differentiated
progeny are incorporated into the vascular wall (Moore et al, 2001).

Advances in our understanding of tumour vasculogenesis and
stem cell development have allowed investigators to use endo-
thelial-lineage cells as a potential tool for delivering genes to
tumours. Endostatin is a potent inhibitor of angiogenesis and has
demonstrated anti-tumour effects when delivered continuously
(O’Reilly et al, 1997; Szary and Szala, 2001). Endostatin
corresponds to the 20 kDa fragment derived from the COOH-
terminal NC1 domain of type XVIII collagen (Oh et al, 1994; Rehn
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et al, 1994; O’Reilly et al, 1997). Endostatin disrupts the angiogenic
process in many ways: it interferes with fibroblast growth factor-2
(FGF-2)-induced signal transduction, blocks endothelial cell
motility, induces apoptosis, leads to G1 arrest of endothelial cells
through inhibition of cyclin D1, blocks vascular endothelial growth
factor-mediated signalling via direct interaction with its receptor
tyrosine kinase (VEGFR-2, KDR/Flk-1) in human umbilical vein
endothelial cells (HUVECs), and blocks tumour necrosis factor-
induced activation of c-Jun NH2-terminal kinase and c-Jun NH2-
terminal kinase-dependent proangiogenic gene expression. In
addition, endostatin contains a heparin-binding motif, and may
exert some of its antiangiogenic effects through interactions with
the heparan sulphate proteoglycans, glypican-1, and -4, and
binding to a5b1 integrin on the cell surface (Dhanabal et al,
1999; Shichiri and Hirata, 2001; Dixelius et al, 2002; Hanai et al,
2002; Kim et al, 2002; Yin et al, 2002; Abdollahi et al, 2004).
Recombinant endostatin efficiently blocks angiogenesis and
suppresses primary tumour growth and metastasis in experimental
animal models without any apparent side effects, toxicity, or
development of drug resistance (Boehm et al, 1997; O’Reilly et al,
1997; Marneros and Olsen, 2001). Use of endostatin in clinical
trials in cancer therapy has been hampered by difficulties in
protein production in large quantities, loss of biologic activity
during long-term storage, and cumbersome daily administration
requirements. Three phase I clinical trials and a recently reported
phase II clinical trial of endostatin in patients with advanced
neuroendocrine tumours have not demonstrated anti-tumour
activity (Eder et al, 2002; Herbst et al, 2002; Thomas et al, 2003;
Kulke et al, 2006). In the phase II study, steady-state trough levels
were below the target therapeutic range.

We hypothesised that circulating endothelial cells could serve as
a vehicle for continuous delivery of endostatin to tumour tissue.
Using a murine model, we tested the ability of blood outgrowth
endothelial cells (BOECs) cultured ex vivo from human peripheral
blood mononuclear cells to target tumour vasculature. After
establishing that BOECs home to tumour vessels, we evaluated the
inhibitory effect of endostatin-transduced BOECs (EBOECs) on
tumour growth and angiogenesis.

MATERIALS AND METHODS

Cell cultures

Healthy human volunteers donated 100 ml of venous blood after
signing consent forms that had been approved by the University of
Minnesota Institutional Review Board. Buffy coat mononuclear

cells were prepared from diluted blood using Histopaque-1077
(Sigma Chemical, St Louis, MO, USA), as described previously.
The cells were suspended in EBM-2/EGM-2 culture medium
(Clonetics, San Diego, CA, USA) and plated into a culture well-
coated with collagen I (Sigma Chemical). After 24 h, non-adherent
cells and debris were removed by washing with medium. There-
after, culture medium was changed daily until first passage,
corresponding to expansion of approximately 3� 104 cells, and it
was then changed every other day. After BOECs had expanded to
approximately 107 cells, they were lifted with trypsin (Gibco BRL,
Grand Island, NY, USA) and plated onto a 10-cm culture dish
coated with 6 mg cm�2 type 1 collagen and 5 ml 1% gelatin
containing 50 mg ml�1 fibronectin (Sigma Chemical). Blood out-
growth endothelial cells were maintained in EGM-2 with 10% fetal
bovine serum (FBS) and growth hormones as described previously
(Lin et al, 2002). HUVECs were grown in M199 supplemented with
Endo-Gro (VEC Technologies, Rensselaer, NY, USA), heparin,
MEM sodium pyruvate and FBS. Lewis lung carcinoma cells were
maintained in RPMI with 10% FBS. PT67 cells (Clontech
Laboratories, CA, USA) were maintained in DMEM with 10%
FBS. All cell lines were maintained at 371C in a 5% CO2 humidified
atmosphere.

BOEC tracking in tumour-burdened mice

All animal studies were approved by University of Minnesota
Institutional Animal Care and Use Committee and were in
compliance with the UKCCCR Guidelines for the welfare of
animals in experimental research. Mice were kept in pathogen-free
conditions. FSaII carcinoma cells were implanted s.c. in Nu/Nu,
Balb/C Nu mice. A total of 36 mice were divided into nine
experimental groups (n¼ 4 in each group): control animals with
no radioactive chromium (one group), chromium alone (four
groups) and animals injected with chromium-labelled BOEC (four
groups killed at 1, 4, 48, and 72 h after injection). Once palpable
tumours appeared, mice were infused through the tail vein with
250 000 BOECs labelled with chromium 51. Tumours and other
organs were removed at 1, 4, 48, and 72 h after BOEC injection, and
radioactivity was measured with a well-type gamma counter (1282
Compugamma; Pharmacia LKB Wallac, Turku, Finland) and
calculated per gram of tissue.

Twenty-nine NOD/SCID mice bearing Lewis lung carcinoma
tumour were injected through the tail vein with 250 000 BOECs,
BOECs or GBOECs (BOEC transduced with empty vector). The
presence of BOECs, GBOEC or EBOECs in tumour tissue was
detected by quantitative real-time PCR for human b2 micro-

Table 1 Quantitative real-time PCR detection of the BOEC biomarker hB2M

Human cells in tumour

Type of cells injected
Tumour harvested:
day after first injection Tumour sample % Mean s.d.

BOEC 21-day BOEC 0.00001 0.00271 0.00271
21-day BOEC 0.00542
21-day BOEC 0.00271

EBOEC 22-day EBOEC 0.00147 0.00311 0.00137
21-day EBOEC 0.00376
22-day EBOEC 0.00461
21-day EBOEC 0.00261

GBOEC 20-day GBOEC 0.00257 0.00315 0.00103
16-day GBOEC 0.00434
20-day GBOEC 0.00253

Abbreviations: BOEC¼ blood outgrowth endothelial cells; EBOEC¼ endostatin-transduced BOECs.
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globulin (hB2M) at the time of killing of mice (16– 21 days after
endothelial cells injection) (Table 1). Detection of hB2M in murine
tumour tissue was performed by isolating the total genomic DNA
from murine tissues and tumours using DNeasy Tissue Kit
(Qiagen, Valencia, CA, USA) and diluting it to 100 ngml�1 with
PCR grade water. Dual-colour genomic DNA real-time quantitative
PCR was performed to quantify the amount of human BOEC
genomic DNA existing in each murine organ and tumour by using
ICycler (Bio-Rad Laboratories CA, USA). The primers and 30-
labelled fluorescence FAM-probe for hB2M were designed to
amplify human genomic DNA specifically. The sequences are as
follows: hB2M sense primer-50-GCTGGATTGGTATCTGAGGC
TAG-30; hB2M antisense primer-50-GCTGTTCCTACCCATGAATA
CAT-30; hB2M probe-50-AAGGGCTTGTTCCTGCTGGGTAGCTC
TAAAC-FAM-30. Besides hB2M primers and probe, the universal
GAPDH primers and 30-labelled fluorescence VIC-probe (TaqMan
Rodent GAPDH Control Reagents from Applied Systems; Weiter-
stadt, Germany) were included in each PCR to amplify both human
and murine DNA for internal control. The standard curve was set
up by serially diluting human BOEC genomic DNA in murine
tissue genomic DNA in several different rations. Each dual-colour
real-time PCR contained 500 ng of total genomic DNA from
murine tissue, 200 nM of each primer, 150 nM of each probe and iQ
supermix (Bio-Rad Laboratories). The amplification condition
consisted of denaturing DNA and activating polymerase at 951C
for 5 min followed by 60 cycles of two-step PCR at 951C for 30 s
and 601C for 30 s. The modified threshold cycle value (Ct) of each
sample (Ct of hB2M divided by Ct of GAPDH) was used to calculate
the percentage of human cells in murine tissue based on the
standard curve.

BOEC cells were labelled with carboxyfluorescein succinimidyl
ester (CFSE) as described previously (Lyons and Parish, 1994). A
total of 106 – 107 cells were washed twice with phosphate-buffered
saline (PBS) and then incubated with 5 nM CFSE in PBS for 3 min at
room temperature. The cells were washed two times with RPMI
medium supplemented with 10% FBS.

Construction of endostatin expression vector

The 660-bp DNA fragment containing full-length hES (human
endostatin) cDNA and BM40 (human extracellular matrix protein)
signal peptide (a gift from Dr Bjorn R Olsen and Dr Naomi Fukai,
Department of Cell Biology, Harvard Medical School) was cloned
into an intermediate vector, pTracer-CMV2 (Invitrogen Corp., CA,
USA), and named pTracer/hES. The hES cDNA was then subcloned
in between the BglII and HpaI cloning sites of MIRG and named
MIGR/hES. The MIGR/hES contained BM40 signal peptide and
hES cDNA, followed by internal ribosome re-entrance site (IRES)
and green fluorescent protein (GFP) cDNA (Figure 1).

Construction of retrovirus expressing endostatin

MIGR/hES DNA and pcDNA3.1(�) plasmid DNA in a 10 : 1 ratio
were co-transfected into a virus-producing cell line, Retro Pack
PT67 (Clontech Laboratories), using Fugene6 (Roche Molecular
Biochemical, IN, USA) according to the protocol supplied by the
company. The stable cell line containing MIGR/hES (named PT67/
hES) was then established by Neomycin selection for 2 to 3 weeks.
Conditioned medium from PT67/hES was collected 48 h later and
filtered through a 0.45-mm cellulose acetate filter and stored at
�701C. Similarly, virus containing only GFP was produced to use
as a control.

Gene transfer to blood outgrowth endothelial cells

Blood outgrowth endothelial cells at 70% confluence were
transduced with retroviral particles. GBOECs were transduced
with an empty vector expressing GFP. EBOECs were transduced

with a vector expressing both GFP and human endostatin. Serial
transductions were performed to gradually enrich positive cells
that were collected by fluorescence-activated cell sorting (FACS).

Quantifying expression of human endostatin

Levels of human endostatin were measured in cultured super-
natants from EBOEC using the ELISA kit (R&D Systems,
Minneapolis, MN, USA). All samples were measured in triplicates.

Cell proliferation assay

After 24 h, conditioned media were collected from flasks with
HUVEC, BOEC, and EBOEC cultures. Each medium was filtered
through 0.45mm filter unit, and aliquots stored at �201C for
further use. HUVEC were seeded in 96-well plates (precoated with
1% gelatin) at a density of 2� 103 cells well�1 in M199 medium
with 5% FBS. Thawed conditioned medium supplemented with
50 ng ml�1 of human basic fibroblast growth factor (bFGF) was
added to the wells in nine replicates per treatment group. Positive
control wells had HUVEC conditioned medium supplemented with
50 ng ml�1 of bFGF. HUVEC proliferation was determined at 72 h
by MTT (3–4,5-dimethylthiazol-2,5-diphenyl tetrazolium bro-
mide) assay (Roche Diagnostic GmbH, Penzberg, Germany)
according to the manufacturer’s protocol. The number of viable
cells was quantified spectrophotometrically at 575 nm using an
ELISA microplate reader.

Tube formation assay

HUVECs (1� 105 cells) were plated on wells precoated with 200 ml
of Matrigel (10 mg ml�1, Becton Dickinson and Company, Franklin
Lakes, NJ, USA). Cultured supernatant from BOEC or EBOEC was
added to each well and incubated for 18 h. Tube formation was
evaluated under inverted microscope (Olympus CK30-F100,
Japan).

Evaluating effects of GBOEC and EBOEC on tumour vessel
density and growth

Lewis lung cells were injected s.c. into 29 immunocompromised
NOD/SCID mice. Seven days after tumour implantation, mice were
injected through the tail vein every other day for a total of three

MSCV/hES
7052 bp

IRES

GFP

hES

Amp

Neo

Figure 1 Retroviral vector expressing human endostatin. hES: human
endostatin, IRES: internal ribosome entry site for transcription of single
biscistronic mRNA transcript of hES and fluorescence gene, GFP: green
fluorescent protein, Neo: Neomycin resistance gene for selection in
mammalian cells, Amp: Ampicillin resistance gene for selection in bacterial
cells.
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times with 2� 106 GBOECs, EBOECs or saline (8 mice group�1).
Five mice were also injected with BOEC. Twenty-four hours before
the first injection, 200ml of anti-asialo GM1 (Wako Chemicals,
Richmond, VA, USA) antibody, which had been reconstituted in
PBS, was injected intravenously (i.v.) in the lateral tail vein of each
mouse; this procedure was performed to eliminate murine NK cells
and increase the likelihood of human BOEC survival in the murine
host. Tumour size was determined by caliper measurements, and
tumour volume V was calculated using the following formula:
V¼ (0.536� length�width�width).

Animals were killed at day 24 after BOEC injection. Tumour
tissue was stained with an antibody recognising CD31 antigen
(Accurate Chemical and Scientific Corp., Westbury, NY, USA),
which is present on murine and human endothelial cells. Images
from slides were analysed with Metamorph image analysis software
and stored as TIFF files. Files were then opened in Adobe
Photoshop (Adobe Inc., Mountain View, CA, USA). The greyscale
images were then adjusted to 256 scales of grey using the auto-
contrast function. One pixel depth Gaussian blur was used to
smooth edges. After threshold adjustment, images were reduced to
black and white pixels. All microvessels were reduced to black lines
(Photoshop Adobe processing toolkit (RGI) command: Filter:
Erode and Skeletonize). Using Adobe Image processing toolkit
(Adobe command: Filter: IP* linesþ points, total length), we were
able to calculate total vessel length. A final estimation of the total
vessel count was obtained using the formula: vessel num-
ber¼ (vessel endsþ vessel branch points)/2.

Immunohistochemistry

The phenotype of EBOEC and GBOEC were determined by
morphology, expression of endothelial markers (flk-1, VE-
cadherin, and CD31) and uptake of acetylated low-density
lipoprotein (LDL). Uptake of acetylated LDL is one of the
functional methods of identification of endothelial cells (Voyta
et al, 1984). Expression of markers for monocytes (CD14) and
leukocyte common antigen (CD45) were used as negative controls.
EBOECs were also evaluated for presence of endostatin by
fluorescence microscopy.

Cells were seeded in Lab-tek 4-well chamber slides (Nalge Nunc,
Naperville, IL, USA) at approximately 80% confluency. Cells were
washed three times with PBS, fixed in 4% paraformaldehyde for
10 min and permeabilised with Triton X-100 for 1 min. Cells were
then blocked in PBS supplemented with 3% bovine serum albumin
(BSA) (Sigma, St Louis, MO, USA) for 1 h at 371C. Subsequently,
cells were incubated for 1 h at 371C with primary antibodies:
endostatin, flk-1, VE-cadherin, CD14, CD45 (Santa Cruz Biotech-
nology, Santa Cruz, CA, USA), and CD31 (BD Biosciences,
Bedford, MA, USA). Cells were then washed five times with PBS
and incubated for 1 h at 371C with anti-rabbit, anti-goat, and anti-
mouse secondary antibodies conjugated with TRITC (Jackson
Immuno Research, West Grove, PA, USA) and diluted in blocking
solution. Cells were then washed five times with PBS and incubated
with DAPI (Molecular Probes, Eugene, OR, USA) diluted in PBS for
10 min at room temperature. Finally, cells were washed five times
with PBS, and pictures were taken with the Nikon Eclipse TE200
fluorescent microscope (Nikon, Tokyo, Japan) using filters for
TRITC, DAPI, and GFP.

To identify human BOEC or EBOEC in tumour tissue, paraffin-
embedded murine tumour was cut into 5-mm sections and
deparaffinised before treatment with 0.1% trypsin to unmask
antigens. Sections were blocked with 1% BSA and 0.2% Tween-20
in PBS for 30 min or with an avidin/biotin blocking kit (Vector,
Burlingame, CA, USA). Primary antibody recognising b2-macro-
globulin, CD31 (Accurate Chemical and Scientific corp.), or
polyclonal goat anti-human endostatin (R&D Systems) was used
for 1 h at room temperature. Secondary anti-rabbit or anti-goat
biotinylated antibodies (Jackson ImmunoResearch Labs) were

applied respectively for 30 min. Avidin/biotin enzyme complex
(Vector) was used for signal amplification, followed by DAB
peroxidase substrate kit (Vector). In controls primary antibodies
were omitted. Nuclei were counterstained with haematoxylin
(Vector) and photographed at � 900 magnification. For immuno-
fluorescent staining of b2-macroglobulin and human endostatin in
tumour sections, we used donkey anti-rabbit TRITC-labelled and
anti-goat FITC-labelled secondary antibodies (Jackson Immuno-
Research labs). 40,6-diamidino-2-phenylindole, a blue fluorescence
stain that binds to nucleic acid, was used as a nuclear counterstain
(Invitrogen).

For microvessel density CD31-stained tumour sections were
scanned at low power, and the areas of greatest CD31-positive
density were chosen for quantification of intratumoural vessel
density. Microvessel density counts were determined by two
blinded observers.

Detection of human endostatin in murine tumour

For Western blot detection of human endostatin, we extracted
tumours from in vivo studies and placed them in 1 ml of ice-cold
lysis buffer (20 mM Tris –HCl (pH 7.5), 150 mM NaCl, 1 mM

Na2EDTA, 1 mM EGTA, 1% Triton, 2.5 mM sodium pyrophosphate,
1 mM b-glycerophosphate, 1 mM Na3VO4, 1 mg ml�1 leupeptin,
1 mM PMSF) (Cell Signalling, Boston, MA, USA). Lysed cells were
immediately sonicated on ice at intermediate settings five times for
15 s each and centrifuged at 10 000 r.p.m. for 30 min at 41C. Protein
concentration was determined by BioRad protein assay (BioRad
Laboratories, Hercules, CA, USA), and samples were prepared for
SDS– PAGE, followed by electroblotting onto PVDF membrane.
The blot was blocked 1 h in Tris-buffered saline (BioRad
Laboratories) containing 0.05% Tween-20 and 5% BSA (Sigma-
Aldrich, St Louis, MO, USA) at room temperature and incubated
overnight at 41C with appropriate amounts of endostatin antibody
(Abcam, Cambridge, MA, USA) and actin antibody (Santa Cruz
Biotechnology). Immunoreactive protein was detected by incubat-
ing blots with AP-conjugated secondary antibody and ECF
fluorescent substrate, which was then visualised by a Stormt
fluorescent scanning system.

Statistical analysis

A t-test was used to compare the experimental and control groups.
A nonparametric Mann– Whitney rank sum test was used for non-
normal distributions. For tumour volumes log volume data were
analysed with one-way ANOVA for parametric variables and
assessed by Turkey’s method using Instat Software (GraphPad
Software, San Diego, CA, USA).

RESULTS

BOECs accumulate in tumour tissue and enhance tumour
vessel growth

The systemic distribution of radiolabeled BOECs injected through
the tail vein of Nu/Nu, Balb/C Nu animals bearing s.c. implanted
FSaII carcinoma cells tumours varied over time. One hour after
BOEC administration, accumulation of BOECs was higher in lung
and tumour tissue as compared to the liver, kidney, and spleen. At
72 h post-injection, BOEC concentration remained the same in the
spleen, liver, and tumour tissue, but decreased in lung (Figure 2).

Immunostaining of tumour tissue samples (from five animals
with implanted Lewis lung cancer and injected via tail vein with
BOEC, and from eight animals with implanted Lewis lung cancer
injected with saline) with b2-macroglobulin confirmed that BOECs
were present in tumour (Figure 3A) in BOEC-injected animals
only. In addition, BOECs were detectable 21 days after injection
(2–3 BOECs/100 000 tumour cells) using real-time PCR for
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detecting hB2M as a BOEC marker (Table 1). CFSE-labelled BOECs
were detected in tumour upto 10 days after injection (data not
shown). Vessel count calculated from CD31-stained tumour slides
was over four times higher in tumours from BOEC-injected mice
compared to mice injected with DPBS solution) (Figure 4).

EBOECs display normal endothelial cell phenotype

EBOECs and GBOECs were successfully produced by retroviral
gene transfer by sequential transduction and sorting by FACS. The
presence of transgene in EBOECs was confirmed by PCR.
Immunostaining of tumour tissue samples with an antibody
recognising human endostatin confirmed that EBOECs were
present in tumour (Figure 3B). EBOECs produced 1.35 ng ml�1 of

endostatin (supernatant from 2� 105 cells) in 24 h. Figure 5 shows
HUVEC growth inhibition by EBOEC-conditioned medium
(P¼ 0.001). In addition, EBOEC-conditioned medium inhibited
tube formation by HUVECs, whereas BOEC-conditioned medium
had no such effect (data not shown).

Phenotypic characterisation showed that EBOECs and GBOECs
retained the general phenotype of BOECs. A ‘cobblestone’
morphology characteristic of parental BOECs was observed using
light microscopy (Figure 6A). These cells were positive for
expression of endothelial cell markers vWF, VE cadherin, flk-1,
CD31 (PECAM), but not monocytes or lymphocytes markers CD14
or CD45 (Figures 6C–H). EBOECs also expressed endostatin
(Figure 6B). A normal phenotype for EBOECs and GBOECs was
further confirmed by the formation of angiogenesis-like vessel
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Figure 2 BOEC tracking in tumour-burdened mice. FSaII carcinoma cells were implanted s.c. in 36 mice. Once palpable tumours appeared, mice were
infused through the tail vein with chromium 51 (blue bars), or BOECs labelled with chromium 51 (red bars). One control group had only saline injection.
Tumours and other organs were removed at 1, 4, 48, and 72 h after BOEC injection (n¼ 4), and radioactivity was measured with a gamma counter to track
the distribution of BOECs.

A B C

Figure 3 BOECs and EBOECs in tumour tissue. (A) Tumour sections from animals injected with BOECs were stained with anti-human b2-macroglobulin.
(B) Tumours from animals injected with EBOECs were stained with antibody recognising endostatin. (C) The primary antibody was omitted as a control.
Original magnification � 900. Micrographs are representative of tumour sections stained from BOEC-injected (n¼ 5) and EBOEC-injected (n¼ 8) mice.
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networks (albeit less robust for EBOECs than GBOECs) and uptake
of acetylated-LDL (Figure 7). Acetylated-LDL uptake is one of the
hallmarks of endothelial cell physiology (Voyta et al, 1984).

EBOECs inhibit tumour growth

Lewis lung cells injected s.c. into NOD/SCID mice formed palpable
tumours at day 4 after implantation. Seven days after implantation,
mice were injected either with BOECs, GBOECs, EBOECs or saline.
Tumours in mice injected with EBOECs were significantly smaller
than tumours injected with BOECs, GBOECs or saline (Po0.05 for
each group compared with EBOEC) (Figure 8). Tumour sections
were stained with an anti-CD31 antibody to evaluate tumour
vascularity. A greater density of vessels was seen in tumours from
BOEC-treated mice compared to EBOEC-treated mice (Figure 9).
EBOECs and GBOECs were detected in tumour tissue from their
respective animals (Figure 10). Human endostatin was detected by
Western blot in tumours in mice injected with EBOECs, but not in
tumours of mice injected with saline. A small amount of human
endostatin was also detected in tumour tissue from BOEC- and
GBOEC-injected animals (Figure 11).
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Figure 4 BOECs increase blood vessel density in tumour. Mice with
Lewis lung carcinoma tumours were injected with saline or BOEC and
killed 24 days later. Tumour tissue was stained with an antibody recognising
CD31, which is present on murine and human endothelial cells. Images
from slides were analysed with a Metamorph image analysis programme
and processed with Adobe Photoshop. Wild-type BOECs greatly
enhanced the number of vessels found in tumours (Po0.0001).
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Figure 5 EBOEC-conditioned medium inhibits growth of HUVECs. The
proliferation of HUVECs cultured in conditioned medium from HUVECs,
BOECs or EBOECs was assessed by MTT assay. Experiments were
performed in nine replicates per treatment group. Results of Student’s t-
test showed a significant reduction in the number of HUVECs cultured in
EBOEC-conditioned medium compared to the number of HUVECs
cultured in HUVEC- or BOEC-conditioned medium (Po0.001).
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Figure 6 Phenotype of EBOECs. Morphology of EBOECs (A). EBOEC express endostatin (red)(B), VWF (C), VE-cadherin (D), Flk-1 (E), CD31 (F), but
do not express CD14 (G), nor CD45 (H). Negative control (I). DAPI was filtered from positive stains (B–F) due to GFP interference. Images are
representative of triplicate chamber slides.
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Figure 7 EBOECs maintain endothelial cell function. Uptake of
acetylated LDL is a method for the identification of functional endothelial
cells. EBOECs take up acetylated LDL (left) and form vascular tubes in
culture (right). Images are representative of triplicate slides (LDL uptake) or
wells (vascular tubes).
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DISCUSSION

Our investigation establishes two key steps in the development of a
therapeutic strategy for delivering tissue-specific gene therapy.
First, we demonstrate that circulating BOECs target tumour tissue
and augment vessel growth through incorporation into vessel
endothelium. Results of real-time PCR and chromium-51 labelling
of BOECs showed that these cells migrate to sites of active vascular
growth, such as tumour, liver, and spleen (Figures 2 and 3). This
observation is consistent with data reported by Jevremovic et al,
who has also found that endothelial cell precursors migrate to the
tumour vasculature. In addition, CD31-stained tumours from mice
injected with BOECs showed an increase in tumour vasculature
(Figures 4 and 9). Taken together, our results suggest that BOECs
integrate into and stimulate tumour vasculature growth (Figure 4).

Second, we demonstrate that inhibition of tumour growth in
EBOEC-injected mice was attributable to the inhibitory effect of
endostatin on tumour angiogenesis. We observed a 28% reduction
in tumour size in mice receiving EBOEC injections (Figure 8). In
addition, the biological activity of the endostatin present in the
supernatant of EBOECs was verified by its ability to inhibit
specifically the proliferation and tube formation by HUVECs
in vitro (Figure 5). Both in vivo and in vitro results demonstrate
that BOECs transfected with retrovirus containing the endostatin
gene are capable of long-term secretion of endostatin.

Recent studies report conflicting results with regard to the
extent of endothelial cell integration into the tumour vasculature.
While our findings demonstrate that BOECs integrate into tumour
vessels, the integration occurs at a very low level. This finding is
consistent with recent reports, which show that bone marrow-
derived endothelial precursor cells migrate to tumour vasculature
at similarly low levels (De Palma et al, 2003; Machein et al, 2003;
Droetto et al, 2004; Larrivee et al, 2005). However, these results
contrast with a previous report demonstrating that 90% of blood
vessels in B6RV2 tumours are composed of bone marrow-derived
endothelial cells (Lyden et al, 2001). These incongruous results
might be explained by the existence of multiple factors directing
endothelial cell migration, including initial tumour size, extent of
vascularity, differences in detection time after cell injection, total
number of injected cells, and differences in the microenvironment
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Figure 8 Therapeutic effect of EBOECs on tumour size. Lewis lung
carcinoma cells were injected s.c. into eight immunocompromised NOD/
SCID mice per group, with the exception of the BOEC group, which had
five mice. Three injections of anti-asialo GM1 antibody were used to
eliminate murine NK cells and increase the likelihood of human BOEC
survival in the murine host. Seven days after tumour implantation, mice
were injected through the tail vein every other day for a total of three times
with 2� 106 GBOECs, EBOECs, BOECs in saline suspension or equivalent
volume of saline. Significant differences in tumour volumes for treatment
with EBOEC vs three control groups were seen from day 8 through day 14
after last treatment (*Po0.05).
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Figure 9 EBOECs decrease blood vessel density in tumour. Tumour
sections from mice injected with BOEC (n¼ 5), EBOEC (n¼ 8) or saline
(n¼ 3) were stained with an antibody against CD 31. EBOEC-injected mice
had tumours with fewer blood vessels than BOEC- or saline-injected mice
(Po0.003 and Po0.0000001, respectively).
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Figure 10 EBOECs in tumour tissue. Tumour samples were collected from the 24 mice injected i.v. with Lewis lung carcinoma cells. Column A: cells
stained for the presence of human b2-macroglobulin. Column B: cells stained for the presence of human endostatin. Column C: cells stained with the nuclear
stain DAPI. Merged images of all three stainings are shown in column D. Row I: tumour from saline-injected animals (n¼ 8). Row II: tumour from GBOEC-
injected animals (n¼ 8). Row III: tumour from EBOEC-injected animals (n¼ 8). Human BOEC (GBOEC or EBOEC) in tumour tissue can be seen in panels
A-II, A-III, D-II, and D-III. Endostatin-producing BOEC (EBOEC) can be found in EBOEC-injected animals (B-III and D-III). Images are representative from
tumour tissue collected from all animals in in vivo experiment described in Figure 8.
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of marrow-derived cells vs BOECs in vivo. In addition, the
composition of angiogenic factors varies widely between the
microenvironment of a s.c. tumour model and orthotopic model
(Yancopoulos et al, 2000). A low level of endothelial cell
integration into the tumour vasculature may pose a potential
problem for the delivery of sufficient quantities of gene product to
sites of tumour angiogenesis. We are currently exploring, however,
whether our observation was not solely due to the decreased
incorporation of human endothelial cells into a murine host.

Our findings provide a rationale for developing antiangiogenic
BOECs as an approach to gene therapy-mediated cancer treatment.
Other gene therapies utilise viral or non-viral delivery systems, and
the main drawback of these strategies is the absence of long-term
expression of therapeutic proteins due to the probable immune
response by the host to foreign material (Harrington et al, 2002).
Early attempts to overcome these drawbacks involved delivery of
genes to tumour sites via cell-based carriers. The use of T cells and
macrophages has been extensively studied due to the homing
properties of these immune cells. Recently, problems with
sustained production of antiangiogenic proteins were overcome
by adeno-associated virus-mediated intratumoural delivery (Ma
et al, 2002b) or systemic delivery through intramuscular injection
of angiostatin for treatment of intracranial tumours (Ma et al,
2002a) or endostatin for treatment of ovarian carcinoma
(Subramanian et al, 2006). Long-term survival of mice with
intracranial human glioblastoma was also seen when the Sleeping
Beauty transposon system was used for the transfer of a gene
encoding soluble vascular endothelial growth factor receptor or a
fusion gene for angiostatin –endostatin (Ohlfest et al, 2005).

Our study demonstrates that BOECs can be engineered to
produce antiangiogenic proteins in vivo on a continuous basis
without the need for daily administration of recombinant protein.
Two potential advantages of using BOECs as a delivery system in
gene therapy include the ability to grow autologous BOECs from
peripheral blood and the ease of manipulating them to express any
gene of interest. A possible drawback of using BOEC for
antiangiogenic gene therapy would be the potential for increased
tumour vessel outgrowth and increased tumour growth, if
silencing of anticancer genes in therapeutic BOECs were to occur
in vivo.

Based on our findings with endostatin-transfected BOECs, we
propose BOECs as an appropriate delivery vehicle for novel
antiangiogenic proteins. This therapeutic strategy also
has implications for the specific targeting of other classes of
anticancer agents to the tumour microenvironment using auto-
logous BOECs.
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