
American Journal of Medicine Open 10 (2023) 100044 

Contents lists available at ScienceDirect 

American Journal of Medicine Open 

journal homepage: www.elsevier.com/locate/ajmo 

Review 

Risk Prediction Models for Hospital Mortality in General Medical Patients: 

A Systematic Review 

Yousif M. Hydoub 

a , Andrew P. Walker b , c , Robert W. Kirchoffb , d , Hossam M. Alzu’bi e , 

Patricia Y. Chipi f , Danielle J. Gerberi g , M. Caroline Burton 

d , M. Hassan Murad 

h , 

Sagar B. Dugani d , i , ∗ 

a Division of Cardiology, Sheikh Shakhbout Medical City, Abu Dhabi, United Arab Emirates 
b Division of Hospital Internal Medicine, Mayo Clinic, Phoenix, Ariz 
c Department of Critical Care Medicine, Mayo Clinic, Phoenix, Ariz 
d Division of Hospital Internal Medicine, Mayo Clinic, Rochester, Minn 
e Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minn 
f Division of Hospital Internal Medicine, Mayo Clinic, Jacksonville, Fla 
g Saint Marys Staff Library, Mayo Clinic, Rochester, Minn 
h Evidence-Based Practice Center, Mayo Clinic, Rochester, Minn 
i Division of Health Care Delivery Research, Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, Minn 

a r t i c l e i n f o 

Keywords: 

Alert systems 

Early warning scores 

Hospital medicine 

Hospital mortality 

Internal medicine 

Prediction models 

a b s t r a c t 

Objective: To systematically review contemporary prediction models for hospital mortality developed or validated 

in general medical patients. 

Methods: We screened articles in five databases, from January 1, 2010, through April 7, 2022, and the bibliog- 

raphy of articles selected for final inclusion. We assessed the quality for risk of bias and applicability using the 

Prediction Model Risk of Bias Assessment Tool (PROBAST) and extracted data using the Critical Appraisal and 

Data Extraction for Systematic Reviews of Prediction Modelling Studies (CHARMS) checklist. Two investigators 

independently screened each article, assessed quality, and extracted data. 

Results: From 20,424 unique articles, we identified 15 models in 8 studies across 10 countries. The studies 

included 280,793 general medical patients and 19,923 hospital deaths. Models included 7 early warning scores, 2 

comorbidities indices, and 6 combination models. Ten models were studied in all general medical patients (general 

models) and 7 in general medical patients with infection (infection models). Of the 15 models, 13 were developed 

using logistic or Poisson regression and 2 using machine learning methods. Also, 4 of 15 models reported on 

handling of missing values. None of the infection models had high discrimination, whereas 4 of 10 general 

models had high discrimination (area under curve > 0.8). Only 1 model appropriately assessed calibration. All 

models had high risk of bias; 4 of 10 general models and 5 of 7 infection models had low concern for applicability 

for general medical patients. 

Conclusion: Mortality prediction models for general medical patients were sparse and differed in quality, applica- 

bility, and discrimination. These models require hospital-level validation and/or recalibration in general medical 

patients to guide mortality reduction interventions. 

List of Abbreviations: AIC, Akaike Information Criterion; AICC, Corrected Akaike Information Criterion; AUC, Area Under Curve; BIC, Bayesian Information 

Criterion; CHARMS, Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling studies; COVID-19, Coronavirus disease from severe acute 

respiratory syndrome coronavirus 2; CURB-65, Confusion, Blood urea nitrogen, Respiratory rate, Blood pressure, and Age 65; EWS, Early Warning Score; HIV, Human 

Immunodeficiency Virus; ICD, International Classification of Diseases; ICU, Intensive Care Unit; MEDS, Mortality in Emergency Department Sepsis; MEWS, Modified 

Early Warning Score; NEWS, National Early Warning Score; PIRO, Predisposition, Infection/Insult, Response and Organ dysfunction; PRISMA, Preferred Reporting 

Items for Systematic Reviews and Meta-Analyses; PROBAST, Prediction Model Risk of Bias Assessment Tool; qSOFA, Quick Sequential Organ Failure Assessment; 

SIRS, Systemic Inflammatory Response Syndrome; suPAR, Soluble Urokinase Plasminogen Activator Receptor; UVA, Universal Vital Assessment score. 
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The global burden of hospital mortality from preventable and non-

reventable causes is high. 1 Recent studies estimated that 3.1% of hospi-

al deaths were preventable 2 and that 134 million adverse events annu-

lly in low- and middle-income countries resulted in 2.6 million hospital

eaths. 1 , 3 Despite these and other studies, there is sparse information on

isk prediction models for preventable hospital mortality, limiting the

evelopment of mortality reduction interventions. Furthermore, predict-

ng nonpreventable deaths may facilitate earlier discussion of advanced

are directives or transition to palliative or hospice care. 

In the United States, from 2000 to 2010, the annual overall hos-

ital mortality rate declined from 2.5/100 patients to 2.0/100 pa-

ients. 4 While reassuring, the overall rate concealed changes in mortality

ere attributed to different conditions, such as kidney disease (–65%),

eart disease (–16%), and septicemia ( + 17%). 4 In this context, disease-

pecific models have been developed to predict risk of hospital mortality

or conditions including acute myocardial infarction, stroke, heart fail-

re, pancreatitis, and pneumonia. 5-9 In contrast to disease-specific mod-

ls, there are fewer models for general medical patients, who frequently

resent with undifferentiated and/or multiple medical conditions and

xperience an unpredictable hospital course. Furthermore, general med-

cal patients have large amounts of evolving biopsychosocial data that

re challenging to integrate in prediction models for mortality. There-

ore, early identification of general medical patients at risk of hospital

ortality may improve decision making, guide escalation in care, and

educe the risk of preventable deaths. Despite this, there is sparse infor-

ation on risk prediction models for hospital mortality for general med-

cal patients, and specifically, no systematic appraisal of model quality

nd performance. 

To address these knowledge gaps, we conducted a systematic review

f risk prediction models for hospital mortality in general medical pa-

ients. The objective of the study was to evaluate models that predicted

cute decompensation, focusing on deaths in general medical patients.

e reviewed model characteristics and performance and critically ap-

raised their quality and performance. These models may be validated,

ecalibrated, or improved to guide interventions to reduce hospital mor-

ality. 

ethods 

The study was conducted by the Hospital Experiences to Ad-

ance Goals and Outcomes Network (HEXAGON) group at Mayo

linic. 10-12 The systematic review is reported following the Preferred

eporting Items for Systematic Reviews and Meta-analyses (PRISMA)

uidelines and the protocol was prospectively registered (PROSPERO

RD42020176054). 13 , 14 The search strategy for all databases is pro-

ided in Supplemental Table 1 (available online). 

ata Sources and Search Methods 

We searched the peer-reviewed literature for articles on models to

redict hospital mortality in general medical patients. We searched

vid/Medline, Embase, Evidence-Based Medicine Reviews, Scopus, and

eb of Science from January 1, 2010, through April 7, 2022. We re-

tricted the search period to focus on models reflecting contemporary

ohorts and hospital practice. The bibliography of articles selected for

nal inclusion was screened by one investigator. 

tudy Selection 

We defined hospital mortality as death occurring in the hospital fol-

owing admission to a general medical ward. We included original En-

lish language articles that reported at least one prediction model for

ortality in adults (age ≥ 18 years) hospitalized on general medical

ards. We focused on models designed to predict acute decompensation,
2 
ocusing on mortality. We excluded studies with any of the following:

atients admitted from the emergency department to the intensive care

nit (ICU); patients on surgical, palliative care, oncology, or cardiology

ervices; and patients with coronavirus disease from severe acute respi-

atory syndrome coronavirus 2 (COVID-19). We excluded studies that

ocused on one diagnosis/condition (eg, pneumonia). To avoid over-

tting of models, we excluded studies with fewer than 500 mortality

vents. We also excluded studies that focused on specific time horizons

or hospital mortality (eg, 7-day mortality), as predicting mortality at

ny point during hospitalization may guide overall hospital care and

ortality reduction interventions. After pilot screening, 2 investigators

ndependently screened titles and/or abstracts (primary screening) and

ull-text (secondary screening) using Covidence. 15 

ata Extraction and Quality Assessment 

We categorized the models as “general models ” if developed and/or

alidated in all general medical patients and as “infection models ” if

eveloped and/or validated in patients admitted to medical wards with

uspected infection. Data from articles selected for final inclusion were

xtracted at the model level using the Critical Appraisal and Data Extrac-

ion for Systematic Reviews of Prediction Modelling Studies (CHARMS)

hecklist. 16 Quality was assessed using Prediction Model Risk of Bias As-

essment Tool (PROBAST). 17 Using PROBAST, we assessed risk of bias

sing 4 domains (Participants, Predictors, Outcome, and Analysis), and

pplicability using 3 domains (Participants, Predictors, and Outcome)

Supplemental file 2). 

onflict Resolution 

Screening, data extraction, and quality assessment were conducted

ndependently by two investigators, with conflicts resolved by discus-

ion and consensus between the investigators or, if needed, by a third

nvestigator. 

thics Approval 

The study used publicly available, deidentified data and forms and

herefore did not require Institutional Review Board approval. 

esults 

Of 20,424 unique articles, 8 studies on 15 prediction models met

election criteria ( Figure 1 ). The studies, published since 2017, were

ased in 10 countries across 4 world regions ( Table 1 and Supplemental

able 2 [available online]). The 8 studies on 280,793 patients included

28,017 women (45.6%) and 19,923 hospital deaths (7.1%) ( Table 1 ).

f the 15 models, 10 models were based on general medical patients, 7

odels on general medical patients with infection, and 2 models were

tudied in both groups. Out of the 15 models, 7 were novel or modi-

ed, 18-24 while the others 19 , 20 , 24 , 25 were preexisting models externally

alidated in general medical patients. Major findings of the systematic

eview are summarized in Figure 2 . Heterogeneity in variables and mod-

ls precluded a metaanalysis. 

tudy Design, Cohorts, and Outcomes 

The studies were based on cohorts of 5000 to more than 100,000 par-

icipants. All cohorts had a mean or median age above 60 years, except

n Moore 2017, 20 which had a median age of 36 years and additionally

rovided subgroup analysis for general medical patients with infection.

wo studies exclusively enrolled patients with infection (Chen, 2017 24 

nd Fabbian, 2018 25 ), while the others enrolled all patients admitted to

he general medical wards. One study (Soffer 2020 23 ) focused on mor-

ality in the general medical ward. The other studies focused on hospital

ortality (in and outside the general medical ward) after admission to

 general medical ward. 
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Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) 2020 flowchart of articles included for data extraction. The search strategy 

is provided in Table 1 in the Supplement (available online). 

Figure 2. Summary of the main results of the systematic review on models for hospital mortality in general medical patients. Used with permission of Mayo 

Foundation for Medical Education and Research, all rights reserved. 
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Table 1 

Characteristics of Included Studies. 

Characteristic Chen (2017) 24 Fabbian (2017) 18 Fabbian (2018) 25 Moore (2017) 20 Rasmussen (2018) 19 Sakhnini (2017) 21 Schwartz (2018) 22 Soffer (2020) 23 

Study objective Development and 

internal validation of 

a novel model, and 

external validation of 

existing models 

Model 

modification 

External 

validation 

Development and internal 

validation of a novel 

model, and external 

validation of existing 

models 

Model modification and 

external validation of 

existing models 

Model development 

and internal 

validation 

Model development 

and internal 

validation 

Model development 

and internal 

validation 

Location (number of 

centers) 

Taiwan (1) Italy (1) Italy (1) Gabon, Malawi, Sierra 

Leone, Tanzania, Uganda, 

Zambia (unknown) 

Denmark (2) Israel (1) Israel (1) Israel (1) 

Study period ∗ 2010-2012 2000-2013 2013-2016 2009-2015 2013-2015 2013-2015 2012-2015 Development 

(2013-2017), 

Validation (2018) 

Inclusion criteria Adults in the 

emergency 

department with 

ICD-9 codes for 

infection, and with ≥ 2 

sets of blood cultures 

Admissions to the 

medical ward 

Admissions to the 

medical ward 

with an infectious 

disease diagnosis 

Admissions to the medical 

ward with mortality data 

and > 50% of recorded 

vital signs 

Admissions to the 

medical ward and suPAR 

analysis 

Admissions to the 

medical ward ≥ 24 h 

Admissions to the 

medical ward ≥ 24 h 

Patients (18-100 

years) admitted to the 

medical ward 

Exclusion criteria Patients transferred 

from other medical 

institutions, with 

repeat hospital visits, 

and/or with traumatic 

injuries 

Patients 

transferred to 

surgical 

departments 

Patients 

transferred to 

surgical 

departments or 

intensive care 

units 

Not applicable Admissions for surgical 

intervention or acute 

pediatric, obstetric, and 

gastroenterological 

conditions; patients in 

whom suPAR level was 

not ordered, suPAR 

result was missing, or 

other reasons 

Admissions classified 

under symptoms, 

signs, and ill-defined 

conditions (ICD-9 

codes 780-799), and 

under observation 

(ICD-9 codes V71, 

V71.2, V29.0, V29.1, 

V29.2, V29.8, V29.9) 

Not applicable Not applicable 

Age (years), mean ± 
SD, median (IQR) † 

65 (49-78) 73 ± 16 65 ± 25 36 (27-49) 61 (43-76) Survived: 68 

(18-105) ∗∗ 

Died: 78 (23-105) ∗∗ 

Survived: 64 

(18-105) ∗∗ 

Died: 77 (23-105) ∗∗ 

Survived: 73 (62-83) 

Died: 82 (71-89) 

Number of patients Development: 7011 

Validation: 12,110 

Total: 75,586 Total: 12,173 Total: 5573 

With infection: 3153 

Total: 17,312 Development: 7268 

Validation: 7843 

Development: 10,788 

Validation: 6867 

Total: 118,262 §§

Women, number (%) 3216 (45.9) 40,329 (53.4) 8053 (66.2) 2829 (50.8) 9194 (53.1) Survived: 2984 

(46.7) †† 

Died: 453 (51.4) †† 

Survived: 4404 (44.4) 

Died: 450 (51.5) 

Died: 3042 (48.2) 

Major admitting 

diagnoses (%) 

Unspecified infections 

(71.2), respiratory 

infections (57.9), 

genitourinary 

infections (38.2) 

% not provided Pulmonary 

infection (34.3), 

nonspecified 

infection (33.8), 

urinary tract 

infection (17.5) 

Not provided Not provided Survived: 

nonspecified diagnosis 

(20.5), heart failure 

(12.1), 

cerebrovascular 

disease (11.4). Died: 

pneumonia (23.4), 

sepsis and septicemia 

(14.5), malignant 

neoplasms (14.1) 

Survived: 

nonspecified diagnosis 

(52.2), heart failure 

(6.5), pneumonia 

(5.7). Died: 

nonspecified diagnosis 

(22.8), pneumonia 

(19.3), sepsis and 

septicemia (13.2) 

Survived: 

nonspecified chest 

pain (5.8), pneumonia 

(5.0), CHF 

exacerbation (2.7). 

Died: septic shock 

(13.7), pneumonia 

(13.3), respiratory 

failure (3.9) 

Number of deaths § Development: 479 

Validation: 1145 

6007 1545 Total: 966 

With infection: 720 

587 Development: 882 

Validation: 582 

Development: 874 

Validation: 515 

6311 

Mortality prediction 

model 

CHARM, CURB-65, 

MEDS, PIRO, SIRS 

Modified 

Elixhauser Index 

Modified 

Elixhauser Index 

MEWS, qSOFA, UVA NEWS, modified NEWS Not applicable Not applicable Not applicable 

∗ All studies used single retrospective cohorts. Moore (2017) 20 used a pooled cohort. 
† Rounded to integers. 
§ All studies included all hospital mortalities, except Soffer (2020), 23 which included only ward mortalities. 
∗∗ Mean (range). 
†† From development cohort. 
§§ One dataset was used with gradient boosting. 

Abbreviations listed in Supplemental Table 13 (available online). 
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rediction Models for All General Medical Patients 

Ten of 15 models were based on general medical patients hospital-

zed with various medical conditions ( Table 2 ). The Universal Vital As-

essment (UVA) score 20 and 3 other models 21-23 were developed and

nternally validated in general medical patients. 20-23 Two models were

odified versions of the Elixhauser index 18 and National Early Warning

core (NEWS). 19 The Elixhauser Index, 18 Modified Early Warning Score

MEWS), 20 NEWS, 19 and Quick Sequential Organ Failure Assessment

qSOFA) score 20 were preexisting models externally validated in general

edical patients. None of the studies both developed and externally vali-

ated model(s) for mortality. Studies that developed or modified models

xamined different predictors for hospital mortality, with the most com-

on categories being vital signs (5 models) and patient comorbidities (4

odels) ( Table 2 and Supplemental Table 3 [available online]). Based

n the type of predictors, the models were classified as Early Warning

core (EWS), comorbidity, and combination models (Supplemental Ta-

le 4, available online). EWS models were generally based on vital signs,

ith few models also integrating easily obtainable biomarkers. Comor-

idity models were typically weighted scores of comorbidities from In-

ernational Classification of Diseases (ICD) codes. Combination models

ontained variable categories of predictors including vital signs, comor-

idities, and biomarkers. Most predictors were captured on hospital pre-

entation or admission to the medical ward, with a minority from hos-

ital progress notes and discharge summaries. 18 , 21-23 Predictors in all

ovel and modified models were selected using multivariable analysis.

he most common methods to select predictors were probability values

 P values) ( n = 3 models) 18 , 19 , 21 ; UVA score used Bayesian informa-

ion criterion (BIC) 20 ; and Schwartz (2018) 22 used Akaike information

riterion (AIC), corrected Akaike information criterion (AICC), and BIC

 Table 2 ). Most general models used data in their native form, except

he modified Elixhauser Index, which used age as a categorical variable

Supplemental Table 5, available online). 

Most models were developed using logistic regression, and model

erformance was reported using discrimination. The modified Elix-

auser Index, 18 UVA score, 20 and model by Sakhnini (2017) 21 were de-

eloped using logistic regression, while the model by Schwartz (2018) 22 

sed the least absolute shrinkage and selection operator method. The

odified NEWS 19 was developed using Poisson regression, while the

achine learning model by Soffer (2020) 23 employed tree-based classi-

ers with gradient boosting. Calibration was assessed using the Hosmer-

emeshow test in the modified Elixhauser Index 18 and in the model

y Sakhnini (2017), 21 whereas other models did not report calibra-

ion. In terms of model discrimination, NEWS, 19 modified NEWS, 19 

nd the models by Sakhnini (2017), 21 Schwartz (2018) 22 , and Sof-

er (2020) 23 had high discrimination (area under curve [AUC] > 0.8),

hile the other models showed moderate discrimination (AUC 0.65-

.79) ( Table 2 ). Most models 19-24 reported other measures including

ensitivity and specificity (Supplemental Table 6, available online). Only

he UVA score reported a subgroup analysis 20 (Supplemental Table 7,

vailable online). 

The studies differed in their handling of missing values ( Table 2

nd Supplemental Table 8 [available online]). After excluding partici-

ants with missing data regarding human immunodeficiency virus (HIV;

 = 2171) and mortality outcomes ( n = 8), MEWS, qSOFA, and UVA

core in Moore (2017) 20 imputed missing values. The model by Soffer

2020) 23 used gradient boosting algorithms for missing values. Other

odels either excluded 19 , 21 , 22 or did not provide information 18 on han-

ling of missing values. 

rediction Models for General Medical Patients with Infection 

Table 3 outlines the characteristics of infection models. The CHARM

core 24 and UVA score 20 were the only novel models developed and

nternally validated in general medical patients with infection. Fabbian

2018) 25 externally validated the modified Elixhauser Index, which they
5 
eported previously (Fabbian, 2017 18 ). Chen 2017 24 externally vali-

ated 4 novel models: (i) Predisposition, Infection/Insult, Response and

rgan dysfunction (PIRO); (ii) Confusion, blood Urea nitrogen, Respira-

ory rate, Blood pressure, and age 65 (CURB-65); (iii) Mortality in Emer-

ency Department Sepsis (MEDS) score; and (iv) Systemic Inflammatory

esponse Syndrome (SIRS). None of the models were developed and

xternally validated in an independent dataset within the same study.

redictors for the novel models (CHARM and UVA) were selected using

ultivariable analysis. Vital signs were used as predictors in 5 models,

hile comorbidities were used in 3 models ( Table 3 and Supplemental

able 3 [available online]). Predictors for all models were captured on

dmission, except for the modified Elixhauser Index, 25 which captured

CD codes from discharge summaries. The CHARM score 24 converted

ontinuous predictors into categorical predictors (Supplemental Table 5,

vailable online) and used AIC to select predictors. All models in Chen

2017) 24 excluded missing values. Calibration was only reported for the

HARM score and had adequate calibration based on a calibration plot

nd Hosmer-Lemeshow test. The CHARM score had the highest AUC of

.77 (95% CI, 0.75-0.79) in the development cohort and 0.76 (95% CI,

.75-0.77) in the validation cohort, while SIRS had a modest AUC of

.58 (95% CI, 0.56-0.61). Other models had an AUC ranging from 0.68

o 0.75 ( Table 3 ). Alternative performance measures (Supplemental Ta-

le 9, available online) and subgroup analysis (Supplemental Table 7,

vailable online) were also reported. 

uality and Applicability Assessment 

Based on PROBAST criteria, all general models had an overall high

isk of bias (Supplemental Figure 1A, available online). All general mod-

ls had low risk of bias for the Participant domain, indicating the appro-

riateness of the populations for our study. For the Predictors domain, 4

f 10 general models had a low risk of bias. Common reasons for high

isk of bias were the timing of predictor measurement and availability of

redictors on admission, in particular for models requiring laboratory

ata 19 , 20 , 22 , 23 or ICD codes 18 , 21-23 (Supplemental Table 10, available

nline). For the Outcomes domain, 5 of 10 general models had an unclear

isk of bias, attributed to unclear duration from predictor measurement

o hospital mortality. All general models had high risk of bias for the

nalysis domain because none of the studies reported both model cali-

ration and discrimination. MEWS, 20 qSOFA, 20 NEWS, 19 and the model

y Soffer (2020) 23 had low concern for applicability to predict hospi-

al mortality for all general medical patients (Supplemental Figure 1C,

vailable online). 

All infection models had an overall high risk of bias and a low risk

f bias for the Participant domain (Supplemental Figure 1B and Sup-

lemental Table 10, available online). For the Predictors domain, 5 of

 infection models had low risk of bias. For the Outcomes domain, all

nfection models, except for the UVA score, 20 had low risk of bias. All

nfection models had a high risk of bias for the Analysis domain. Only

he CHARM score 24 provided sufficient information on model calibra-

ion and discrimination and appropriately used univariate models to se-

ect predictors ( Table 3 ). CHARM, 24 PIRO, 24 CURB-65, 24 MEDS, 24 and

IRS 24 scores had low concern for applicability as hospital mortality

redictors for patients with infection in the medical ward (Supplemen-

al Figure 1D, available online). 

iscussion 

In this systematic review of 8 studies on 280,793 patients from 10

ountries, we identified 15 risk prediction models for hospital mortal-

ty in general medical patients. Of these models, 5 were novel, 2 were

dapted, and 8 were external validation of preexisting models. For gen-

ral models, NEWS and the model by Soffer (2020) had an optimal bal-

nce of discrimination, bias, and applicability. For infection models, the

HARM and PIRO scores had an optimal balance. Overall, there was

parse data on risk prediction and the available models had a high risk
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Table 2 

Prediction Models for All General Medical Patients (General Models) 

Characteristic Elixhauser Index 18 Modified Elixhauser 

Index 18 
MEWS 20 NEWS 19 Modified 

NEWS 19 
qSOFA 20 UVA 20 Model by Sakhnini 

(2017) 21 
Model by Schwartz 

(2017) 22 
Model by Soffer 

(2020) 23 

Purpose of 

analysis 

External validation/ 

comparison 

Model modification External 

validation 

External 

validation/ 

comparison 

Model 

modification 

External 

validation 

Model development/ 

internal validation 

Model development/ 

Internal validation 

Model development/ 

Internal validation 

Model development/ 

Internal validation 

Timing of 

predictor 

assessment 

At diagnosis of comorbidity 

(ICD9 codes) 

At diagnosis of 

comorbidity (ICD9 

codes) 

On admission On admission On admission On admission On admission On admission On admission On admission 

Number of 

candidate 

predictors 

Not applicable 33 Not applicable Not 

applicable 

10 Not 

applicable 

13 28 32 Not provided 

Predictors in final 

model (no.) 

Congestive heart failure, 

cardiac arrhythmias, 

valvular disease, pulmonary 

circulation disorders, 

peripheral vascular 

disorders, hypertension, 

paralysis and other 

neurological disorders, 

chronic pulmonary disease, 

diabetes mellitus, 

hypothyroidism, renal 

failure, liver disease, peptic 

ulcer disease excluding 

bleeding, HIV, lymphoma 

and cancer, rheumatoid 

arthritis/collagen vascular 

diseases, coagulopathy, 

obesity, weight loss, fluid 

and electrolyte disorders, 

anemia, alcohol and drug 

abuse, psychoses, 

depression (30) 

Age, renal failure, male 

gender, other 

neurological disorders, 

lymphoma, solid tumor 

without metastasis, 

ischemic heart disease, 

congestive heart failure, 

coagulopathy, fluid and 

electrolyte disorders, 

liver disease, weight 

loss, metastatic cancer 

(13) 

Temperature, 

HR, RR, SBP, 

level of 

consciousness 

(5) 

RR, Temp, 

SBP, HR, 

AVPU, SpO 2 , 

supplemental 

oxygen (7) 

NEWS 

predictors, age, 

sex, suPAR 

level (10) 

RR, SBP, 

level of con- 

sciousness 

(3) 

Temperature, HR, RR, 

SBP, SpO 2 , level of 

consciousness (GCS), 

HIV serostatus (7) 

Age, BMI, mean arterial 

pressure on admission, 

previous admission 

within 3 prior months, 

heart failure, active 

malignancy, chronic 

use of statins, chronic 

use of antiplatelet 

agents, main admission 

diagnosis and 

secondary conditions 

(heart failure, urinary 

tract infection, 

pneumonia, sepsis and 

septicemia, renal 

failure, cancer, and 

acute coronary 

syndrome) (16) ∗ 

Age, BMI, admission 

within 3 prior months, 

statin intake, 4 

laboratory variables 

(serum creatinine, 

hemoglobin, RDW, and 

hypoalbuminemia), and 

2 background diseases 

(heart failure and 

malignancy) (10) 

Chief complaint, age, 

home medications, 

number of home 

medications, 

comorbidities, number of 

comorbidities, RR, SpO 2 , 

fever, SBP, DBP, pulse, 

albumin, BUN, CRP, 

LDH, neutrophil count, 

eosinophil count, WBC 

count, calcium, AST, 

PCO 2 , lactate, protein, 

lymphocyte count, serum 

creatinine, phosphorus 

level, ALK-P, troponin-I, 

hemoglobin, potassium, 

glucose, sodium, PT, 

INR, GGT, platelet count, 

ED diagnosis, ED 

administered 

medications, arrival 

mode, ED wing, 

emergency severity 

index, pain score and 

textual words (catheter, 

shock, fluid, bedridden, 

oxygen, feeding tube, 

culture, the family, low, 

gas, deterioration, 

nursing, dementia, 

consciousness, 

ambulance, intubated, 

brought, condition, 

breathing)(62) † 

( continued on next page ) 
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Table 2 ( continued ) 

Characteristic Elixhauser Index 18 Modified Elixhauser 

Index 18 
MEWS 20 NEWS 19 Modified 

NEWS 19 
qSOFA 20 UVA 20 Model by Sakhnini 

(2017) 21 
Model by Schwartz 

(2017) 22 
Model by Soffer 

(2020) 23 

Method for 

handling missing 

values 

Not provided Not provided k-nearest 

neighbors 

imputation §

Missing vital 

signs 

assigned 

value of 0 

Missing suPAR 

level values 

were excluded; 

missing vital 

signs assigned 

value of 0 

k-nearest 

neighbors 

imputation §

k-nearest neighbors 

imputation§

Exclusion Exclusion Integrated into gradient 

boosting algorithm 

Method for 

prediction model 

development 

Not applicable Logistic regression Not applicable Not 

applicable 

Poisson 

regression 

Not 

applicable 

Logistic regression; 

decision trees and 

linear regression 

Logistic regression Penalized logistic 

regression (LASSO) 

Multiple tree-based 

classifiers with gradient 

boosting 

Method for 

selection of 

predictors during 

multivariable 

analysis 

Not applicable P value Not applicable Not 

applicable 

P value Not 

applicable 

BIC P value AIC, AICC, BIC Not applicable 

Calibration 

method (result) 

None Hosmer-Lemeshow test 

( P < .001) 

None None None None None Hosmer-Lemeshow test 

(not provided) 

None None 

AUC value (95% 

CI) ∗∗ 
0.66 (0.65-0.66) 0.72 (0.71-0.73) 0.70 

(0.68-0.71) 

0.87 

(0.85-0.88) 

0.92 

(0.91-0.92) 

0.69 

(0.67-0.72) 

0.77 (0.75-0.79) Development: 0.90 

Validation: 0.81 

Development: 0.89 

(0.88-0.90) 

Validation: 0.86 

(0.84-0.87) 

0.92 (0.92-0.93) 

Type of 

validation 

External None External External None External Internal Internal Internal Internal 

Method of 

validation 

Different time, area and 

investigators 

Different time, 

area and 

investigators 

Different 

time, area 

and 

investigators 

Different 

time, area 

and 

investigators 

10-fold 

cross-validation 

Temporal data split Bootstrap and temporal 

data split 

Bootstrap and temporal 

data split 

∗ Obtained from Supplement. 
† List of predictors obtained from different tables reported in the article. 
§ Variables with more than 50% missing values were excluded. Hospital mortality and HIV serostatus were not imputed. 
∗∗ Rounded to 2 decimal places. 

Abbreviations listed in Supplemental Table 13 (available online). 
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Table 3 

Prediction Models for General Medical Patients with Infection (Infection Models) 

Characteristic CHARM 

24 PIRO 24 CURB-65 24 MEDS 24 SIRS 24 Modified Elixhauser 

Index 25 
UVA 20 

Purpose of analysis Model 

development/internal 

validation 

External 

validation/model 

comparison 

External 

validation/model 

comparison 

External 

validation/model 

comparison 

External 

validation/model 

comparison 

External validation Model 

development/internal 

validation 

Timing of predictor 

assessment 

On admission On admission On admission On admission On admission At diagnosis of 

comorbidity (ICD-9) 

On admission 

Number of candidate 

predictors 

62 Not applicable Not applicable Not applicable Not applicable Not applicable 13 

Predictors in final 

model (no.) 

Absence of chills, 

anemia, hypothermia, 

malignancy, RDW (5) 

Age, bands > 5%, 

BUN, COPD, HR, 

lactate, liver disease, 

malignancy, nursing 

home residence, other 

infection, platelet 

count, pneumonia, 

respiratory 

failure/hypoxemia, 

RR, SBP, skin/soft 

tissue infection (16) ∗ 

Age, BUN, confusion, 

RR, SBP or DBP (5) ∗ 
Age, altered mental 

status, bands > 5%, 

lower respiratory tract 

infections, nursing 

home resident, 

platelet count, 

respiratory disease, 

septic shock, terminal 

disease (9) ∗ 

HR, RR or PaCO 2 , 

temperature, WBC 

count or bands > 10% 

(4) ∗ 

Age, coagulopathy, 

congestive heart 

failure, fluid and 

electrolyte disorders, 

gender, ischemic 

heart disease, liver 

disease, lymphoma, 

metastatic cancer, 

other neurological 

disorders, renal 

failure, solid tumor 

without metastasis, 

weight loss (13) 

HIV serostatus, HR, 

level of consciousness 

(GCS), RR, SBP, SpO 2 , 

temperature (7) 

Method for handling 

missing data 

Variables with more 

than 5% missing 

values were not 

considered candidate 

predictors 

Not applicable Not applicable Not applicable Not applicable Not provided k-nearest neighbors 

imputation † 

Method for prediction 

model development 

Logistic regression Not applicable Not applicable Not applicable Not applicable Not applicable Logistic regression; 

decision trees and 

linear regression 

Method for selection 

of predictors during 

multivariable analysis 

AIC Not applicable Not applicable Not applicable Not applicable Not applicable BIC 

Calibration method 

(result) 

Calibration plot and 

Hosmer-Lemeshow 

test ( P = .42) 

None None None None None None 

AUC value § Development: 0.77 

(0.75-0.79); 

Validation: 0.76 

(0.75-0.77) 

0.74 (0.72-0.77) 0.68 (0.65-0.70) 0.67 (0.64-0.69) 0.58 (0.56-0.61) 0.72 (0.71-0.74) 0.75 (0.72-0.77) 

Type of validation Internal External External External External External Internal 

Method of validation Temporal data split Different time, area, 

and investigators 

Different time, area, 

and investigators 

Different time, area, 

and investigators 

Different time, area, 

and investigators 

Different time and 

area 

10-Fold 

cross-validation 

∗ Predictors of PIRO, CURB-65, MEDS, SIRS were extracted from references in Chen (2017). 24 

† Variables with more than 50% missing values were excluded. Hospital mortality and HIV serostatus were not imputed. 
§ Rounded to 2 decimal places. 

Abbreviations listed in Supplemental Table 13 (available online). 
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W  
f bias attributed, in part, to suboptimal calibration and handling of

issing values. The novel models had higher discrimination compared

o the adapted and validated models. To our knowledge, there is no

omparable synthesis of studies on risk prediction models, and our find-

ngs identify the need for studies on risk prediction models for hospital

ortality in general medical patients. 

EWS models, frequently incorporated as track and trigger systems,

re simple point-based systems ideal for predicting short-term mortality

eg, 24 or 48 hours) in ICU and general medical patients. 26 , 27 Com-

ared with general medical wards, there was more information on pre-

icting mortality in the ICU, which has informed studies in non-ICU

ettings. 28-31 Similar to ICU settings, early and prompt recognition of

eneral medical patients at high risk for mortality is an important first

tep in preventing mortality. 32 Furthermore, general medical patients

requently have complex acute and chronic illnesses, and early predic-

ion of nonpreventable deaths may facilitate their transition to pallia-

ive or hospice care. Simple EWS models (eg, MEWS, NEWS) have vari-

ble performance 27 , 33 and are well suited for patients with infection,

ho typically experience frequent change in vital signs reflecting po-

ential clinical deterioration. A retrospective study showed that EWS

odels outperformed other models in patients with infections but were

ess promising in patients without infection. 33 Given the dependence

n vital signs, EWS models are less suitable for predicting long-term

ospital mortality (eg, 7 days). 26 , 34 Machine learning models 32 , 35 have

een explored as alternatives to EWS models and have the advantage

f automated calculations that reduce human error, improve integra-

ion in electronic health record (EHR) systems, and generate fewer false

larms. Mortality prediction models have helped to identify high-risk

atients in non-ICU settings. A recent randomized controlled clinical

rial showed that automated detection and monitoring of clinical dete-

ioration in hospitalized adults was associated with a 16% reduction in

0-day mortality following an alert. 36 

In contrast to EWS models, comorbidity models including the Charl-

on Comorbidity Index 37 and the modified Elixhauser Comorbidity In-

ex 38 may be better for predicting longer-term (ie, more than 48 h)

ospital mortality. 39-41 Comorbidity models have applications beyond

redicting hospital mortality and have been used to predict healthcare

xpenditure, tailor treatment, and control for confounders in epidemi-

logic studies. 42 , 43 However, their benefit to healthcare providers may

e limited because most comorbidity models require knowledge of co-

orbidities on hospital admission, which may not be readily available

or many patients. Furthermore, comorbidity models do not detect rapid

eterioration in clinical status and may have high concern for applica-

ility in hospitals with limited use of EHRs. 

Real-world performance and usability of prediction models may be

ffected by many factors. The number of predictors in a model does not

ecessarily correlate with its predictive performance, as summarized in

 previous systematic review. 44 In the current study, 6 of 10 general

odels and 2 of 7 infection models had 10 or more predictors. The num-

er of predictors in a model can affect model performance in real-world

ettings, particularly in hospitals with limited resources. 45 Implement-

ng models in hospitals with understaffed wards, scarce monitoring sys-

ems, and limited technology may increase the burden of manual labor

ith minimal benefit on mortality. 45-47 Further, some predictors may

e relevant in a specific world region, improving its performance. As

oore (2017) 20 illustrated in sub-Saharan Africa, adding HIV serology

o vital signs resulted in better discrimination of the UVA score over

ther EWS scores. 

During screening, we excluded articles that focused on specific time

orizons for hospital mortality (eg, 72-hour or 7-day mortality). While

 time horizon of a few days may be appropriate for EWS models, 26 

ortality at any point during hospitalization may be more relevant to

uide overall hospital care that integrates biopsychosocial factors and

atients’ preferences. 33 Some suggest that 30-day postdischarge mor-

ality, rather than hospital mortality, is a better indicator of hospital

erformance. 48 , 49 However, hospital mortality may be more relevant,
9 
n places with limited ability to provide, influence, or monitor postdis-

harge care. 50 , 51 We excluded models such as the eCART score, which

id not meet study selection criteria. 52 , 53 However, the eCART score,

ased on medical and surgical patients, integrated vital signs and lab-

ratory data to predict outcomes in the subsequent 24 hours. eCART

nd other automated scores that guide short-term care may have high

linical uptake. 

Fourteen of 15 models were developed or validated in single-site

tudies. The most common method of internal validation in the in-

luded models was temporal data split ( n = 4 models); however, cross-

alidation and bootstrapping may be preferred over random and tem-

oral data split, particularly in smaller datasets. 54 None of the novel or

odified models in general medical patients were externally validated,

nd preexisting models were only externally validated in 1 country. To

nsure model stability and generalizability, Riley et al. 55 recommend

xternally validating prediction models using big datasets from indi-

idual participant data metaanalysis or EHRs that include participants

rom different regions and providing subgroup analysis to study geo-

raphic heterogeneity in model performance. Validating these models in

egions with different demographics, patient case-mix, staffing volumes,

nd technologic capability may improve generalizability and guide care

n hospitals that have limited ability for research and evaluation. 55 , 56 

dditionally, in the current study, heterogeneity in population charac-

eristics precluded direct comparison of models across studies. For in-

tance, the population was younger in the Moore (2017) study (median

ge: 36 years; interquartile range: 27-49 years) compared with other

tudies. Thus, the generalizability of these models to other hospitals,

ountries, and world regions is unknown. However, studies based on

ocal data have the ability to calibrate existing models to local demo-

raphics and patient case-mix, leading to informative models that can

uide mortality reduction interventions. 55 , 57 , 58 

As highlighted, no single model will apply to all populations and

ealthcare settings. Thus, the resources needed to implement a predic-

ion model would depend on the model. Machine learning models are

f emerging popularity in many high-income countries. The popularity

f these models stems from their high performance, abundance of EHR

ata, advanced technological expertise, and capability to evaluate and

nhance them. Due to the simplicity of their implementation in resource-

imited settings, early warning scores may be more feasible. Ultimately,

hese models may aid in timely escalation of care and/or transition to

alliative or hospice care. Incorporating models into hospital practice

ill require an impact analysis on hospital mortality. 59 

imitations and Strengths 

The study has potential limitations. We restricted our search to

nglish-language articles, which may influence the generalizability of

ur results, but not necessarily result in systemic bias. 60 During screen-

ng, we excluded articles that did not explicitly distinguish general med-

cal patients from others (eg, surgical patients) and inadvertently may

ave excluded relevant articles. To mitigate this, we used a broad search

trategy for primary screening with independent review by two inves-

igators. 61 We excluded articles on COVID-19 infection because risk

actors and treatment evolved during the pandemic, thereby influenc-

ng the risk of mortality. Therefore, our findings may not be generaliz-

ble to patients with COVID-19. Studies in our analysis were conducted

n the prepandemic period; the COVID-19 pandemic has resulted in a

lobal excess mortality of ∼3 million deaths in 2020 62 and hospital mor-

ality rates in some countries increased for non-COVID-19 patients. 63 

herefore, the performance of prediction models for non-COVID-19 pa-

ients may be different during the pandemic. The study has several

trengths. Our review focused on mortality in contemporary cohorts and

eflected current practice and advances in model prediction, machine

earning, and artificial intelligence. We used CHARMS and PROBAST,

hich are rigorous tools for data extraction and quality assessment. 17 

e included studies with > 500 mortality events resulting in ∼50 events
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er predictor variable, well above the recommendation for prediction

odels. 26 , 64 

onclusions 

In this systematic review of 8 studies, 14 of 15 risk prediction mod-

ls for hospital mortality were from single-site studies, which have high

ocal relevance but unknown generalizability. All models had a high risk

f bias and differed in model covariates, applicability, and discrimina-

ion. There is a need for rigorous models to predict mortality in general

edical patients. Rather than disease-specific models, unified predic-

ion models for general medical patients calibrated to the local determi-

ants of hospital care, including patient case-mix, technologic availabil-

ty, and workforce capability, may be better incorporated into clinical

ecision support tools and facilitate the delivery of safer hospital care. 
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