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Abstract
Understanding the dynamics of magnetic particles can help to advance several biomedical

nanotechnologies. Previously, scaling relationships have been used in magnetic spectros-

copy of nanoparticle Brownian motion (MSB) to measure biologically relevant properties

(e.g., temperature, viscosity, bound state) surrounding nanoparticles in vivo. Those scaling

relationships can be generalized with the introduction of a master variable found from non-

dimensionalizing the dynamical Langevin equation. The variable encapsulates the dynam-

ical variables of the surroundings and additionally includes the particles’ size distribution

and moment and the applied field’s amplitude and frequency. From an applied perspective,

the master variable allows tuning to an optimal MSB biosensing sensitivity range by manip-

ulating both frequency and field amplitude. Calculation of magnetization harmonics in an

oscillating applied field is also possible with an approximate closed-form solution in terms of

the master variable and a single free parameter.

Introduction

Biosensing and nanotechnology
The ability to study the human body non-invasively, both for basic science and medicine, has
historically been an excellent marker of scientific progress. From the first clinical X-ray imag-
ing in 1896 [1] to the first human body MRI in 1977 [2], we have now arrived in the era of
nanotechnology, allowing researchers to generate many types of nanoscopic sensors that can
enter the body themselves and return information with relative non-toxicity. We focus on mag-
netic nanoparticle biosensors in this paper, and study the magnetic dynamics with the goal to
advance the theoretical understanding as well as improve technology.

The magnetization response of Brownian magnetic nanoparticles in an oscillating magnetic
field contains extensive information characterizing the microenvironment around the particles.
In contrast to Néel rotation where the internal magnetic dipole rotates, Brownian particles
rotate mechanically, coupling their motion to their surroundings [3].
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Original biosensing schemes with Brownian magnetic nanoparticles used ac susceptibility
measurements to quantify the relaxation time of nanoparticles and thereby infer parameters
like viscosity of the fluid [4, 5]. Molecular sensing was achieved with magnetorelaxometry [6].
Magnetic resonance imaging has been similarly used [7] and dc SQUID techniques have been
used to very sensitively measure relaxation times and bound states [8]. Many other read-out
schemes have been developed for measuring nanoparticle magnetizations, including electro-
chemical sensors [9], plasmonic sensors [10], spin-valve [11, 12], and giant magneto-resis-
tance/-impedance [13, 14]. In particular, spectroscopy of magnetic nanoparticle Brownian
motion (MSB) is attractive because of its high sensitivity and in vivo applicability [15–17].
Rotational spectroscopy sensing has extended the technique to different regimes [18]. In MSB,
scaling arguments have mainly been used to measure variables of interest [19].

Nonlinear magnetic spectroscopy of Brownian motion (MSB) biosensing
with scaling relationships
Nonlinear spectroscopy of the response of Brownian magnetic nanoparticles to applied alter-
nating magnetic fields is a sensitive and practical sensing scheme. The technology, referred to
as magnetic spectroscopy of nanoparticle Brownian motion (MSB) has attained a level of sensi-
tivity comparable to many sophisticated molecular detection schemes but has the added advan-
tage of possible in vivomolecular detection because low frequency magnetic fields do not harm
tissue, iron-oxide nanoparticles are biocompatible, and signal-to-noise is high because biology
produces minimal background signal [15, 17].

Nonlinear spectroscopy requires nanoparticles to be excited with a large enough applied
field such that the magnetization saturates. The resulting harmonic spectra (or just “harmon-
ics”) of the magnetization conveniently quantify the ability of the particles to physically
rotate in time following an applied field. The rotational freedom is affected by many variables
(e.g., temperature, viscosity, molecular binding) and scaling relationships have been used
extensively to infer these variables from the harmonic spectra. Scaling measurements use the
fact that measured harmonics can often be expressed as a function of the product of pairs of
variables. If one variable is experimentally controllable, an unknown variable can be esti-
mated by modifying the unknown variable and calculating the scaling on the controlled vari-
able that account for the change in harmonics. When the product of variables is identical,
magnetic spectra are identical, but when magnetic spectra are not identical, the controlled
variable can be scaled, compensating for changes and thus measuring the change in the
unknown. The scaling method has been exploited using the field amplitude to temperature
ratio to measure temperature [20], and the product of frequency and relaxation time to mea-
sure relaxation time [19]. The relaxation time can be a surrogate for a wide variety of biologi-
cal environmental factors: molecular binding of DNA and cancer biomarkers [3, 15, 17, 21],
temperature [22], viscosity [5, 23], and cellular matrix rigidity [24]. Sensing cancer biomark-
ers in vivo with MSB is a truly valuable biomedical possibility. Also a “theranostic” combina-
tion of temperature measurements with MSB during magnetic nanoparticle hyperthermia
[25] could allow an essential safety mechanism in the simultaneous monitoring of the therapy
potency [26].

In this effort we analyze the stochastic Langevin equation that describes Brownian nano-
particle rotations. By non-dimensionalizing the equation we show that it is possible to
approximate the dynamics by incorporating the applied field amplitude and frequency with
the nanoparticle relaxation time into a single “master variable”. The more general scaling
relationships within the master variable compact several previous measurements into gen-
eral measurements through varying the applied field parameters. The scaling relationship
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between the field and frequency has pragmatic value when certain dynamics are ideal for an
application but certain fields or frequencies are constrained by engineering challenges. For
example, the equivalence of applied field and frequency can be exploited when a resonant
circuit is constrained by a specific frequency [27] or by biological safety [28]. Additionally,
the master variable allows a magnetic spectrometer to be tuned (through field or frequency
adjustments) to be maximally sensitive to changes in the environment. Lastly, we demon-
strate that a Langevin function using the master variable and a single free parameter can be
used to fit harmonic spectra in a closed form approximation.

Theory

The Langevin equation for rotation of Brownian magnetic nanoparticles
Brownian magnetic nanoparticles can be used as biosensors because their rotations are exqui-
sitely affected by their surroundings. Brownian particles rotate mechanically in solution under
the presence of an oscillating applied field, distinguishing themselves from those magnetic
nanoparticles that rotate their moment through internal restructuring of electronic states as in
Néel rotation. Néel particles are indeed affected by local temperature, but are not coupled to
the suspension viscosity or chemical bonds on the exterior of the particle, limiting their appli-
cability as biosensors. We henceforth restrict our discussion to Brownian particles.

The rotational dynamics of ensembles of Brownian magnetic nanoparticles have previously
been studied using Langevin equation approaches [29–35]. If the magnetic axis of a nanoparti-
cle is spatially fixed to an axis of the particle as in larger magnetic nanoparticles with large
anisotropy, the nanoparticles can be described as an ensemble of magnetic dipoles. When sus-
pended in a solution and immersed in a magnetic field, the particle’s magnetization vectorm
aligns to the field but is slowed by viscous torques. A statistical distribution of alignments
occurs at finite temperature. Dynamics of magnetic nanoparticles can thus be modeled
phenomenologically with a Langevin equation, a differential equation for the magnetization
vector that includes stochastic torques.

The rotational Reynolds Re number depends on the suspending fluid’s dynamic viscosity η
and density ρ, and a particle’s hydrodynamic diameter d and rotational velocity—approxi-
mated to be the frequency of rotation multiplied by the particle’s hydrodynamic diameter. For
magnetic nanoparticle biosensing applications, an order of magnitude estimation with ρ = 103

kg/m3, f = 1 kHz, d = 100 nm, and η = 10−3 kg/(m�s) leads to Re = ρfd2/η� 10−5 so that angular
accelerations are negligible.

Neglecting angular accelerations simplifies the Langevin equation to be first order in time.
The dynamics of a magnetic particle rotating in a fluid depends on the particle’s hydrodynamic
volume V = πd3/6 and magnetic moment magnitude μ. The fluid’s temperature T and viscosity
η also impact the rotations [29, 34, 35].

dm
dt

¼ 1

6ZV
mm�Ht � θtð Þ �m: ð1Þ

A time-varying applied magnetic fieldHt changes the dynamics and is supplemented by a sto-
chastic torque θt that accounts for collisions with fluid molecules. Because this torque is due to
many collisions, it can be modeled as a normally distributed, or Gaussian, white noise torque
proportional to the Einstein-Smoluchowski diffusion constant D = 6ηV kBT [31, 34, 36, 37].

Using the white noise process λt, we have θt ¼
ffiffiffiffiffiffi
2D

p
λt . The white noise process is mathemati-

cally expressed as a vector of zero mean, delta-autocorrelated in time (i.e., Markovian) separate
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white noise processes so that for i, j 2 x, y, z we have

hλti ¼ 0; hλtλsi ¼ dijdðt � sÞ: ð2Þ

Non-dimensionalizing the dynamical Langevin equation
Writing the white noise torque in Eq 1 in terms of the white noise process, and multiplying
both sides by kB T, the Langevin equation can be rewritten in terms of two commonly used var-
iables [38, 39]: the unitless field ξt = μHt/kBT and the zero-field Brownian relaxation time
τB = 3ηV/kBT, so that we have

dm
dt

¼ m� ξtð Þ �m

2tB
þm� λtffiffiffiffiffi

tB
p : ð3Þ

Note that we see from Eq 2 that the white noise process has dimensions of
ffiffiffiffiffiffiffi
1=t

p
so the term

containing the square root of the relaxation time in Eq 3 is dimensionally correct.
The intervals of the Wiener process are Gaussian random variables proportional to the

square root of the time interval, dWt � Ntð0; 1Þ
ffiffiffiffiffi
dt

p
where Nt(0, 1) is a 3-vector of Gaussian

random variables each with mean zero and unit variance [39, 40]. Therefore, the solution to
the stochastic differential equation is

m ¼
Z

m� ξtð Þ �m

2tB
dt þ

Z
m�Ntð0; 1Þffiffiffiffiffi

tB
p

ffiffiffiffiffi
dt

p
; ð4Þ

an equation that is not in general solvable due to the multiplicative noise and nonlinear dynam-
ics involved.

Many of the applications of magnetic nanoparticles employ oscillating magnetic fields. We
simulate the field withHt ¼ H0 cos ð2pftÞẑ with amplitude H0 and frequency f. In unitless
form, ξt ¼ x0 cos 2pftẑ . We can also non-dimensionalize the timescale by employing the trans-
formation t� = tf so time runs from 0! 1 in a single period of the oscillating field. Scaling laws
have been shown previously in the corresponding Fokker-Planck equation [19, 33]. For exam-
ple, the magnetic dynamics are exactly dependent on the quantity fτB which we henceforth call
the unitless frequency O [33].

The solution to the stochastic differential equation in dimensionless form is

m ¼ x0
2O

Z
m� cos 2pt�ẑð Þ �m dt� þ

Z
m�Ntð0; 1Þ

ffiffiffiffiffiffi
dt�

p
ffiffiffiffi
O

p ð5Þ

using the three dimensionless variables

O ¼ f tB t� ¼ tf x0 ¼
mH0

kBT
: ð6Þ

Scaling law with the master variable
In the present work, we develop an approximate scaling law combining the unitless field ampli-
tude and unitless frequency inspired by the observation that the parameter in front of the first
integral in Eq 5 determines much of the dynamics. We now define the ratio

A ¼ x0

O
ð7Þ

and refer to it as the “master variable”.

Master Variable for Brownian Magnetic Nanoparticle Dynamics

PLOS ONE | DOI:10.1371/journal.pone.0150856 March 9, 2016 4 / 15



In the case where ξ0 > O, the stochastic term has less impact than the deterministic term
and the dynamics are completely parameterized byA. This range should be feasible for the
hundred-microsecond relaxation times and single kHz frequencies as well as the 100 nm diam-
eter particles and 10–20 mT field strengths typically used in MSB experiments [15, 19, 22, 24].

Ignoring the stochastic torque entirely means the dynamics are exactly and completely
parameterized by the master variable. The method of ignoring the stochastic term has been
used (see the magneto-dynamics approximation in Ref. [41]) and leads to

m � A
Z

m� cos 2pt�ẑð Þ �m dt�; ð8Þ

makingmðt�;AÞ only. We use Eq 7 to interpret Eq 8. Increasing the frequency leads to dynam-
ics equivalent to dynamics with a lower field amplitude. For example, the scaling relationship
explains an intuitive relationship: nanoparticles rotating in a stronger field align faster and thus
are able to follow that field more closely (rotate in phase). Equivalently, particles exposed to a
lower frequency field have more time to align before the field changes its sign, therefore
remaining more in phase. That this scaling relationship is actually linear proportionality (i.e.,
scaling field and frequency by the same factor admits the same dynamics), as opposed to some
other functional relationship, is not immediately intuitive, but is mathematically justified using
the master variable.

Methods

Simulations of biosensing applications confirm the master variable
scaling approximation
We solve the stochastic differential equation (Eq 3) with a numerical expression of Eq 4 using
Heun’s scheme [40, 42]. The two-step Heun solver has predictor �mðt� þ Dt�Þ ¼ �mðt�Þ þ D �m

defined by

D �m ¼ x0Dt
�

2O
m� cos 2pt�ẑð Þ �mþm�Nt� ð0; 1Þ

ffiffiffiffiffiffiffi
Dt�

O

r
ð9Þ

and true magnetization is then defined by

mðt� þ Dt�Þ ¼ mðt�Þ þ x0Dt
�

4O
�m � cos 2pðt� þ Dt�Þẑð Þ � �m½

þ m� cos 2pt�ẑð Þ �m� þ 1

2
mþ �mð Þ �Nt� ð0; 1Þ

ffiffiffiffiffiffiffi
Dt�

O

r ð10Þ

whereNt(0, 1) is a 3-vector of Gaussian-distributed random numbers each with mean zero and
unit standard deviation.

The time steps must be sufficiently small to faithfully capture the full rotational dynamics of
the particles. Inspired by other works [31, 41], we restrict the time step to be a small fraction of
the relaxational timescale and frequency product; specifically Δt� < 0.01O. When magnetic
fields are used, the timescales are shorter but for our ranges we did not see numerical issues.
For works aiming to extend this model to add additional physics, like interactions between par-
ticles, it would be necessary to calculate all existing timescales and appears sufficient to keep
time steps to 1% of the shortest timescale.

All simulations employ 105 particles, meaning that the ultimate solution is the average of
105 solutions of the stochastic equation. As is typical for magnetic particles, the radii (both core
and hydrodynamic) are assumed to be lognormally distributed [33, 43–45]. The probability of
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having a particle with a radius r is then

pðrÞ ¼ 1ffiffiffiffiffiffi
2p

p 1

rsr

exp �
ln

r
mr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2r

m2
r

s !( )2

2s2
r

2
666664

3
777775 ð11Þ

where the mean and standard deviation of the distribution aremr and sr respectively, and the

scale parameter is defined sr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 1þ s2r

m2
r

� �r
. We estimate that standard deviations are 10%

of the mean.
In stochastic simulations, we solve for the mean magnetization using nanoparticles with prob-

abilistically distributed radii. The variability is expressed both in the unitless field through the
magnetic moment (a function of the core volume) as well as in the unitless frequency through
the relaxation time (a function of the hydrodynamic volume). Even more information can be
included within the master variable by defining the master variable of the mean parameters

A ¼ hx0i
hOi : ð12Þ

In discussion of realistic experiments, the master variable can then be written in terms of the
mean values of particles with size distributions.

In magnetic nanoparticle spectroscopy or MSB, the derivative harmonics of the magneti-
zation are used as a metric to analyze the dynamics [15, 23, 27]. The l-th derivative
harmonic is the Fourier transformation of the magnetization parallel to the applied field
F lðmzÞ ¼

R
mz exp ðilotÞdt at integer multiple l of the fundamental frequency ω = 2πf. We

henceforth refer to the l-th derivative harmonic as al ¼ lF lðmzÞ where the factor of the har-
monic number accounts for the derivative.

Results

Simulations and experimental validation of scaling laws in magnetization
and magnetization harmonics
The master variable scaling is simulated by plotting the average magnetization over time at two
relaxation times and two unitless fields in Fig 1. Here, because hξ0i> hOi, the scaling relation-
ship between the field and relaxation time is an excellent approximation. It is visible by eye that
when the relaxation time is doubled, saturation decreases, yet when the applied field strength
(or the moment) is also doubled, the initial dynamics are restored. This is an example of the
generalized scaling relationship shown in Eq 7.

The scaling relationship between the field and the frequency or relaxation time also is evi-
dent in the harmonics. Fig 2 shows the normalized third harmonic a3/ max a3 with respect to
the unitless field amplitude in the left panel, and the same data plotted against the master vari-
able in the right panel. The several curves are all made at different mean relaxation times and
the same frequency. The harmonics are unchanged by scaling the relaxation time when plotted
against the master variable when fhτBi = hOi> 1. This is a different constraint on O related to
saturation effects and the specific field amplitude chosen. Equivalently put, when a change in
relaxation time is accounted for by an identical change in field amplitude, the harmonic spectra
are identical. The data in Fig 2 are from simulations where hξ0i was varied for five different
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Fig 1. (Color online) The scaling relationship between the magnetic field and relaxation time is
demonstrated by simulating the meanmagnetization response of a polydisperse ensemble of
magnetic nanoparticles in an oscillating appliedmagnetic field. The normalized mean magnetization is
identical if the field and the relaxation time are multiplied by the same number.

doi:10.1371/journal.pone.0150856.g001

Fig 2. (Color online) The scaling relationship in the magnetization harmonics is simulated by varying the mean unitless field. The normalized third
harmonic plotted against the mean magnetic field amplitudes in the left panel, and against the master variable on the right. The plots illustrate that spectra
from nanoparticles with different relaxation times (when hΩi > 1) will align when plotted against their respective master variable.

doi:10.1371/journal.pone.0150856.g002
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values of hOi, but the same scaling is also simulated by varying hτBi for two different values of
hξ0i in Fig 3.

Using the apparatus and nanoparticle detailed in Refs. [22, 46] we provide a preliminary val-
idation of the scaling law in the range typically used for MSB. Micromod Partikeltechnologie
iron oxide nanoparticles with hydroxyethyl-starch coatings and 100 nm hydrodynamic diame-
ters were studied at three different magnetic field amplitudes and the same frequencies for each
field (400-2,000 Hz). The experiment validates the generalized scaling: when the data is plotted
against the ratio of the field to frequency, the ratio of the fifth to third harmonic is equivalent.
These data are shown in Fig 4. The scaling works because these particles have mean Brownian
relaxation time hτBi* 0.5 ms. Even at 400 Hz frequencies where hOi* 0.2, it appears the
scaling is a reasonable approximation as ξ0 > O but not large enough to distort with saturation
effects.

The master variable is not directly temperature-dependent
Because the master variable does not directly depend on temperature (it divides out of the ratio
of the unitless field over the relaxation time), changing temperature at some value of the master
variable should not change the mean dynamics. In reality the master variable will contain an
indirect temperature dependence due to the dependence of the viscosity on the temperature
but we do not consider that effect here. Fig 5 shows simulations of the mean magnetization are
stable to temperature perturbations (that is, changes exclusively in the stochastic term of the
Langevin equation). In Fig 5, different values of the master variable (A; 2A; 4A) result in obvi-
ously different magnetization dynamics. For each fixed value of the master variable, the simula-
tions were completed at ten different temperatures (250 K to 350 K by 10 K increments). The
mean magnetizations are indistinguishable at different temperatures. However, it is noticeable
that fluctuations about the mean are larger at lower master variables. Indeed, the scaling rela-
tionships for the higher moments behave differently than the first moment.

Fig 3. (Color online) Scaling relationships in the magnetization harmonics are simulated by varying the mean relaxation time and plotting against
the master variable. The normalized third harmonic is equivalent for two values of the unitless field.

doi:10.1371/journal.pone.0150856.g003
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Connection with ac susceptibility
Measurement of the relaxation time for magnetic nanoparticle biosensing can be achieved
using one-dimensional ac susceptibility [4]. For a small oscillating applied field as typical in ac
susceptibility measurements, the magnetization parallel to the applied field (as above we spec-
ify ξ ¼ x0 cos 2pt

�ẑ) can be written with the Debye equation [35, 47, 48],

mz ¼
x0
3

cos 2pt�

1þ ð2pOÞ2 þ
2pO sin 2pt�

1þ ð2pOÞ2
 !

ð13Þ

so that when O> 1, the Debye magnetization reduces to

mz �
A
6p

sin 2pt� ð14Þ

and the dynamics are again completely described by the master variable.
It is worthwhile to note that in the opposite limit (O< 1), we can use the binomial theorem

to expand the denominators as

mz �
x0
3
ð1þ 4pOÞ cos 2pt� þ 2pO sin 2pt�½ �; ð15Þ

Fig 4. The approximate scaling relationship between field amplitude and frequency is demonstrated
experimentally. The ratio of the fifth to third harmonic r53 = a5/a3 from the same nanoparticles at different
oscillating field amplitudes ranging from 5–15 mT is plotted against the ratio of the field amplitude to the
frequency. The spectra are equivalent, illustrating the scaling law.

doi:10.1371/journal.pone.0150856.g004
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so ignoring terms of higher order than linear (i.e., keeping up toOðOÞ) we arrive at

mz �
x0
3

ð1þ 4pOÞ cos 2pt� þ 2pO sin 2pt�½ �: ð16Þ

Because O< 1, we expect the dynamics to mostly be determined by the term

mz � x0
3
cos 2pt�, but the next-highest order term is due to the product of the unitless field with

the unitless frequency. This term may explain the findings of Shah et al. who suggest that this
factor of the field multiplied by the frequency (the “slew rate”) determines the dynamics [49].

Discussion and applications of the master variable

Biosensing using the generalized scaling relationship
In MSB, typical nanoparticles have 20 nm core and 50 nm hydrodynamic radii [15, 22]. These
particles ensure Brownian rotation so that the rotational dynamics are coupled with the envi-
ronment. In water having viscosity 1 mPa-s at room temperature, these particles have mean
Brownian relaxation time hτBi* 0.5 ms and some in the distribution will be much above this
value. That means that with fields at or above 1 kHz frequencies, hOi> 0.5. With typical particle
sizes, saturation magnetizations of roughly 250 kA/m and applied fields of 5 mT/μ0 make the
unitless field ξ0 * 6 and thus at a single kHz or below,A > 12. These parameters are typical for
biosensing with MSB [15, 22, 27], justifying the generalized scaling in that context (see Fig 4).

In many cases, magnetic spectroscopy of Brownian motion (MSB) has employed single scal-
ing relationships (between field amplitude and temperature [20], and frequency and relaxation
time [19]). The master variable combines all of these scaling relationships into a generalized

Fig 5. (Color online) Various values of the master variable lead to different dynamics. For each value of
the master variable, ten different magnetizations, ranging by 10 K from 250–350 K, are plotted in order to
demonstrate the stability to realistic temperature variations.

doi:10.1371/journal.pone.0150856.g005
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form, thus allowing scaling of field to measure relaxation time (and all the parameters for
which relaxation time is a surrogate: viscosity, temperature, binding, etc.). The ability to scale
field against relaxation time was shown in simulation in Fig 1 and experimentally in Fig 4. In
the related context of rotational spectroscopy, the ability to rescale the field to optimally sense
at a different frequency was demonstrated [50].

Simulated harmonic spectra are shown in Fig 6 as the mean unitless field is increased.
The curves are sigmoidal, indicating that all harmonics are zero when a low amplitude field
is applied—i.e., the magnetization responds linearly. In a higher amplitude field, higher har-
monics arise as the magnetization response becomes nonlinear. At some large field ampli-
tude (ξ0 * 103) each of the harmonics saturates and the magnetization response approaches
a square wave.

Each harmonic has a steepest slope for some value of the master variable. The value that pro-
duces the steepest slope is important because it indicates the largest change in the harmonics for
a small change in the master variable. The master variable includes the relaxation time, a typical
parameter measured as a surrogate for binding [4, 15]. Therefore, there is an optimal value of
the master variable that provides the highest sensitivity to changes in relaxation time. Given the
equivalence of field and frequency in the master variable, the optimal sensing can be achieved
for nanoparticles with a given relaxation time by adjusting field amplitude, frequency, or both.
For typical Brownian nanoparticles the optimal value occurs for the third harmonic in the range
ofA � 25 roughly 25 mT/μ0 at 1 kHz, well within typical MSB biosensing ranges [22, 27].

Phenomenological closed form approximation of harmonics using a
Langevin function of the master variable
Having established that magnetization can be expressed as a function of a master variable we
were then curious what functional form, if any, the harmonics followed in terms of the master

Fig 6. (Color online) Simulated magnetization harmonics are shown for values ofA. The shapes of the curves are sigmoidal, showing that as the field
amplitude is increased the magnetization saturation increases, and each harmonic saturates. The region of each harmonic containing the steepest slope
provides the largest changes in the harmonic for small changes in the master variable time, i.e., the optimal sensitivity range for MSB biosensing.

doi:10.1371/journal.pone.0150856.g006
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variable. As field amplitudes or frequencies are varied, we see sigmoidal shapes for the harmon-
ics (see Fig 6 for example). A familiar function in magnetism, the Langevin function, proves to
be a good approximation of the sigmoidal shapes when the argument is the master variable
with a computationally determined scale factor for each harmonic.

The simulated harmonics and the domain scaled Langevin function for each harmonic are
plotted against the master variable in Fig 7. The computationally determined parameter is
called bl, such that the lines are described by al ¼ LðblAÞ ¼ coth ðblAÞ � 1=ðblAÞ. The values
of bl and the R

2 values are plotted to show the strong fit. Justification of this approximation is
not developed theoretically, but should be considered in future works.

In general, because of the shape of the Langevin function the inflection point of the data
cannot be reconstructed and the lower values ofA are less accurate. The utility of the approxi-
mation is due to the compression of the multi-parameter space into the single master variable
when using the master variable to include varying relaxation times, frequencies, and field
amplitudes. The domain-scaled Langevin function contrasts other models for the harmonics,
for example, the logistic function that needs many free parameters [18, 51]. The simple form of
the approximation is surprising because typical sigmoidal curve fits require several free param-
eters [51].

Conclusions
We showed by non-dimensionalizing the Langevin equation that, in the regime of large unitless
field compared to relaxation time oscillating field period (ξ0 > O), the dynamics of Brownian
magnetic nanoparticles are determined by a single master variable,A, that incorporates most
typically considered nanoparticle properties (including size distributions) as well as applied
magnetic field properties. The master variable parameterization of the dynamics was confirmed
by numerically solving the Langevin equation and in experiment. Conceptually, the master var-
iable indicates that the field to frequency ratio controls the dynamics, and that scaling one can

Fig 7. (Color online) a) Simulated normalized harmonics (data points) over a range of the master variableA are fit by a domain-scaled Langevin function
(lines). b) Inset are the values of the computational fitting parameters for each harmonic bl and the associated R2 > 0.98 values indicating the strong fit.

doi:10.1371/journal.pone.0150856.g007

Master Variable for Brownian Magnetic Nanoparticle Dynamics

PLOS ONE | DOI:10.1371/journal.pone.0150856 March 9, 2016 12 / 15



be accounted for by scaling the other identically. (In some regimes the product may also be
meaningful—see the discussion of ac susceptibility.)

Then, in the context of biosensing with nonlinear Brownian magnetic nanoparticle spec-
troscopy (MSB), using the master variable provides generalized scaling relationships. The scal-
ing relationships show that it is possible to measure changes in the relaxation time by changing
the magnetic field amplitude or the frequency. The scaling can be interpreted to explain an
intuitive equivalence between magnetic field amplitude and frequency. For example, stronger
fields align particles faster and thus phase lagging is decreased in an equivalent way that lower
frequencies allow particles more time to rotate and thereby remain in phase.

We briefly illustrated an optimal sensitivity range to changes in the relaxation time, and
thus optimal biosensing performance, can be achieved by using a specific value of the master
variable, but this must be demonstrated experimentally moving forward. The equivalence of
field and frequency is particularly applicable when this optimal MSB range is desired, yet some
applied field properties are practically constrained.

The master variable encapsulates many parameters required to describe particle dynamics
and is thereby valuable in a phenomenological fit to the harmonics. The closed-form approxi-
mation is a Langevin function of the master variable scaled by a numerically fit parameter at
each harmonic. The fit is very good, especially at higher values of the master variable. Other
sigmoidal forms have been used to fit harmonic data, but the advantage to this approach lies in
the single requisite free parameter: the domain-scaling factor at a specific harmonic.

Many biomedical applications can benefit from magnetic nanoparticle biosensors. Sensitive
assays for specific molecules should soon be possible in vivo, and the ability to infer environ-
ments surrounding nanoparticles may be essential to measuring the temperature and ensuring
safety during proposed magnetic nanoparticle hyperthermia cancer therapy. These advances
are sure steps toward implementation of nanotechnology in modern medicine.
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