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Abstract: Background: Deep learning (DL) could predict isocitrate dehydrogenase (IDH) mutation
status from MRIs. Yet, previous work focused on CNNs with refined tumor segmentation. To bridge
the gap, this study aimed to evaluate the feasibility of developing a Transformer-based network to
predict the IDH mutation status free of refined tumor segmentation. Methods: A total of 493 glioma
patients were recruited from two independent institutions for model development (TCIA; N = 259)
and external test (AHXZ; N = 234). IDH mutation status was predicted directly from T2 images with
a Swin Transformer and conventional ResNet. Furthermore, to investigate the necessity of refined
tumor segmentation, seven strategies for the model input image were explored: (i) whole tumor
slice; (ii–iii) tumor mask and/or not edema; (iv–vii) tumor bounding box of 0.8, 1.0, 1.2, 1.5 times.
Performance comparison was made among the networks of different architectures along with different
image input strategies, using area under the curve (AUC) and accuracy (ACC). Finally, to further
boost the performance, a hybrid model was built by incorporating the images with clinical features.
Results: With the seven proposed input strategies, seven Swin Transformer models and seven ResNet
models were built, respectively. Based on the seven Swin Transformer models, an averaged AUC of
0.965 (internal test) and 0.842 (external test) were achieved, outperforming 0.922 and 0.805 resulting
from the seven ResNet models, respectively. When a bounding box of 1.0 times was used, Swin
Transformer (AUC = 0.868, ACC = 80.7%), achieved the best results against the one that used tumor
segmentation (Tumor + Edema, AUC = 0.862, ACC = 78.5%). The hybrid model that integrated age
and location features into images yielded improved performance (AUC = 0.878, Accuracy = 82.0%)
over the model that used images only. Conclusions: Swin Transformer outperforms the CNN-based
ResNet in IDH prediction. Using bounding box input images benefits the DL networks in IDH
prediction and makes the IDH prediction free of refined glioma segmentation feasible.

Keywords: IDH mutation status; Swin transformer; ResNet; image inputs; bounding box

1. Introduction

Glioma is one of the most refractory cancers with a wide range of prognosis, showing
a median survival of 14 months for glioblastomas (grade IV) [1] and of more than 7 years
for lower grade gliomas (grades II and III) [2]. To evaluate the prognosis and guide in-
dividualized treatment, genetic mutation, especially the isocitrate dehydrogenase (IDH)
mutation status, is recommended to be the most important marker for glioma diagnostic
decision [3]. The new 2021 WHO guidelines even recommend that the first diagnostic
delineation relies on IDH-mutation [4]. Clinical studies have found that lower grade
gliomas with wildtype IDH were similar to glioblastomas in terms of prognosis [5]. At
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present, IDH mutation status can only be definitively identified using immunohistochem-
istry (IHC) or gene sequencing on a tissue specimen, acquired through biopsy or surgical
resection. However, three problems hinder an extensive and accurate accessibility to the
IDH mutation identification, including the inaccessibility for biopsy or resection before
the treatment decision, the unavailability of tumor resection, and the sampling bias of the
biopsy tissue [6]. Moreover, IDH mutation status is not static during cancer progression
and/or therapy stages. In other words, pathological examinations may be outdated over
time and dynamic monitoring is in urgent need. Therefore, a highly efficient, noninvasive,
and instant approach for preoperative IDH mutation status prediction is in high demand.

Magnetic Resonance Imaging (MRI) plays a leading role in the non-invasive glioma
diagnosis and treatment planning. Vast efforts have been devoted to invasively and
preoperatively determine the IDH mutation status from MRI radiographic features [7–10].
Specifically, indistinct margins and T2-FLAIR mismatch have been verified to be useful
in the IDH mutant and IDH wild type differentiation [9]. However, these radiographic
features rely on subjective visual assessment of MRI images. It is difficult for the radiologist
to distinguish glioma genotypes based on these radiographic features in clinical practice.
Fortunately, leveraging the recent advances in machine learning approaches, such as
deep learning (DL), SVM, decision tree, etc., IDH mutation status prediction from MRI
can be operated accurately and objectively [11–17]. Among them, DL approaches have
received the most notable attention for the reason of their outstanding performance in
the molecular biomarker prediction from high-dimensional numeric information or image
signal intensities [18–20]. Besides IDH prediction [11–17], DL is also widely applied to
1p/19q [21,22], MGMT [23,24] prediction, etc.

Most of the previous DL studies comprise of two stages. Firstly, the glioma region
is manually or automatically segmented along the lesion edge. Subsequently, another
classifier is trained to discover abstract task-specific features from the lesion region and
predict IDH mutation from these features [18]. However, manual segmentation of the
glioma is subjective and time consuming. Training an automatic segmentation network
of glioma is also based on the extra manual annotation, and the network performance
is highly vulnerable to image quality, which restricts an efficient implementation to real
oncology workflow. Additionally, it has been shown that peritumor tissue provided
helpful information for diagnosis and prognosis prediction [25–28]. Therefore, this study
hypothesizes that segmenting the glioma lesion subtly on the MRI is not compulsory
for the IDH prediction using deep learning. Moreover, almost all the DL studies use
classical convolutional neural networks (CNN) to predict IDH mutation status, such as
ResNet [11,13,15,17], which is the most wildly used CNN network in IDH prediction.
However, new DL architectures, such as Transformer, have been seldom introduced to
perform the IDH prediction. Transformer, a novel neural architecture whose empirical
performance significantly outperforms the conventional CNNs, can effectively capture
long-range contextual relations between image pixels and approach to be a state-of-the-art
network for medical image representation [29–32]. Until now, only one study has applied
this framework to IDH mutation status prediction using the TCIA dataset [32], and more
research needs to be performed to demonstrate its generalization and compassion to CNNs.

Thus, this study endeavors to build a Transformer-based model to predict the IDH mu-
tation status free of refined tumor segmentation. The following experiments are operated:
(i) Transformer-based and CNN-based models are established, respectively. (ii) To evalu-
ate the feasibility of IDH mutation status prediction free of refined tumor segmentation,
seven different kinds of image inputs are defined in different rectangle sizes with different
amounts of peritumor tissues. (iii) Clinical information relevant to the predictions is added
to optimize the model performance. Only T2 images are used for model building in this
study, as they are acquired routinely and showed best performance in IDH genotyping [12].



J. Clin. Med. 2022, 11, 4625 3 of 15

2. Materials and Methods

This retrospective study received approval from the ethical review board of Affiliated
Hospital of Xuzhou Medical University (AHXZ), Xuzhou, China. The data were anonymous
and the requirement for informed consent was waived.

2.1. Patients

The data curated from The Cancer Imaging Archive (TCIA, https://www.cancerimag
ingarchive.net/, accessed on 5 March 2021) was used for model development and inter-
nal testing. The patients met the following criteria: (i) pathologically confirmed glioma;
(ii) known IDH protein expression; (iii) inclusive preoperative T2 MRI images;
(iv) age ≥ 18 years. Corresponding molecular genetic information was obtained from
The Cancer Genome Atlas (TCGA) and referred to the previous studies [11,12,21,24]. The
list of enrolled patients from TCIA is elaborated in Supplementary Materials.

The external test set was curated from AHXZ, a total of 488 patients who were di-
agnosed as gliomas (grades II–IV) from January 2015 to December 2020 at AHXZ were
considered for inclusion, as shown in Figure 1A. The inclusion criteria were in accordance
with the TCIA set and the exclusion criteria were as follows: (i) the absence of IDH protein
expression (N = 152); (ii) missing preoperative axial T2 images (N = 72); (iii) history of brain
tumor treatment (N = 30).
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Figure 1. Flowchart of patient enrollment and network implementation. (A) Flow diagram of AHXZ
dataset enrollment. (B) Patient information for model implementation. IDHm = IDH mutant type;
IDHw = IDH wild type.

In a nutshell, the dataset (N = 493) used for this study included a cohort from TCIA for
model development and internal test (N = 259) and another cohort from AHXZ for external
test (N = 234), as shown in Figure 1B. TCIA IDH mutation status was determined by Sanger
sequenced DNA methods and exome sequencing of whole-genome amplified DNA. The
AHXZ IDH expression was detected by immunohistochemistry. Additional clinical data of
gliomas, including gender, age, and grade distributions, were also collected.

2.2. Study Design

The overall study design is summarized in Figure 2. Five key steps were described,
including tumor delineation, image processing and augmentation, image inputs definition,

https://www.cancerimagingarchive.net/
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network development using different network architectures, and hybrid model devel-
opment. Ultimately, 16 models were considered for comparison: 7 Swin transformer
models with different image inputs strategies, 7 ResNet models with different image inputs
strategies, and another 2 hybrid models that integrate images with clinical features.
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Figure 2. Overview of this study design. This study includes five key steps: tumor delineation,
image preprocessing and augmentation, image inputs definition, network development, and hybrid
model development.

2.2.1. Tumor Delineation

Using InferScholar (an online research platform supported at https://research.infervisi
on.com/, Beijing, China), the tumor was outlined on the T2 weighted images. Two regions
were contoured for each patient from T2 weighted images. The tumor region was masked
if it contained necrosis, cyst, or hemorrhage, and the edema region that surrounded the
tumor region (if present; note that some patients do not have an edema region) was masked
separately. Illustrative examples of the annotated image are shown in Figure 3, where
tumor region was marked in red and edema is in cyan. Tumor masks for all the subjects

https://research.infervision.com/
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were manually drawn by one neuroradiologist and independently validated by another
senior neuroradiologists with more than 10 years of experience in neuroradiology.
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Figure 3. Tumor delineation and image inputs definition. (a) IDH-mutant case, female, 59 years old,
WHO grade III; (b) IDH-wild case, male, 53 years old, WHO grade IV. The two cases enrolled from
AHXZ. Red voxels represent tumor and cyan voxels represent edema.

Meanwhile, the lesion location information, including location features and hemi-
sphere distribution, was recorded and confirmed. The location features were reviewed
on the T2 weighted images by the neuroradiologist based on the pre-defined six location
options, namely frontal lobe, temporal lobe, occipital lobe, parietal lobe, others (insula,
basal ganglia, thalamus, cerebellum, brainstem) and multiple lobes [33,34]. Spurred by the
location features, this research defined one more clinical feature, i.e., hemisphere distribu-
tion. Hemisphere distribution includes four categories: left side, right side, both sides, and
others (cerebellum and brain stem), which targets to probe that whether the hemispherical
information of glioma related to its IDH mutation status.

2.2.2. Imaging Preprocessing and Augmentation

The most commonly used T2 image acquisition parameters were summarized in
Supplementary Figure S1, including MagneticFieldStrength (T), SliceThickness (mm), Man-
ufacturer, and PixelSpacing (mm). MagneticFieldStrength: 3T in the TCIA (42.9%) and
in the AHXZ (93.2%), 1.5T in the TCIA (46.1%) and in the AHXZ (6.8%). SliceThickness:
5 mm in the TCIA (61.0%) and 6 mm in the AHXZ (91.1%). Manufacturer: GE in the TCIA
(53.7%) and in the AHXZ (86.0%), Philips in the TCIA (11.6%) and in the AHXZ (8.1%),
SIMENS only in TCIA (20.8%). PixelSpacing: 0.4–0.5 mm in the TCIA (44.0%) and in the
AHXZ (89.8%).

All T2 images were preprocessed sequentially: (i) N4BiasCorrection; (ii) Intensity
normalization to zero mean and unit variance; (iii) Selecting the slices that involved the
tumor region and discarding the first and the last slices of each case to prevent the slices
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interference (iv) Resampling to sizes of 256 × 256 and expanding to three channels by
simply repeating the first channel. We leveraged the following data augmentations, in-
cluding geometric transformations and intensity transformations, to improve the model
generalization ability. Extra hyper parameters involved in preprocessing and augmentation
parameters are detailed in the Supplementary Materials.

2.2.3. Image Inputs Definition

To probe the feasibility of IDH mutation status prediction without refined tumor
segmentation, seven different input image strategies were proposed, depending on the
proportion of used information about tumor regions, as depicted in Table 1 and Figure 3.

Table 1. Description of the seven pre-processing strategies for the input images.

Image Inputs Description
i Tumor slice the whole slices contained the tumor mask
ii Tumor mask the tumor region alone by setting all outside tumor pixels as zero

iii Tumor mask + Edema The joint region that contained both tumor region and the edema
region by setting all outside pixels as zero

iv 0.8× Tumor Bbox downscaled the bounding box of tumor mask by 0.8
v 1.0× Tumor Bbox bounding box of tumor mask
vi 1.2× Tumor Bbox enlarged the bounding box of tumor mask by 1.2 times
vii 1.5× Tumor Bbox enlarged the bounding box of tumor mask by 1.5 times

Note: both Tumor mask and Tumor mask + Edema were defined as refined segmentation input image; The 0.8×
Tumor Bbox, 1.0× Tumor Bbox, 1.2× Tumor Bbox and 1.5× Tumor Bbox were defined as free of segmentation
input image.

2.2.4. Network Development Using Different Network Architectures

To investigate the superiority of Transformer network in IDH genotyping, we devel-
oped the IDH status prediction model using a Swin transformer and CNN-based ResNet
architectures, respectively.

The Swin Transformer, a hierarchical vision transformer using shifted windows, was
the most popular architecture in tackling computer vision tasks [35]. Since the Swin
Transformer has never been used in IDH genotyping in any studies, and more generally
biomarker predictions from MRIs, this study forced the Swin Transformer to bridge this
gap. Since ResNet has been the most widely used network in the previous studies and
performed well in the IDH mutation status prediction [11,13,15,17], this study only used
ResNet to build the CNN-based model.

(1) The Swin Transformer network development

The entire classification process and Swin Transformer architecture were illustrated in
Figure 4. MRI images inputs (matrix: 256 × 256) were subdivided into non-overlapping
4 × 4 patches, which are then converted into sequences by flattening. Then, linear image
embedding was conducted in stage 1 to preserve positional information about the images,
and their features were extracted with a Swin Transformer block. In stage 2, a down sam-
pling process was performed on the patch merging layer to merge adjacent 2 × 2 patches
into one patch. As the network deepens, hierarchical representations, such as CNN, could
be extracted by the Swin Transformer block. A total of four stages were used to generate
the final representation. A global average pooling layer was applied to the output feature
map in the last stage (i.e., the class token) to perform the Classification Head, then a linear
classifier output the prediction. The Swin Transformer block was also displayed in Figure 4
and detailed in Supplementary Materials.
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Figure 4. The entire classification process and Swin Transformer architecture. LN: layer normalization;
MLP: multilayer perceptron; W-MSA: window multi-head self-attention; SW-MSA: shifted-window
multi-head self-attention.

(2) The CNN-based ResNet network development

The conventional CNN-based network was derived from the well-known 101-layer
ResNet architecture (i.e., ResNet-101) [36] and initialized using the ImageNet pretrained
weights. The ResNet block was displayed in Supplementary Figure S2.

2.2.5. Hybrid Model Development

Additional learnable fully connected layers were respectively added to the top-
performing Swin Transformer or ResNet to build the hybrid network, which used the
additional numeric inputs along as complement to the image inputs. Only clinical features
indicating significant difference between IDH-mutant and IDH-wild were used for hybrid
model building.

2.3. Network Implementation

The slices per patient were considered as individual samples in model development
and testing, which means that each slice had its own diagnostic probability. For per-patient
probability, the mean probability of all the slices was considered. Through the slice-level
strategy, the prediction at case level can get rid of the interference of abnormal slice samples,
achieving better model generalization. Accordingly, we split the TCIA dataset (N = 259,
IDHm:112, IDHw:147) into the training&validation set (N = 207, IDHm:88, IDHw:119) and
internal test set (N = 52, IDHm:24, IDHw:28) with a ratio of 8:2. After individual slice
sample generation, the training&validation set contains 2668 slice samples (IDHm:1131,
IDHw:1537) and the internal test set contains 702 slice samples (IDHm:344, IDHw:358), as
illustrated in Figure 1B. The whole AHXY dataset (N = 234, IDHm:81, IDHw:153) is used
for external test and yields 1119 slice samples (IDHm:332, IDHw:787).

All the models, which were trained with T2 images, were implemented with PyTorch
on an Ubuntu 16.04 server using four NVIDIA GeForce RTX 3090 GPU devices. For the
Swin transformer, the initial learning rate was set to 1 × 10−5 with a batch size of 32 and
maximal iteration of 300. For ResNet model, the initial learning rate was set to 1 × 10−4

with a batch size of 32 and maximal iterations of 300. EarlyStopping strategy was used
for speeding up the training stage, i.e., the training stage was stopped when the loss on
train set did not decrease in five epochs. We employed StepLR with default parameters a
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learning rate scheduler. Adam optimizer was used for network optimization with β1 = 0.9
and β2 = 0.99.

2.4. Statistical Analysis

The statistical analysis was performed on SPSS 26.0 with p < 0.05 considered significant.
Continuous variables were expressed as means with corresponding standard deviation and
categorical variables were described as proportions. Continuous variables were compared
using the Mann–Whitney U test for non-normally distributed and differences in categorical
variables were assessed by the chi-squared test or Fisher’s exact test between the train set
and the test set as well as between the IDH-mutant and the IDH-wild groups.

Receiver operating characteristic curve (ROC) analysis was performed to obtain the
area under the curve (AUC). The probability threshold for the accuracy (ACC) calculation
was set to 0.5, thus a predicted probability of ≥0.5 was classified as an IDH-mutant, and
other values were classified as IDH-wild. The diagnostic probability per patient was
measured by the mean probability from all involved individual slices.

3. Results
3.1. Patient Data

As shown in Table 2, in terms of IDH status, gender, age, and WHO grade, the
AHXZ set had no difference compared with the TCIA set with p = 0.053, p = 0.277, p =
0.678, p = 0.059, respectively. While a significant difference was found in location features
(p < 0.05) and hemisphere distribution (p = 0.01).

Table 2. Patient characteristics.

TCIA (N = 259)

TCIA
p-Value

(IDHm vs.
IDHw)

AHXZ (N = 234)

AHXZ
p-Value

(IDHm vs.
IDHw)

p-Value
(TCIA vs.
AHXZ)

IDHstatus IDH-
mutant IDH-wild - IDH-mutant IDH-wild - 0.053

112(43.2%) 147(56.8%) 81(34.6%) 153(65.4%)
gender 0.208 >0.999 0.277
female 58 63 34 64
male 54 83 47 89
age 51.5 ± 15.7 <0.05 52.2 ± 13.1 <0.05 0.678

42.4 ± 13.8 58.5 ± 13.3 47.22 ± 11.7 54.79 ± 13.1
locationfeatures <0.05 0.002 <0.05

frontal 53 33 36 31
temporal 18 42 9 16
occipital 1 4 1
parietal 13 24 1 10

Lociothers # 6 3 5 13
Multiplelobes 21 41 30 82

hemispheredistribution 0.924 0.097 0.01
left 53 73 44 61

right 53 67 28 64
bothsides 6 7 9 23

hemisphereothers ## 5
WHOgrade <0.05 <0.05 0.059

2 62 6 40 23
3 44 23 24 17
4 6 118 17 113

Note: IDHm = IDH mutant type; IDHw = IDH wild type. # Loci Others including Insula, basal ganglia, thalamus,
cerebellum, brainstem; ## hemisphere others including cerebellum and brain stem.

According to the statistical results between IDH-mutant and IDH-wild in the two
datasets, the age of IDH-wild was significantly higher than that of IDH-mutant in both
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TCIA set (p < 0.05) and AHXZ set (p < 0.05). Location features (p < 0.05, p = 0.002) and
WHO grade (p < 0.05, p < 0.05) also yielded significant difference in TCIA set and AHXZ
set. No significant difference was found in gender and hemisphere distribution.

Lastly, only age and location features were reserved for hybrid model development.
We did not use WHO grade in the hybrid model building because this data remained
unknown prior to the surgery.

3.2. Performance of the Models with Different Architectures and Input Image Strategies

The results of the Swin Transformer and ResNet model on both the TCIA internal test
set and the AHXZ external test set were summarized in Table 3. Only the patient-level re-
sults were displayed in Table 3 and the corresponded slice-level results were supplemented
in Table 2.

Table 3. Patient-level diagnostic performance of the models for the IDH mutation status prediction.

TCIA Internal Test Set AHXZ External Test Set

AUC ACC AUC ACC
ResNet

Tumor Slice 0.933 88.5% 0.763 66.5%
Tumor Mask 0.936 90.4% 0.818 73.0%

Tumor + Edema 0.911 84.6% 0.823 76.8%
0.8× Tumor Bbox 0.897 92.3% 0.818 76.0%
1.0× Tumor Bbox 0.938 92.3% 0.831 77.3%
1.2× Tumor Bbox 0.924 90.4% 0.802 77.7%
1.5× Tumor Bbox 0.915 86.5% 0.783 77.3%

average 0.922 89.3% 0.805 74.9%
Swin Transformer

Tumor Slice 0.955 90.4% 0.804 70.8%
Tumor Mask 0.975 90.4% 0.849 73.4%

Tumor + Edema 0.946 92.3% 0.862 78.5%
0.8× Tumor Bbox 0.953 88.5% 0.858 77.7%
1.0× Tumor Bbox 0.975 96.2% 0.868 80.7%
1.2× Tumor Bbox 0.965 92.3% 0.827 76.4%
1.5× Tumor Bbox 0.984 96.2% 0.829 79.0%

average 0.965 92.3% 0.842 76.6%
Note: AUC = area under the ROC curve; ACC = accuracy.

With the seven proposed image input strategies, seven Swin Transformers and seven
ResNet models were built, respectively. The seven Swin Transformer models obtained an
average internal test AUC, internal test ACC, external test AUC and external test ACC
of 0.965, 92.3%, 0.842, 76.6%, respectively. While these of the ResNet model was 0.922,
89.3%, 0.805, 74.9%, respectively (Table 3). Despite the difference in image inputs, all the
transformer models consistently achieved higher AUC than the corresponding ResNets
(Figure 5a).

As shown in Figure 5b, the highest AUC (0.984) and ACC (96.2%) for the Swin
Transformer in the internal test were obtained using 1.5× Tumor Bbox as inputs, followed by
1.0× Tumor Bbox (AUC = 0.975, ACC = 96.2%), Tumor mask (AUC = 0.975, ACC = 90.4%),
1.2x Tumor Bbox (AUC = 0.965, ACC = 92.3%), Tumor Slice (0.955, 90.4%), 0.8× Tumor
Bbox (AUC = 0.953, ACC = 88.5%), Tumor + Edema (AUC = 0.946, ACC = 92.3%). While in
the external test set, the Swin Transformer with 1.0× Tumor Bbox yielded the highest AUC
= 0.868 and ACC = 80.7%, followed by refined tumor segmentation (Tumor + Edema, AUC
= 0.862, ACC = 78.5%). Similar results were found in the ResNet models; the ResNet model
obtained the best AUC and ACC using the 1.0× Tumor Bbox in both the internal test set
(AUC = 0.938, ACC = 92.3%) and external test set (AUC = 0.831, ACC = 77.3%), followed by
tumor mask in the internal test set (AUC = 0.936, ACC = 90.4%) and Tumor + Edema in the
external test set (AUC = 0.823, ACC = 76.8%). In general, using 1.0× Tumor Bbox as inputs,
both the Swin Transformer and ResNets achieved the best performance on the external test,
slightly superior to the models that used refined segmentation of Tumor + Edema.
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Figure 5. Visualization of model performance. (a) Radar map of the model AUC. When the same
input images were used, the transformer models obtained higher AUC than the corresponding ResNet
models. (b) Histogram of the model AUC and accuracy (ACC). All the histogram was presented in
the order of model AUC from highest to lowest. Using 1.0× Tumor Bbox images as inputs, both the
Swin Transformer and ResNet models achieved the best performance on the external test.

3.3. Performance of the Hybrid Model

According to the above results, we built the hybrid model with the 1.0× Tumor Bbox
as image input. Besides the image input, age and location information was also used
as input in the hybrid model. Compared to the image-based models, the hybrid model
achieved similar results on both the Swin Transformer (AUC = 0.975, ACC = 96.2%) and
ResNet network (AUC = 0.960, ACC = 93.2%) in the internal test set. While in the external
test set, better results were obtained on both hybrid the Swin Transformer (AUC = 0.878,
ACC = 82%) and hybrid ResNet (AUC = 0.833, ACC = 78.1%), as shown in Figure 6.
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4. Discussions

IDH mutation status has great clinical significance and potentially improves the glioma
treatment selection. DL approaches built based on MR images are expected to be an efficient
alternative to standard invasive biopsy approaches for the IDH status determination
and are robust computer-aided diagnostic tools that can be used to assist radiologists.
Thus, this study leverages the Swin Transformer as the backbone to tackle three problems
in IDH prediction: (1) IDH mutation status forecasting using Transformer backbones
rather than CNN. (2) Free of glioma segmentation and consideration of peritumoral tissue.
(3) Important clinical information relevant to IDH mutation predictions. Empirically, the
Swin Transformer consistently outperformed conventional ResNet models. When 1.0×
Tumor Bbox input was used, the Swin Transformer achieved better performance and
generalization, compared to that which used refined tumor segmentation (Tumor + Edema).
Similar results were observed with ResNet. Furthermore, the hybrid model that combined
images and clinical features (age, location feature) as inputs demonstrated performance
improvement in the external dataset. To our knowledge, this is the first study using the
Swin Transformer network and tumor bounding box to predict IDH mutation status and
testing it in an external dataset.

Compared to the previous studies, our top performing image-based Swin Transformer
model achieved a robust result in both an internal test set (AUC = 0.975, ACC = 96.2%)
and external test set (AUC = 0.868, ACC = 80.7%) in IDH prediction. Two early reported
image-based CNN models obtained a comparable high accuracy of 0.94–0.97 in the internal
public dataset [12,14] without performing external testing in a separate dataset. There were
also two image-based studies that performed external testing [11,15]. Choi [11] performed
IDH mutation prediction of AUC = 0.81 and ACC = 73.5% in the external testing using
multimodal images as inputs rather than single T2 images. In Ken’s study [15], T2 image-
based external testing achieved AUC = 0.73 and ACC = 67.3%, which was inferior to
our results. Besides the CNN-based studies, only one study introduced the transformer
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to the IDH genotyping [32] without external testing, achieving an internal TCIA test of
AUC = 91.04% and ACC = 90%, which was lower than our internal test results. Our
Swin Transformer network with bounding box inputs showed great potential in IDH
mutation prediction.

The Swin Transformer yielded overall better performance than the ResNet, consis-
tently with the same image inputs strategies. Since IDH expression showed no significant
signs on the conventional MR images, it was a great challenge to improve the feature
learning efficiency on the DL model. Three structures contributed to the Swin Transformer
superiority in feature learning and classification: (i) Multi-head self-attention derived from
the good noise suppression ability. Specifically, due to the inherent glioma nature of tumor
heterogeneity and lesion boundary diffusion, quite a lot of noise mixed with information
related to the IDH genotyping. Compared with CNN, the Transformer network was more
prudent to the signal noise [37–39]. (ii) Hierarchical architecture spurred by the translation
invariance advantage of CNN had the flexibility to model at various scales. Although
image inputs had a high diversity in image size, the hierarchical architecture enabled the
model to capture distinct phenotypic differences on the regional patches as well as the
whole lesion. ResNet is good at deep feature representation, while still having limitations
in modeling explicit global contexts due to the intrinsic nature locality of convolutional
operations [40]. (iii) Shifted windows ensured the global information interaction. The Swin
Transformer could effectively capture long-range contextual relations between image pixels
while maintaining the low-level feature extraction [35]. In general, the Swin Transformer
has a promising future to conduct accurate and robust performance in imaging molecular
prediction [40].

To the best of our knowledge, all the previous studies yielded their results in IDH
mutation prediction with tumor segmentation as inputs. Different from previous studies,
our model pioneered tumor bounding box as inputs and achieved outstanding performance
compared to that using tumor mask or larger boxes. Several merits of bounding box inputs
deserved discussion. Firstly, it was a paradox to delineate the infiltrating margins of
diffuse glioma in a refined manner, while bounding box had higher fault tolerance and
reproducibility [25,26]. Secondly, the rectangular frame not only involved the glioma lesion,
but also contained the peritumoral area where the tumor microenvironment might provide
more information contributing to diagnosis [28]. Thirdly, bounding box drawing was also
friendly to the clinical practice. Compared to the elaborate margin drawing, box drawing
only relied on the rough lesion position and largely reduced the labor cost for labeling.
Moreover, bounding box of 1.0 times was most approaching the IDH mutation status in
our results, and we could deduce that this region resection may have survival benefit to the
patient [41].

Pretreatment age and location feature could be easily obtained and had good corre-
lation to the IDH mutation status prediction [11,15,33,34]. Our study demonstrated that
the age of IDH-mutant gliomas was significantly younger than that of IDH-wild groups
on both the TCIA and AHXZ datasets. The location feature results in this study were
also in line with the previous studies in which IDH-mutant gliomas occupied a single
frontal lobe more frequently, whereas the IDH-wild gliomas predominantly located in
multiple lobes [33]. Importing the age and location feature might be a viable option to
improve the model performance. However, compared to the image-based model results,
our hybrid model obtained little performance improvement in the internal test and slightly
better performance in the external test. Two reasons might attribute to this result. Firstly,
the image-based DL model performance on the internal test was good enough and even
reached the model ability ceiling. Secondly, the location feature distribution between TCIA
and AHXZ behaved with significant differences, which weakened its efficacy on the exter-
nal testing. More research needs to probe the necessity to import the clinical features to the
Transformer-based image model.
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5. Limitations

Several limitations merit discussion. Firstly, this study only focused on T2 images
as model inputs, without considering other MR image modalities such as T1 contrast
images and diffusion-weighted images (DWI). Given that our goal was to establish a
clinical feasible model with the most widely available T2 images, using multi-modality
images might limit the model feasibility. Moreover, previous studies indicated that models
constructed for T2 images showed better performance than the multi-modality network [12].
Secondly, as a representative of real-world clinical experience, the TCIA data set, with
multiparametric MR images from multiple institutions, was friendly to be used to train a
model of good robustness. Although the TCIA data set was applied to train the models
in this study, only one external test cohort was used, and model generalization to more
external datasets need to be assessed. Thirdly, this is a primary study that used the Swin
Transformer for IDH genotyping. Therefore, we are looking forward to investigating its
further clinical practice by optimizing its structure to enhance model efficiency. Moreover,
compared to the Radiomics [42], the interpretability of the Swin Transformer remains to be
a challenge and needs further investigation.

6. Conclusions

In this research, we developed a robust IDH mutation status prediction model based
on T2 weighted images: (i) Swin Transformer overwhelmed the ResNet in predicting IDH
mutation status. (ii) Using bounding box input images benefited the Swin Transformer in
IDH prediction and made the IDH prediction free of refined glioma segmentation feasible.
The Swin Transformer with bounding box input images might have a promising future in
clinical practice, facilitating individualized treatment planning.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jcm11154625/s1, Figure S1: Image Acquisition Parameters;
Figure S2: ResNet architecture; Figure S3: ROCs of all the image-based models; Table S1: List
of the enrolled patients from TCIA set; Table S2: Slice-level diagnostic performance of the models for
the IDH status prediction.
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