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Abstract
Background: Transposable elements (TE) are mobile genetic entities present in nearly all
genomes. Previous work has shown that TEs tend to have a different nucleotide composition than
the host genes, either considering codon usage bias or dinucleotide frequencies. We show here
how these compositional differences can be used as a tool for detection and analysis of TE
sequences.

Results: We compared the composition of TE sequences and host gene sequences using
probabilistic models of nucleotide sequences. We used hidden Markov models (HMM), which take
into account the base composition of the sequences (occurrences of words n nucleotides long, with
n ranging here from 1 to 4) and the heterogeneity between coding and non-coding parts of
sequences. We analyzed three sets of sequences containing class I TEs, class II TEs and genes
respectively in three species: Drosophila melanogaster, Cænorhabditis elegans and Arabidopsis thaliana.
Each of these sets had a distinct, homogeneous composition, enabling us to distinguish between the
two classes of TE and the genes. However the particular base composition of the TEs differed in
the three species studied.

Conclusions: This approach can be used to detect and annotate TEs in genomic sequences and
complements the current homology-based TE detection methods. Furthermore, the HMM method
is able to identify the parts of a sequence in which the nucleotide composition resembles that of a
coding region of a TE. This is useful for the detailed annotation of TE sequences, which may contain
an ancient, highly diverged coding region that is no longer fully functional.

Background
Transposable elements (TE) are mobile genetic entities
present in genomes. The process of transposition is
accomplished by various molecular mechanisms. Some
elements, known as class I elements (or retrotransposons),
use an RNA molecule as an intermediate in the process;
this is a "copy and paste" mechanism. The TE encodes a
reverse transcriptase, which is used to convert the tran-
scribed RNA into a DNA molecule which is then inserted

into the genome. Class II elements use a DNA intermedi-
ate, generally by means of a "cut and paste" mechanism.
Many elements encode themselves the transposase
responsible for their excision and insertion. The transpo-
sition process leaves a double-strand break at the excision
site, subsequently repaired by the host's DNA repair
mechanisms such as homologous recombination. The TE
sequence can be partially or completely restored at the
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excision site, using another copy as a template (for
instance, the homologous chromosome).

Several observations have been reported concerning the
base composition of TEs. Ashburner [1] and Shields et al.
[2] observed by comparing sequences of TEs (mainly class
I) and sequences of Drosophila melanogaster genes that TEs
have more codons ending in A or T than do their host
genes. Lerat et al. [3] compared codon usage in TEs and in
their host genes in five species. They confirmed that a high
frequency of codons ending in A/T is indeed a feature of
TEs, regardless of their host genome. More precisely, in
TEs the third codon position always has a higher A/T con-
tent than the first position, whereas for genes, this is only
true in GC-poor genomes like A. thaliana and C. elegans.
They also studied dinucleotide composition by compar-
ing the frequency of dinucleotides to that of single nucle-
otides [4]. These relative frequencies seem to be specific
for a given genome: this is the "genomic signature"
defined by Karlin et al. [5]. They found out that coding
regions of TEs and host genes were clustered together for
C. elegans and A. thaliana whereas they formed a distinct
group for D. melanogaster and H. sapiens, the retrovirus-
like elements being the furthest from the host genes. On
the other hand, TEs and host genes show some similar
patterns of relative dinucleotide abundance. In both
genomes and TEs, dinucleotide TA is thus underrepre-
sented and CG appears to be suppressed in A. thaliana and
H. sapiens but not in D. melanogaster and C. elegans.

We investigated whether these base composition peculiar-
ities of TEs could be used to detect TEs in genomic
sequences. If appropriate, this would make it possible to
detect TEs that are too divergent from those already
known, and which cannot therefore be identified by
homology-based methods. The methods used to date to
analyze TE composition (such as principal component
analysis) require the user to carry out the analysis, and
would therefore be impractical when dealing with large
genomic fragments. Moreover, some of these methods
consider codon usage bias, which precludes their applica-
tion to unannotated sequences. We have therefore devel-
oped a method that could be applied in an automated
way to unannotated genomic sequences.

We used probabilistic models of nucleic acid sequences as
a means of evaluating the compositional characteristics of
the studied sequences. A model M defines the probability
of a sequence S given some parameter values θ : P(S|M, θ).
If we have several parameter sets (θ1,θ2,...), we can com-
pare the various probabilities obtained for the same
sequence S: P(S|M,θ1), P(S|M,θ2),... and so identify the
parameter set yielding the highest probability. These
parameters are obtained by a training process, using bio-
logical sequences: parameters values are estimated using a

carefully chosen set of biological sequences (a training
set). The actual probabilistic model is chosen so that its
parameters are in some way linked to the nucleotide com-
position of the training set. Thus, if a parameter set θi
yields the highest probability for a sequence S, then
sequence S is closer in composition to training set i than
to the other training sets.

This approach was applied to three organisms (Drosophila
melanogaster, Cænorhabditis elegans and Arabidopsis thal-
iana), using hidden Markov models (HMMs) as the prob-
abilistic models. Models were trained on three training
sets composed of class I TEs, class II TEs and host genes
and then tested to evaluate their predictive capability. We
showed that HMMs were adequate probabilistic models
for representing the different base compositions of the
training sets. Indeed, the three types of sequences were
clearly distinguished by the HMMs after training. How-
ever, the particular base composition for a given set did
not seem to be shared by the various organisms. With the
intention of using these models to classify unknown
sequences, the models were then further tested on various
TE copies, genes and intergenic sequences extracted from
sequenced genomes. The HMMs were still able to identify
the TE copies, provided that they were not too small. This
means that this approach can be used to assist in detecting
and annotating TE sequences. These HMMs can also ana-
lyze a given sequence, and predict regions where the com-
position resembles that of a TE or host coding region,
even in the presence of frameshifts or large indels.

Results
Model training
The detailed structure of the HMMs used for training is
described in the Methods section. All models have a sim-
ilare structure: 3 states representing the coding regions
(one state per codon position) and one or more state for
the non-coding regions. Each state is a plain Markov chain
on the nucleotide sequence.

For each species, model parameters were estimated from a
set of biological sequences (the training set). For Arabidop-
sis thaliana and Cænorhabditis elegans, the training set of
TEs consisted of selected sequences from REPBASE
UPDATE [6,7]: sequences of transposable elements were
kept but small repetitive sequences and satellite-like
repeats were removed. For Drosophila melanogaster, we
used the transposon set curated by BDGP [8] which is a
collection of transposable elements only. The training sets
only contain one sequence per TE family (the canonical
sequence of the element). We did not use multiple copies
of the same element in the training set as this could bias
the training process: a family with many copies would
influence the model's parameters more than a family with
few copies. Copies tend to be very close to the canonical
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sequence in terms of sequence identity, so they would add
only little information on the composition anyway. Sev-
eral TEs have conserved domains in their proteins (e.g.
reverse transcriptase domains for class I TEs, transposase
domains in the mariner superfamily) but at the DNA level,
the sequences generally do not align. In some training
sets, a few sequences have some local similarity: a block of
a few hundreds nucleotides can be seen in a local align-
ment. But this never represents more than half the
sequence and the identity level is not very high (around
80%). Ultimately, within a training set, sequences have
low or no similarity between each other.

Since sequences that were part of a training set should not
be used to evaluate the predictive capability of the trained
models, in all the following tests the test set and training
set for a model were distinct. The training sets for host
genes consisted of 500 sequences, randomly drawn from
the annotation database of the species; the test sets for
host genes also consisted of 500 sequences, but the train-
ing and test sets did not share any common sequence. The
training sets for TEs were unfortunately rather small com-
pared to the set of genes, making it impossible to split
them in a training set and a test set. Whenever we needed
to test a TE sequence with a TE model of the same class,
we therefore resorted to using a jackknife technique: in a
set of n TE sequences, we successively tested each sequence
by keeping apart this sequence and training a model on
the remaining n-1 sequences. This allowed us to keep a
maximum of TE sequences for training and to test the
model with sequences not part of the training set. This
scheme was however only used on sets consisting of a few
elements, as it is very compute-intensive: for a set of n
sequences, n models have to be trained instead of just one.

The TE models were trained several times, using different
orders for the Markov chains, from 0 to 3, so as to select
the best order (data not shown). Models with Markov
chains of order 0 or 1 had too few parameters to enable
them to distinguish correctly between the different

sequence groups, and they therefore performed poorly.
Higher order Markov chains contained more parameters,
yielding HMMs with more information. With order 3
Markov chains, we were faced by the problem of overfit-
ting: the model has too many parameters to be accurately
estimated on the available data. So, the overall perform-
ance of a TE HMM was found to be best for Markov chains
of order 2. Gene models can be trained using higher levels
than TE models before encountering overfitting, because
of the larger quantity of training sequences available. The
subsequent analyses were therefore carried out with order
2 Markov chains for the TE models and order 3 Markov
chains for the gene models. Interestingly, order 1 Markov
chains were much more informative for D. melanogaster
TEs than for C. elegans or A. thaliana. Order 1 Markov
chains were enough for separating the different groups in
D. melanogaster, suggesting that the dinucleotide compo-
sition is very different between genes and TEs in this
organism; a contrario, in the other two species higher
orders are necessary, meaning that the composition differ-
ence is more subtle. This is in accordance with the results
of the principal component analysis of dinucleotides fre-
quencies made by Lerat et al [4] where it was shown that
among these three organisms, only in D. melanogaster did
the TEs cluster separately from genes.

Testing the models
For each sequence S in the three test sets (genes, class I
TEs, class II TEs), the probabilities P(S|M) were calculated
for each of the three models M (genes, class I TEs, class II
TEs), with the special case of the "jackknife" model when
S was a TE sequence of the same class as M. These proba-
bilities were used to choose the best model for S: the
model with the highest probability. This prediction was
then compared with the known nature of sequence S. We
determined the quality of the predictions over the whole
test sets by calculating the specificity and sensitivity of the
predictions (see Methods). The results are summarized in
Table 1.

Table 1: Sensitivity and specificity of sequence class prediction.

model sensitivity specificity

Drosophila melanogaster gene 93.80% 84.50%
class I TE 64.29% 97.67%
class II TE 93.33% 94.78%

Cænorhabditis elegans gene 83.20% 70.00%
class I TE 88.89% 99.41%
class II TE 45.45% 83.89%

Arabidopsis thaliana gene 87.20% 86.87%
class I TE 68.75% 92.29%
class II TE 84.21% 93.28%
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The models are relevant
The specificity of TE detection was high for all the species,
(over 90%, except for C. elegans class II TEs). This means
that, given a test sequence, the trained models are unlikely
to erroneously tag the sequence as a TE; in other words,
the system generates few false positive TE detections. On
the other hand, its sensitivity is somewhat lower (ranging
from 45% to 93%), which means that a fraction of the
actual TEs were not detected. Despite this, the rather high
values of sensitivity and specificity indicate that these
models are relevant: a TE test sequence was usually cor-
rectly classified, even if it was not part of the training set.
This means that the elements constituting the training sets
had sufficiently distinct nucleotide compositions to be
detected by the HMM. Prediction was also good for the
genes.

Jackknife bias
Most of the sets of TEs contained only a few elements (less
than 20). When testing for one of these elements, we used
a jackknife technique to train the TE model, so as to keep
as much information as possible, while separating the
sequence being tested from the training set. This approach
could introduce bias: we feared that the difference in size
between the training sets for the genes and the TEs could
affect the findings. More specifically, could any small set
of sequences yield a homogeneous HMM? To test this, we
took ten 20-sequence samples from the gene set and
tested them using the jackknife technique. Each sequence
in these samples was tested using the general gene model
and a model trained using the remaining sequences in the
sample. We found that the the proportion of sequences in
a sample having greater probability with the model
trained on the sample was much less than that found pre-
viously for the TE sets (cf. sensitivity values in table 1). The
median was 25% for D. melanogaster, 37.5% for C. elegans
and 20% for A. thaliana. This means that these random
samples were not homogeneous in composition, and con-
sequently, when an element was withdrawn from the set,
the composition of this element differed more from the
composition found by HMM after training using the
remaining elements than from the general HMM.

This means that the fact that TE sequences display a high
prediction sensitivity with the jackknife model is not

attributable to an effect of the small size of the TE sets.
Rather, it reinforces the fact that they are homogeneous in
composition, and distinct from the other training sets.

Interspecific tests
To find out whether TEs of a given species can be used as
a training set for the recognition of TEs of another species,
we tested TE sequences using HMMs trained on TEs of
other species. More specifically, for all 6 TE sets, we calcu-
lated the probabilities using the HMMs trained using TEs
from the other 2 species and with the HMM trained using
the host species' own genes (see Table 2). The model with
the highest probability was usually the model trained
using the genes of the same species (particularly in the
case of A. thaliana: 87% of its TE sequences and C. elegans:
75%). This shows that each species has its own particular
TE composition and that TEs do not share a common
composition.

Dinucleotide composition
We tried to make a better use of the composition informa-
tion captured by the HMMs than the simple comparison
of probabilities on whole sequences. However HMMs are
bit unwieldy when it comes to comparing them in detail:
our models have more than 200 independent parameters.
Furthermore, the parameters linked to nucleotide compo-
sition (the emission probabilities of the HMMs) are con-
ditional probabilities, not frequencies. Yet it is possible to
recover some frequency information.

In our HMMs, each state is a Markov chain of order k. The
parameters of this Markov chain are the conditional prob-
abilities of observing a nucleotide given the k previous
nucleotides. Using these parameters, we were able to cal-
culate the non-conditional probabilities of observing k-
letter words. For instance, with Markov chains of order 2,
we were able to calculate the probabilities of dinucle-
otides in each state (see Methods). Given two HMMs, it
was then possible to compare these dinucleotide proba-
bilities and to identify the dinucleotides for which the
probabilities were the most different (the most discrimi-
nating). Tables 3, 4 and 5 show the four most discriminat-
ing dinucleotides identified by pairwise comparisons of
the three HMMs (class I TEs, class II TEs and host genes),
for each HMM state and for each species.

Table 2: Interspecific tests. Predictions (as a %) of TE sequences for one species obtained using the host gene model of the same species 
versus the value found using the TE models of the other two species (counts are given in parentheses).

host genes, same species same TE class, another species other TE class, another species

D. melanogaster 39% (28) 34% (24) 28% (19)
C. elegans 75% (15) 20% (4) 5% (1)
A. thaliana 87% (86) 9% (9) 4% (4)
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No clear trend in dinucleotide frequency was observed.
The differences in base composition between TEs and
genes seem to be host-specific, and more subtle than a
simple disequilibrium in the frequency of a few dinucle-
otides. Indeed, certain dinucleotides that have special bio-

logical meaning in the context of TEs show no general
marked frequency pattern. For instance, the dinucleotide
CG is a potential methylation site for A. thaliana. Methyl-
ation plays an important role in the repression of gene
transcription, and has been proposed as a possible mech-

Table 3: Class I vs genes: The four most discriminating dinucleotides when comparing the HMM trained on class I TEs and the HMM 
trained on genes for each state of the HMM. E1, E2, E3 are the three coding states; I is the non-coding state. Log2 of the frequency ratio 
is given in parentheses. A value of +1 (resp. -1) thus indicates a twofold increase (resp. decrease) of the frequency in the TE model.

HMM state A. thaliana

E1 CG (-0.79) CC (-0.32) AC (0.20) TC (0.17)
E2 CA (0.28) TA (0.26) AC (0.17) TC (-0.14)
E3 CG (-0.31) GC (-0.30) TC (-0.23) CC (-0.18)
I CG (2.23) CC (1.76) TT (-1.62) TA (-1.35)

HMM state C. elegans

E1 TG (-1.71) CT (1.12) CC (0.96) AG (-0.85)
E2 GA (-1.66) GG (-1.17) TA (0.80) TC (0.73)
E3 TA (1.03) CC (0.90) TT (-0.68) AT (-0.67)
I TT (-1.73) CG (1.22) TA (-0.87) CC (0.87)

HMM state D. melanogaster

E1 AG (0.89) AA (0.87) TA (0.66) GG (-0.58)
E2 AG (0.59) TG (0.38) GA (-0.25) GG (-0.24)
E3 TA (1.06) CA (0.73) GG (0.72) TG (-0.68)
I GG (-1.03) GC (-0.56) AA (0.55) CG (-0.51)

Table 4: Class II vs genes (cf. legend of table 3).

HMM state A. thaliana

E1 CG (-0.75) CT (-0.51) CC (-0.48) CA (-0.29)
E2 CT (-0.59) TA (0.35) TC (-0.28) TG (0.27)
E3 TC (-0.72) CC (-0.58) CG (-0.48) AT (0.38)
I CC (-1.06) CA (-0.48) GC (-0.41) GT (0.38)

HMM state C. elegans

E1 GT (0.42) GC (0.41) CC (0.35) TG (-0.35)
E2 CG (0.54) TG (0.43) AG (0.38) TA (0.33)
E3 GG (0.67) GC (0.57) CG (0.38) CA (-0.36)
I AA (-0.26) CG (0.22) TC (0.15) AC (0.13)

HMM state D. melanogaster

E1 AA (1.59) TA (1.32) GG (-1.28) AT (1.24)
E2 GG (-0.84) TT (0.67) AA (0.64) CT (-0.62)
E3 TA (1.47) CC (-1.34) AA (1.28) TT (1.01)
I GC (-1.08) CC (-1.00) CG (-0.95) TC (-0.76)
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anism for repressing TE activity in plants [9]. Here, we can
see that CG representation varies considerably, and seems
to be more specific to the host than to the TE class. In A.
thaliana, CG dinucleotides are more frequent in the cod-
ing regions of genes than in the coding regions of class II
TEs. The opposite is true in C. elegans, CG dinucleotides
are more frequent in the coding regions of TEs, although
there is no known CG methylation in C. elegans. In D. mel-
anogaster, in which CG methylation is rare [10], the CG
dinucleotide does not appear to be as discriminating as in
the other two species.

TE copies
With the perspective of using HMM for detecting
unknown TEs in sequenced genomes, we submitted a
broader range of sequences to the HMMs. We searched the
3 genomes for copies of known TEs using a BLAST-based
approach, using the program BLASTER with BLASTN as
described in Quesneville et al. (2003) [11]. This yielded a
set of sequences of various sizes. We added gene
sequences from the annotation databases and "inter-
genic" sequences. The intergenic sequences were derived
from the genomic sequence by removing the annotated
genes and the TE sequences detected by BLASTER. The
intergenic sequences were found to have a composition
very similar to that of the intronic state of the gene HMM
(data not shown), therefore no specific model was trained
on these sequences.

We investigated the detection of TEs copies using HMM
with the same technique as before and with the same 3

models (a gene model and 2 TE models). The sensitivity
and specificity of TE detection was computed for each
organism. The sensitivity was worse than with the full-
length TE elements (40% for D melanogaster, 60% for A
thaliana, 45% for C. elegans). Indeed, the BLAST approach
identified many small fragments of TE that were not cor-
rectly distinguished by the HMMs, as there was too little
material to work on. We repeated the calculations of sen-
sitivity and specificity after removing all sequences shorter
than a given threshold (see Figure 1). In D. melanogaster
and A. thaliana, the sensitivity of the detection was much
improved for sequences more than 500 bp in length: it
rose from 40% to 70% in D. melanogaster and from 60%
to 80% in A. thaliana. Most of the short test sequences
were in fact TE fragments, and these were often wrongly
predicted as "not TE" (false negatives), so that increasing
the minimum length of the sequences tested eliminated
these false negatives and improved the sensitivity. On the
other hand, the specificity was less affected by the
minimum size of the sequences; this is because most of
the false positives were longer than the threshold value,
and so eliminating the short sequences had little effect on
the specificity. For C. elegans, the sensitivity of the class I
TEs fell for sequences longer than 500 bp and for
sequences longer than 1000 bp for class II TEs. It turns out
this was because TE copies are much smaller in C. elegans
than in the other two species. The number of sequences
under analysis therefore fell rapidly as the minimum size
increased. The longer sequences happen to originate from
a couple of TE families that had been incorrectly classified,
resulting in the observed decrease in sensitivity. Particu-

Table 5: Class I vs Class II (cf. legend of table 3).

HMM state A. thaliana

E1 CT (0.46) CA (0.36) AT (-0.28) AC (0.22)
E2 CT (0.52) TG (-0.30) GA (-0.20) AG (-0.16)
E3 TC (0.50) CC (0.39) AT (-0.24) GG (-0.23)
I CC (2.81) CG (2.58) TT (-1.94) GC (1.56)

HMM state C. elegans

E1 TG (-1.37) CT (0.97) GG (-0.91) CG (-0.84)
E2 GA (-1.62) GG (-0.95) GT (-0.71) TC (0.69)
E3 TA (1.01) CC (0.73) GT (-0.66) AT (-0.58)
I TT (-1.75) CG (1.00) GG (0.94) CC (0.87)

HMM state D. melanogaster

E1 TT (-1.28) CC (0.91) AA (-0.72) AT (-0.70)
E2 TT (-0.76) GC (0.69) CT (0.65) GG (0.60)
E3 CC (0.89) AT (-0.82) TT (-0.79) GG (0.75)
I CA (0.87) AC (0.85) TT (-0.79) CC (0.78)
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Specificity and sensitivity of sequence predictions with varying minimal length for: (a) Drosophila melanogaster TEs, (b) Arabidop-sis thaliana TEs, (c) Cænorhabditis elegans TEsFigure 1
Specificity and sensitivity of sequence predictions with varying minimal length for: (a) Drosophila melanogaster TEs, (b) Arabidop-
sis thaliana TEs, (c) Cænorhabditis elegans TEs. The unbroken line indicates the sensitivity, the dotted line the specificity.
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larly, it appeared that all copies of the non-LTR retrotran-
poson RTE were mispredicted as class II elements. Other
class I TE copies have however a better prediction rate:
70% of non-RTE class I sequences longer than 500 bp are
correctly predicted.

The size of 500 bp appears to be a reasonable threshold,
yielding a good prediction quality without dismissing too
many sequences.

Prediction of coding regions
We also used the trained models to analyze isolated TE
sequences. Given a nucleotide sequence S, HMM is used
to calculate the most likely sequence of hidden states, i.e.

we determine the optimal path  by

the Viterbi algorithm. Since our HMMs include some
states that represent coding regions, and other states that
represent non-coding regions, the hidden state sequence

 divides the sequence into "coding state" regions and
"non-coding state" regions, thus predicting which parts of
the TE sequence under analysis have a coding-like compo-
sition. The HMM is trained on a set of unlabeled
sequences (TEs of the same class). The prediction is then
compared with the available CDS annotations. Unfortu-
nately, few of the TEs in REPBASE UPDATE have such an
annotation, but most of the elements in the BDGP set of
Drosophila TEs do. The following results are therefore
applicable only to Drosophila elements.

To assess the effectiveness of the prediction, we tested the
approach on TE sequences of the BDGP set, using the jack-
knife technique, so that the sequence under test was never
included as part of the training set. The quality of the pre-
diction was measured by comparing the predicted coding
regions with the annotation of the TE under test; we calcu-
lated the average sensitivity and specificity for coding sites
for all TE sequences.

It turned out that the sensitivity of the coding site detec-
tion was good (> 95%) for both classes of TE (see Table 6).
However, the specificity was around 50% for class I TEs,
which means that nearly half of the non-coding sites were
incorrectly predicted as coding. The HMM thus correctly
identifies nearly all the coding sites, but also wrongly clas-
sifies a high proportion of non-coding sites as coding
sites. This low specificity may be the result of unannotated
ORFs, such as the short ORFs that have been characterized
in several TE class I families [12]. An HMM with a differ-
ent structure was also tried. This HMM had an additional
"terminal" state to account for non-intronic, non-coding
sites that are typically located at the beginning and end of
the sequences (Figure 2b). This HMM yields more bal-
anced predictions: the sensitivity is lower (75%), but the
specificity is better (80%).

Discussion
Using HMMs as probabilistic models, we found that in
the three species investigated, TEs differed markedly from
genes in terms of base composition. The bias was not the
same for the two TE classes. These models were able to dis-
tinguish between the three kinds of sequences with rea-
sonable accuracy. The bias was also very host-specific, as
shown by the dinucleotide compositions and interspecific
tests: a TE was likely to have a composition more similar
to that of its host's genes than to that of TEs of the same
class occurring in other species.

Origin of the compositional bias
A couple of hypothesises can be made concerning the ori-
gin of the observed composition bias in TEs. It may be
related to the molecular mechanisms involved in TE trans-
position which do not affect host genes. TEs are subject to
DNA synthesis both during genome replication and dur-
ing transposition. The transposition mechanisms make
use of unusual DNA polymerases (such as reverse tran-
scriptase or DNA repair polymerases) that are less efficient
and less faithful than the DNA polymerases that replicates
the chromosomes. Indeed, Strathern et al. [13,14] have
shown that the DNA synthesis associated with the homol-
ogous repair of chromosomal double strand breaks is less
faithful than replicative DNA synthesis in yeast. Several
class II TEs (notably the P element family) make use of
homologous DNA double strand break repair in their
transposition process. Similarly, the reverse transcriptases
involved in the transposition of class I TEs display unu-
sual patterns of misincorporation [15]. Consequently,
mutational bias due to DNA synthesis may be greater in
TE sequences than in "regular" genes.

Selection may also account for this compositional differ-
ence. Indeed, TEs are mobile and so specific selection
pressures may operate on their sequences. Selection may
operate on the mobility of the element itself, or may
reduce its impact on the host. For example, the CG dinu-
cleotide may be a target for selection, because it plays a
role in host-controlled TE repression in some species [9].
Additionally, it has been shown that some TEs have come
from other species by horizontal transfer. This could
explain the biased nucleotidic composition of some TEs.

TE detection
We envision two ways of using the trained HMMs for TE
detection. The first approach is to build a composite
HMM, integrating the three HMMs (genes, TE class I and
TE class II). This integrated HMM can then "annotate" a
sequence (like a genomic contig) by partitioning it into
TEs, genes and intergenic regions. This will provide a
rough annotation, identifying regions whose composition
is similar to that of TEs. The limits of the region thus
annotated will most probably be quite imprecise since the

ˆ ,π π
π

= ( ){ }argmax P S

π̂
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HMM is only concerned with the nucleotidic composition
and is not using structural characteristics of TEs (target site
duplication, inverted terminal repeats, long terminal
repeats, etc.). So this method is to be used alongside other

TE detection methods, as supplemental evidence for the
presence of a TE.

HMM structuresFigure 2
HMM structures. States are depicted by circles and transitions by arrows. The thickness of the arrows indicates the proba-
bility of the transition. The initial transition probabilities used for starting the estimation algorithm are 0.995 for thick arrows, 
the remaining 0.005 being equally divided between the thin arrows. Three different HMM structures were used. (a) 3 coding 
states, 1 non-coding state (b) 3 coding states, 2 non-coding states (intronic and non-intronic) (c) 3 coding states, 3 non-coding 
states. In (b) a path in the HMM starts and ends in the T state ; in (a) and (c) a path can begin and end in any state.
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Another approach is to use the HMMs to determine the
best of the three models on a candidate sequence. That
way, the HMMs can act as "filters", by post-processing the
output of another TE detection program (such as one
using a repeat-based method). This would alleviate the
fact that the sensitivities of the HMMs are a bit low but
that their specificity is good. It is difficult to alter these
properties since they directly depend on the HMM param-
eters, which are estimated and cannot be easily modified.
So, by combining the HMM prediction with a high-sensi-
bility TE detection method, we could take advantage of
the HMM's high specificity to select the most promising
sequences.

As the HMM prediction is not based on sequence similar-
ity, it could therefore detect new TE families, too divergent
from known TEs to be found by homology-based meth-
ods. This relies on the fact that the composition bias
detected by our HMM is homogeneous within TE classes:
a new TE of the same class is expected to have a somehow
similar composition. Applying the method on genomes
with little information on their TEs may be problematic,
though. Indeed, the method requires a reasonably large
training set of TEs and TEs from other species cannot be
used since we've shown that different genomes have dis-
tinct compositional bias for their TEs. Nevertheless, TEs
from close species should be adequate. We tested this
using TEs (in REPBASE) from Drosophilidæ other than D.
melanogaster and we obtained predictions of a quality
comparable to that obtained with melanogaster-only TEs
(data not shown).

Finally, this method of detection has some bias. We've
seen it is too unreliable for sequences shorter than 500 pb,
so very fragmented TE copies would be missed. Inactive
elements may also be difficult to detect: if the composi-
tional bias is introduced by transposition processes, one
would expect these elements to lose their distinct compo-
sition over time. However, inactive elements degradation
seems to be caused primarily by accumulation of deletion
than by punctual mutations [11,16,17]; consequently,
old, inactive elements would not be detected because they
become too short rather than because of a change in their
composition.

TE annotation
The difference in nucleotide composition between host
genes and TEs must be taken into account when trying to
annotate the coding structures of TE sequences. Programs
that use base composition to detect coding regions gener-
ally use a training set of gene sequences. These training
sets do not capture the specific bias of TE sequences, and
so these programs may perform poorly when predicting
coding sequences within TEs. Moreover, TE copies in
genomic sequences are often partially deleted. In such
sequences, signals such as promoters, polyadenylation
sites and splice sites may be missing. Moreover,
frameshifts in coding reading frames must also be taken
into account. Our simple HMM structure is very suitable
for detecting the potential coding regions for these partial
TEs.

Conclusions
We have shown that the difference in base composition
between TEs and their host genes can be used to train spe-
cialized probabilistic models of sequences, notably
HMMs. These structured models are able to reliably dis-
criminate between TE class I, TE class II and host gene
sequences. These models can thus be used in complement
of other TE detection methods as additional evidence of
the TE nature of a sequence or to sift through candidate
sequences. Furthermore, the HMM can help analyze
individual TE sequences by predicting the potential cod-
ing regions.

Methods
Biological sequences
We studied TE sequences and genes from three eukaryotic
organisms: Drosophila melanogaster, Cænorhabditis elegans
and Arabidopsis thaliana. The gene sequences were
extracted from the raw sequence of assembled contigs or
chromosomes, using gene annotation data. Table 7 indi-
cates the sources of genomic sequences and annotations.
The sequences of TEs for D. melanogaster were taken from
the BDGP tranposon set [8]. For C. elegans and A. thaliana,

Table 6: Quality of coding region prediction

sensitivity specificity

TE class II 97% 85%
TE class I 95% 51%
TE class I (alt. model) 75% 80%

Table 7: Sources of genomic sequences and annotations

Bdgp [22] release 3
Tigr [23] release ATH1
EnsEMBL/ Wormbase [24] release WS85
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the sequences of TEs were taken from REPBASE UPDATE
version 7.8 [6,7], a database of sequences corresponding
to repetitive DNA from various eukaryotic species. For the
Repbase sets, we eliminated non-TE sequences (such as
satellite DNA). When several sequences from the same
family were present, we selected the longuest known copy.
We also distinguished between class I TEs and class II TEs.
See Table 8 for a summary of elements counts and sizes
per set, and additional file 1for a complete list of the TE
sequences used. Intergenic sequences that are part of some
tests were obtained by removing from the genomic
sequence the annotated genes and the TE copies detected
by BLASTER [11].

Sequence analysis
Markov chains are simple models for modeling the base
composition of sequences. The probability of a nucleotide
occurring in position n is conditioned by the previous k
nucleotides; k is called the order of the chain. For instance,
the parameters of an order 1 Markov chain for a sequence
S are: θi, j = P(Sn = i|Sn-1 = j) with i, j ∈ {A,C,G,T} A Markov
chain thus has Nk+1parameters, where N is the number of
letters of the alphabet considered (4 for DNA nucleotide
sequences). The number of parameters increases rapidly
with the order of the chain so, in practice, this order
remains low. Estimation involves calculating the relative
frequencies of k+1-letter words in a set of sequences (a
training set), that is, the number of occurrences of the k+1
letter word divided by the number of occurrences of its k
letter prefix. Thus, these parameters directly reflect the
base composition of the training set: a Markov chain of
order k models a sequence with a given composition in
k+1 letter long nucleotides.

However, biological sequences, such as a gene or a TE, do
not have a homogeneous base composition: the coding
and non-coding parts have differing compositions. Hid-
den Markov models (HMMs) are more complex models
that can take this heterogeneity into account. HMMs are
used in many gene detection software (see, among many
others [18,19]) ; ours are similar in spirit but with less fea-
tures as we do not seek to detect gene-related signals (for

instance splice sites), we're only interested in the base
composition. HMMs can combine several Markov chains
(called states of the HMM). Each Markov chain has its own
set of parameters, reflecting the base composition for that
state. This is a M1-Mk model [20]: the state sequence is an
order 1 Markov chain and each state generates nucleotides
according to an order k Markov chain. Given a sequence
of states in the HMM (a path), the joint probability of the
sequence S and the path is calculated as follows:

 is the probability of nucleotide Si using the Markov chain

parameters  of state πi(emission probability). 

reflects the probability of switching from state πi to state
πi+1 (transition probability). Thus, the parameters of an
HMM model with n states are: n2 transition probabilities
and n sets of Markov chain parameters. The overall prob-
ability of a sequence is the sum for all possible paths:

. Introductory material concerning

HMM can be found in [21].

Three different HMM structures were used in this study.
The three structures consists of 3 states (one for each
position in a codon, labeled E) for modeling coding parts
of sequences and additional states for non-coding parts. A
transition departing from a coding state can go to the next
coding state (most probable), or to a non-coding state; it
may also remain in the same state or revert to the preced-
ing coding state, to account for frameshifts. For training
on TE sequences, the HMM (see Figure 2a) has 4 states:
the 3 coding states and a single non-coding state (labeled
I). When predicting coding regions, an "alternate" model
was trained on TE class I sequences; this model has 5
states: the 3 coding states, an "intronic" non-coding state
and a "terminal" non-intronic non-coding state (labeled
T) representing the parts at the beginning and end of the
sequences. Finally, for training on gene sequences, the
model was further refined: it has 3 coding states and 3
non-coding states so that the position in the current
codon was conserved across non-coding parts (Figure 2c).

Table 8: Contents of TE training sets

length (in bp)
number of sequences smallest median longest

D. melanogaster class I 56 2483 6411 10654
D. melanogaster class II 15 912 2167 4347
C. elegans class I 9 261 3259 4082
C. elegans class II 11 1242 5625 7227
A. thaliana class I 78 330 4496 10633
A. thaliana class II 19 265 4548 9233

P S a P S S a P S SMC i MC ii i i i
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This is desirable for gene sequences, because coding
regions are interrupted by introns; this was not done for
TE models because TE sequences may be non-functional,
and so non-coding parts may not be actual introns.

In each state, the emission probabilities are given by plain
Markov chains (of order 2 for TEs, and order 3 for genes).
HMMs for TEs were trained with the Baum-Welch algo-
rithm (see [21]), using TE sequences as unlabeled
sequences. The Baum-Welch algorithm is a special case for
HMMs of the expectation-maximization algorithm for
parameter estimation. The starting point for the iterative
Baum-Welch algorithm is an HMM with random emis-
sion probabilities, but fixed transition probabilities, yield-
ing the structure shown in Figure 1. The training process
estimates the emission probabilities and refines the tran-
sition probabilities, but the overall structure of the HMM
is maintained. The training is repeated 10 times with dif-
ferent random starting points and the estimate with the
highest probability is retained. The training for gene
HMMs is straightforward: it doesn't need the Baum-Welch
algorithm since the gene sequences are labeled by the
genomic annotations.

The trained model is then used to calculate the probability
of a given sequence; this probability is then compared
with that of the same sequence, using other models with
different parameters (obtained by estimations using other
training sets).

The software used in this study is available upon request.
It is written in the Objective Caml language and can be
compiled on PCs running the GNU/Linux OS.

Prediction quality
To assess the quality of a prediction method, we calculate
its sensitivity and specificity. The sensitivity is the propor-
tion of true positives (TPs) amongst the subset of interest:
true positives plus false negatives (FNs). Conversely,
specificity is the proportion of true negatives (TNs)
amongst the complement of the subset of interest: true
negatives plus false positives (FPs). Thus a high sensitivity
(resp. specificity) is indicative of a low proportion of false
negatives (resp. false positives).

Calculation of dinucleotide frequencies
We considered an order-2 Markov chain with parameters
(mi, j, k) with i, j, k ∈ {A, C, G, T}. The probability of having
dinucleotide ji in position n of sequence S is:

If the Markov chains are homogeneous, then we have:

P(Sn-1 = j, Sn-2 = k) = P(Sn = j, Sn-1 = k). If θi,j = P(Sn = i, Sn-1

= j), the previous equation can be written as:

. This is a linear system of equations

for θi, j. To have a system of independent equations, one

equation is replaced by equation .

Resolution of this system yields θi, j, the expected fre-
quency of dinucleotides under this Markov chain.

This method cannot be applied directly to the Markov
chains describing coding sequences because the HMM
cycles through the three Markov chains, changing at each
position. Thus, the property used in the previous calcula-
tion that P(Sn-1 = j, Sn-2 = k) = P(Sn = j, Sn-1 = k) no longer
holds. However, if we consider the three chains simulta-
neously, we still can solve the system:

 where  are the

dinucleotide probability (resp. Markov chain parameter)
for exon state n. This is still a linear system of equations,
but with 3 × 6 = 48 variables. Solving this system yields
the expected frequencies of dinucleotides for each of the
three positions in the codon.
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TE transposable element

HMM hidden Markov model
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