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This study aimed to identify critical cell cycle-related genes (CCRGs) in prostate cancer
(PRAD) and to evaluate the clinical prognostic value of the gene panel selected. Gene set
variation analysis (GSVA) of dysregulated genes between PRAD and normal tissues
demonstrated that the cell cycle-related pathways played vital roles in PRAD. Patients
were classified into four clusters, which were associated with recurrence-free survival (RFS).
Moreover, 200 prognostic-related genes were selected using the Kaplan–Meier (KM)
survival analysis and univariable Cox regression. The prognostic CCRG risk score was
constructed using random forest survival and multivariate regression Cox methods, and
their efficiency was validated in Memorial Sloan Kettering Cancer Center (MSKCC) and
GSE70770. We identified nine survival-related genes: CCNL2, CDCA5, KAT2A, CHTF18,
SPC24, EME2, CDK5RAP3, CDC20, and PTTG1. Based on the median risk score, the
patients were divided into two groups. Then the functional enrichment analyses, mutational
profiles, immune components, estimated half-maximal inhibitory concentration (IC50), and
candidate drugs were screened of these two groups. In addition, the characteristics of nine
hub CCRGs were explored in Oncomine, cBioPortal, and the Human Protein Atlas (HPA)
datasets. Finally, the expression profiles of these hub CCRGs were validated in RWPE-1
and three PRAD cell lines (PC-3, C4-2, and DU-145). In conclusion, our study systematically
explored the role of CCRGs in PRAD and constructed a risk model that can predict the
clinical prognosis and immunotherapeutic benefits.

Keywords: prostate cancer, GSVA, cell cycle, recurrence-free survival, immunotherapy
INTRODUCTION

Prostate cancer (PRAD) is the most common carcinoma in men (1) and a significant global health
concern (2). The main treatment for PRAD is radical prostatectomy (3). Although most PRAD
patients could benefit from this treatment, nearly 27%–53% of patients who have undergone this
procedure will progress into advanced PRAD and castration-resistant prostate cancer (CRPC) (4, 5).
Therefore, timely diagnosis of PRAD and exploring the detailed mechanisms involved in PRAD are
critical for improving the prognosis of patients with PRAD.
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The cell cycle is one of the vital biological processes in the
organism (6). The cell cycle regulates the process of cell division
and duplication of genetic materials (7), which is highly
associated with the growth and proliferation of cancer cells.
Increasing numbers of studies showed that certain genes and
drugs serve as potential cycle regulators. For instance, in prostate
cancer cells, upregulation of PHLDA3 inhibited cell proliferation
by inducing cell cycle arrest at G1 via a decrease in AKT
phosphorylation and activation of Wnt/b-catenin (8). The
decreased expression of SMARCC1 dramatically accelerated
prostate cancer cell proliferation by enhancing cell cycle
progression (9). Platycodin D could promote sorafenib-
induced apoptosis and cell cycle arrest in prostate cancer cells
(10) and BTT-3033 attenuated prostate cancer cell viability and
proliferation by cell cycle arrest (11). Thus, cell cycle arrest may
be used as a novel therapeutic strategy. However, such research is
a lengthy process whose results do not immediately translate into
clinical practice.

In this study, we firstly identified the molecular hallmarks in
normal samples and PRAD tissues using the Gene Set
Enrichment Analysis (GSEA) method. The results showed that
cell cycle-related pathways, such as DNA_REPAIR,
E2F_TARGETs, G2M_CHECKPOINT, MYC _TARGETS_V1,
and MYC_TARGETS_V2, were enriched in the PRAD tissues.
Considering the critical roles of cell cycle-related genes (CCRGs)
in the initiation and progression of cancers, then we
hypothesized that CCRGs may provide a novel insight into the
treatment and prognosis of PRAD. Therefore, there is an urgent
need to explore the roles of CCRGs in the prognosis and
treatment of PRAD patients.
RESULTS

Functional Pathway Screening Using Gene
Set Variation Analysis
The clinical information of 551 subjects, including 499 PRAD
patients and 52 healthy volunteers, was downloaded from UCSC
Xena. Based on The Cancer Genome Atlas (TCGA)-PRAD
cohort data, gene set variation analysis (GSVA) results showed
the CCRG sets, such as HALLMARK_DNA_REPAIR,
HALLMARK_E2F_TARGETs , HALLMARK_G2M_
CHECKPOINT, and HALLMARK_MYC_TARGETS_V1
(Figure 1A) were enriched in PRAD patients.
Cluster Analysis Based on Cell
Cycle-Related Genes
The limma (12) R package was used to detect differentially
expressed CCRGs. The volcano map of the differentially
expressed CCRGs showed that there were 79 upregulated genes
and 131 downregulated genes (Figure 1B). TCGA-PRAD cohort
could be divided into four clusters based on differentially
expressed CCRGs (Figure 1C). Moreover, patients had
significant differences among these four clusters (p <
0.039, Figure 1D).
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Construction and Validation of Cell
Cycle-Related Gene Prognostic Model
As for the 210 differentially expressed CCRGs, univariate Cox
regression analysis showed that 57 CCRGs were significantly
associated with recurrence-free survival (RFS) in PRAD
(Table 1). Thus, these 57 CCRGs served as input to construct
a random survival forest survival model. The out-of-bag (OOB)
prediction error estimator indicated that the forest prediction
error tended to be steady when the number of trees was nearly
400 (Figure 2A). During the hub gene selection process, the top
15 ranked genes in both minimal depth and VIMP were chosen
for further model construction (Figure 2B). Finally, CCNL2,
CDCA5, KAT2A, CHTF18, SPC24, EME2, CDK5RAP3, CDC20,
and PTTG1 were included in the prognosis model construction,
and the risk score of each patient was calculated based on the
following formula with coefficients showed in Figure 2C: Risk
score = (0.6097 * ExpCCNL2) + (0.5850 * ExpCDCA5) + (0.0006
* ExpKAT2A) + (−0.0005 * ExpCHTF18) + (0.1037 * ExpSPC24) +
(0.0283 * ExpEME2) + (−0.1527 * ExpCDK5RAP3) + (0.2168
* ExpCDC20) + (−0.1638 * ExpPTTG1). Based on the median
value of the risk score, TCGA-PRAD patients were divided into
high and low risk group. Principal component analysis (PCA)
indicated that the two risk groups were distributed in two
directions (Figure 2D). The Kaplan–Meier (KM) curve showed
that the high-risk group patients had poorer RFS than the low-risk
group (Figure 2E, p < 0.001). The prognosis performance of the
risk score for RFS was assessed by time-dependent receiver
operating characteristic (ROC) curves, with the area under the
curve (AUC) for 1, 3, and 5 years being 0.786, 0.739, and 0.679,
respectively (Figure 2F). Moreover, the results of two independent
cohorts showed that the high-risk group was associated with worse
RFS (Memorial Sloan Kettering Cancer Center (MSKCC), p =
0.041, and GSE70770, p < 0.001) (Figures 3A, D), which were
consistent with the results in TCGA-PRAD cohort. The AUCs in
MSKCC were 0.771, 0.72, and 0.691 for 1, 3, and 5 years,
respectively (Figure 3B). In the GSE70770 cohort, the AUCs for
risk scores at 1, 3, and 5 years were 0.671, 0.712, and 0.770,
respectively (Figure 3E). The mRNA expression profiles of nine
hub CCRGs were differently expressed in the different risk groups
in MSKCC and GSE70770 (Figures 3C, F). In addition, the
univariate and multivariate Cox regression analyses showed that
the risk score was an independent prognostic predictor for RFS in
TCGA-PRAD and MSKCC (Table 2).

Differences in Genomic Alteration Profiles,
Copy Number Variation, and Tumor
Mutational Burden Between Cell
Cycle-Related Gene Risk Groups
Considering that genetic alterations were associated with the
prognostic outcome of many cancers (13, 14), we compared the
genomes of high- and low-risk groups. The top 10 genes with
the highest mutation frequency in TCGA-PRAD cohort, high-
risk group, and low-risk group are shown in Figure 4A. The
mutation rates of TP53 and FOXA1 were 17% and 9% in the
high-risk group, but 6% and 4% in the low-risk group,
respectively, which indicated that CCRGs were probably
January 2022 | Volume 11 | Article 796795
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associated with TP53 and FOXA1 pathways. For the copy
number variation (CNV) status, the results demonstrated that
the high-risk group had high burden of amplification (pArm-Amp =
0.001, pFocal-Amp < 0.001) and deletion (pArm-del < 0.001, pFocal-del <
0.001) at both the arm and focal levels (Figure 4B). Furthermore,
tumor mutational burden (TMB) was significantly higher in the
high-risk group than low-risk group (p < 0.001, Figure 4C).

Functional Enrichment Between High-Risk
and Low-Risk Groups
Considering the prognostic risk model was constructed based on
CCRGs, which were associated with cell proliferation, then
mRNAsi and MKI67 were analyzed. The results revealed reduced
mRNAsi in the low-risk group (p < 0.001, Figure 5A), and the risk
score was positively associated with MKI67 (R = 0.590, p < 0.001,
Figure 5B). Next we investigated the potential functions in the
high- and low-risk groups using GSEA and GSVA methods.
Hallmark analysis showed that cell cycle-related pathways were
enriched in the high-risk group (Figure 5C). Additionally,
Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis
using GSVA showed that cell cycle-related pathways
such as DNA_REPLICATION, MISMATCH_REPAIR, and
Frontiers in Oncology | www.frontiersin.org 3
CELL_CYCLE were also enriched in the high-risk group
(Figure 5D). In summary, the results of mRNAsi, MKI67, and
functional enrichment all demonstrated that the high-risk group
was associated with cell cycle-related pathways, meaning that the
prognostic signature could be represented by the CCRGs.

Evaluation of Immune Cell
Infiltration Characterization in
Tumor Microenvironment
The prognosis of tumor patients was significantly associated with
the tumor microenvironment, especially with immune cells (15–
17). Therefore, we hypothesized that the distribution of immune
cells and expression of immune checkpoint genes would be
significantly different in the two risk groups. We evaluated 24
immune cells by CIBERSORT method in normal and tumor
samples. Low abundance immune cells were excluded; thus, only
21 immune cell types were assessed (Figure 6A). Of these, the
high-risk group had a higher proportion of infiltration by B-cell
memory cells, Macrophage M0, Macrophage M2, T-cell follicular
helper, and T-cell regulatory (Tregs). The relationships between
risk score and common immune checkpoint genes showed
that many checkpoint genes were more highly expressed in the
A B

DC

FIGURE 1 | Identification of cell cycle-related DEGs and consensus clustering in TCGA-PRAD cohort. (A) The hallmark enrichment of prostate cancer compared
with normal tissues. (B) The volcano plot of cell cycle-related DEGs between high- and low-risk groups (FDR < 0.05 and logFC > 0.5). (C) Consensus matrices for a
solution with 4 clusters based on DEGs. (D) Kaplan–Meier curves show the prognostic value of the four patterns. DEGs, differentially expressed genes; TCGA-PRAD,
The Cancer Genome Atlas—Prostate Cancer; FDR, false discovery rate.
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high-risk group, including PDL2 (PFCDL1G2), CD48, CD44,
and CD200, while TNFRSF4, TNFRSF14, TNFRSF18,
TNFRSF25, NRP1, LAG3, and CTLA4 were reduced
(Figure 6B). Moreover, several members of the nine hub genes
demonstrated significantly positive relationships with B-cell
memory, Macrophage M2, T-cell follicular helper, and T-cell
regulatory (Tregs) infiltration (Figure 6C).

We also found that the nine hub genes were positively
associated with PDCD1 (PD-1) and CTLA4 (Figure 6D). Of
these, CDC20 and PTTG1 were relatively significant (Figure 6E).

Screening of Immunotherapeutic Benefits,
Estimated IC50, and Candidate Drugs
To explore the potential performance of the risk signature on
immunotherapeutic benefits, we analyzed the IMvigor210
cohort, who received anti-PD-L1 immunotherapy. Notably, a
high response rate of anti-PD-L1 therapy was associated with a
higher risk core (p < 0.001, Figure 7A). Moreover, the high-risk
group had a more favorable survival rate (p = 0.04, Figure 7B)
and objective response to anti-PD-L1 than the low-risk group
(p < 0.001, Figure 7C). Based on the Genomics of Drug
Sensitivity in Cancer (GDSC) dataset, the IC50 value of 138
compounds showed that the low-risk group might be more
sensitive to 51 compounds, such as dasatinib, DMOG, and
MG.132; and the patients in the high-risk group were likely
sensitive to 30 drugs, such as thapsigargin, bleomycin, and
vinblastine (false discovery rate (FDR) < 0.05, Figure 7D). In
addition, the CMap dataset was utilized to predict the candidate
Frontiers in Oncology | www.frontiersin.org 4
drugs for the risk signature. The results showed that thiostrepton,
GW8150, phenoxybenzamine, chrysin, camptothecin, menadione,
DL-thiorphan, and sanguinarine were the most potential target
drugs due to their enrichment scores (<−0.90) and p < 0.05
(Table 3), of which the 2D conformers are displayed in Figure 7E.

The Characteristics of Hub Genes in the
Oncomine and cBioPortal Datasets
WeusedOncomine dataset to search the expressionprofiles of nine
hubgeneswhose expressionwas increased (p<0.05) in several types
of cancer (Figure 8A), especially in PRAD patients, consistently
with TCGA-PRAD cohort (Figure 8B). Moreover, the correlation
among these hub genes was very high; for example, the correlation
coefficients between PTTG1 and SPC24 was 0.87 (p < 0.05,
Figure 8D). In addition, the genetic alteration status based on
cBioPortal showed that the genetic alteration rates of these hub
genes were less than 5% (Figure 8C), and several items belonged to
the CNV change. The correlation between CNV and mRNA
expression of EME2 was 0.44 (Figure 8E), while that of the others
was less than 0.3. The methylation levels of nine genes (expect
CCNL2, as data were absent from cBioPortal) were negatively
associated with mRNA expression (p < 0.05, Figure 8E).

Verification of Hub Genes Based
on the Human Protein Atlas Dataset
and RT-qPCR
To verify the reliability of these hub genes, we detected the protein
levels from the Human Protein Atlas (HPA) website in normal
TABLE 1 | Univariate Cox regression analysis of differentially expressed CCRGs.

Gene name HR 95% CI p Gene name HR 95% CI p

MYOCD 0.586 0.432–0.795 0.001 SCRIB 1.787 1.243–2.57 0.002
FGF10 0.554 0.335–0.916 0.021 MKI67 1.811 1.359–2.413 <0.001
FAM107A 0.672 0.538–0.839 <0.001 CDC20 1.943 1.551–2.434 <0.001
MEIS2 0.738 0.552–0.987 0.04 UBE2S 2.094 1.516–2.892 <0.001
ATP2B4 0.736 0.594–0.912 0.005 CCNL2 1.938 1.475–2.545 <0.001
EZH2 2.567 1.747–3.77 <0.001 KIFC1 1.993 1.524–2.606 <0.001
NR3C1 0.694 0.506–0.953 0.024 REC8 1.595 1.122–2.269 0.009
TACC1 0.714 0.548–0.931 0.013 RRM2 1.762 1.392–2.229 <0.001
KAT2A 2.13 1.524–2.976 <0.001 FOXM1 1.914 1.485–2.466 <0.001
EDN3 0.498 0.312–0.794 0.003 CDCA5 2.358 1.793–3.102 <0.001
TUBA4A 0.759 0.585–0.983 0.037 CCNB1 1.743 1.307–2.324 <0.001
PDCD2L 1.851 1.079–3.178 0.025 PRC1 2.373 1.682–3.347 <0.001
CHTF18 2.367 1.732–3.236 <0.001 CDK5RAP3 1.758 1.245–2.483 0.001
RUVBL1 2.097 1.371–3.206 0.001 CCNA2 1.917 1.46–2.517 <0.001
E2F5 1.783 1.169–2.72 0.007 SPC24 2.296 1.716–3.071 <0.001
TRIM35 0.586 0.354–0.968 0.037 KIF4A 2.318 1.716–3.132 <0.001
FLNA 0.818 0.695–0.963 0.016 MELK 1.975 1.458–2.677 <0.001
C11orf80 1.849 1.242–2.752 0.002 HMMR 1.92 1.406–2.623 <0.001
ZNF655 0.748 0.583–0.96 0.023 AURKB 1.955 1.505–2.54 <0.001
SAC3D1 1.635 1.177–2.271 0.003 ZWINT 1.562 1.175–2.077 0.002
ASNS 2.043 1.374–3.038 <0.001 MAPK12 1.736 1.267–2.378 0.001
BIRC5 1.828 1.453–2.299 <0.001 TOP2A 1.58 1.276–1.957 <0.001
EME2 1.885 1.45–2.451 <0.001 KIF20A 2.038 1.522–2.729 <0.001
CDCA8 2.253 1.598–3.178 <0.001 CDKN3 2.012 1.521–2.663 <0.001
MYBL2 1.713 1.388–2.113 <0.001 PTTG1 1.787 1.44–2.218 <0.001
CCNB2 1.898 1.42–2.539 <0.001 BTG2 0.804 0.653–0.99 0.040
UBE2C 1.639 1.362–1.972 <0.001 APP 0.789 0.628–0.989 0.040
HJURP 2.000 1.522–2.629 <0.001 NUSAP1 1.852 1.466–2.338 <0.001
TPX2 1.891 1.495–2.392 <0.001
January 20
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samples and PRAD tissues. The results showed that eight proteins
(CCNL2, CDCA5, CDC20, CDK4RAP3, EME2, KAT2A, PTTG1,
and SPC24; note that CHTF18 was absent) were significantly
dysregulated in PRAD tissues compared with normal prostate
tissues (Figure 9A). To further confirm the expression levels based
on bioinformatics analysis, the mRNA expression profiles of these
hub genes were detected by RT-qPCR from normal prostatic
epithelial cells (RWPE-1) and prostate cancer cells (PC-3, C4-2,
and DU-145). The results showed that all nine genes were
significantly upregulated in PC-3 and DU-145 compared with
RWPE-1 (Figure 9B), which were in accordance with the contents
from TCGA and Oncomine datasets.
Frontiers in Oncology | www.frontiersin.org 5
DISCUSSION

The cell cycle is an essentially biological process (18, 19). Under
normal conditions, cells proliferate only in response to mitotic
signals, which are more significant for normal organisms, while
the proliferation of cancer cells is out of control (7). This
suggested that the proliferation of cancer cells is associated
with the dysregulation of proliferation-related signals, which
could be controlled by the cell cycle. Several previous studies
showed that dysregulated genes could give rise to the expression
of key factors involved in cancer cell cycle. Therefore, we
hypothesized that CCRGs have excellent performance in PRAD.
A B

D

E F

C

FIGURE 2 | Gene selection and risk prognostic model of CCRGs based on TCGA cohort. (A) Estimation of the OOB prediction error rate based on the random
forest. (B) The top 15 genes according to both minimal depth and variable importance. (C) The coefficient for genes of risk prognostic model. (D) The distribution
of risk scores based on PCA. The high-risk group was annotated by yellow and the low-risk group by blue. (E) Kaplan–Meier curves of RFS stratified by risk score.
(F) Time-dependent ROC curve analysis for risk score. CCRGs, cell cycle-related genes; TCGA, The Cancer Genome Atlas; OOB, out of bag; PCA, principal component
analysis; RFS, recurrence-free survival; ROC, receiver operating characteristic.
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FIGURE 3 | Validation of the 9-gene signature in the MSKCC and GSE70770 cohort. (A–C) The distribution of RFS, RFS status, KM curves, and ROC curves in the
MSKCC cohort. (D–F) The distribution of RFS, RFS status, KM curves, and ROC curves in the GSE70770 cohort. MSKCC, Memorial Sloan Kettering Cancer Center;
RFS, recurrence-free survival; KM, Kaplan–Meier; ROC, receiver operating characteristic. ns, no significance. *p < 0.05, ***p < 0.001.
TABLE 2 | Univariate and multivariate Cox regression analysis in TCGA-PRAD and MSKCC cohorts.

Variables Univariate Cox Multivariate Cox

HR 95% CI p-Value HR 95% CI p-Value

TCGA
Age 1.031 0.999–1.063 0.055
Gleason 2.232 1.798–2.771 <0.001 1.701 1.307–2.212 <0.001
T 2.536 1.69–3.804 <0.001 1.452 0.883–2.389 0.142
Risk score 2.717 2.053–3.596 <0.001 1.765 1.285–2.425 <0.001
MSKCC
Age 1.018 0.97–1.069 0.460
Gleason 3.708 2.576–5.339 <0.001 3.492 2.405–5.071 <0.001
T 1.527 0.861–2.708 0.148
Risk score 8.079 2.008–32.498 0.003 3.749 1.048–13.414 0.042
Frontiers in Oncology | ww
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TCGA-PRAD, The Cancer Genome Atlas-Prostate Cancer; MSKCC, Memorial Sloan Kettering Cancer Center.
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Recent studies have shown that high throughput RNA
sequences and microarray profiles have been utilized to
develop signatures for the outcome events of several clinical
diseases (20). In our study, we firstly used the GSVA method to
explore the differential hallmark pathways, and results showed
that CCRGs were highly enriched in PRAD patients (Figure 1A).
Based on the differential CCRGs, TCGA-PRAD patients could be
classified into four clusters, which were significantly associated
with RFS (Figures 1C, D). With regard to risk model
construction, the random survival method was utilized to
select the hub CCRGs based on variable importance (VIMP)
and minimal depth (Figures 2A, B). Then nine hub genes were
included in the next step, and multivariate Cox regression was
applied to calculate risk scoring. The performances on the
prediction of prognostic ability were validated in the MSKCC
and GSE70770 datasets (Figure 3, Table 2). Moreover, hallmark
and KEGG pathways (Figures 5D, E) showed that the high-risk
group was enriched in cell cycle-related pathways. As genomic
Frontiers in Oncology | www.frontiersin.org 7
instability takes critical roles in the development of cancers (21,
22), then genetic alterations, such as mutation status, CNV load,
and TMB, were analyzed in TCGA-PRAD cohort. The results
showed that the high-risk group was significantly associated with
high mutation rates, especially for TP53 and FOXA1
(Figure 4A), CNV load (Figure 4B), and TMB (Figure 4C),
which may help tailor personalized treatment.

In recent years, numerous previous studies indicated that cell
cycle gene signatures have the potential for evaluating immune
cell infiltration, immune evasion, and immune responses (23–
25). However, the relationship between cell cycle-related
signatures and tumor immune situation in PRAD was not
explored before. Therefore, we compared the immune cell
abundance based on CIBERSORT and common checkpoint
genes in TCGA-PRAD cohort. The high-risk group had
inflammatory infiltrates with a higher proportion of M2
macrophages and T-cell regulatory (Tregs) (Figure 6A), which
were associated with immune evasion (26, 27). Considering the
A

B C

FIGURE 4 | Mutational landscapes between high- and low-risk groups. (A) The distribution of frequently mutated genes in total, high-risk, and low-risk patients.
(B) Arm-level, focal-level copy number amplification and deletion. (C) Tumor mutational burden difference.
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essential roles of immune checkpoint genes in immunotherapy
response, immune checkpoint genes were differently
distributed between low- and high-risk groups, such as LAG3,
CTLA4, NRP1, and CD276 (Figure 6B). Increased evidence
demonstrated that single genes could reshape the tumor
immune microenvironment and immune cell infiltration (28,
29). We revealed obviously positive correlations between these
nine hub genes and the expression of B-cell memory cells,
Macrophage M2, T-cell follicular helper, and T-cell regulatory
(Figure 6C), consistent with the results of immune cell
infiltration and risk groups. We also noted that most of these
nine hub genes were positively correlated with PDCD1 and
CTLA4 (Figure 6D), suggesting that these genes could mediate
immune evasion and response to immunotherapy. In the
IMvigor210 cohort with anti-PD-L1 immunotherapy, we found
that patients with high-risk scores might benefit from anti-PD1
immunotherapy (Figures 7A–C).

Additionally, the analysis of drug sensitivity based on the
GDSC dataset demonstrated that the CCRG risk signature might
be useful for therapeutic applications. Several drugs, such as
dasatinib, MG.132, lapatinib, and docetaxel, responded
differently between the low- and high-risk groups (Figure 7D),
which suggested that CCRGs influenced drug response to
chemotherapy and targeted treatment. Fortunately, we found 8
Frontiers in Oncology | www.frontiersin.org 8
drugs with p < 0.001 and enrichment less than −0.9 (Table 3),
including GW-8510, phenoxybenzamine, thiostrepton, chrysin,
camptothecin menadione, DL-thiorphan, and sanguinarine
(Figure 7E, Table 3). GW-8510, an inhibitor of CDK2, has a
similar effect to gemcitabine in inhibiting pancreatic cancer cells
(30, 31). Phenoxybenzamine, an alpha blocker, has been used to
inhibit histone deacetylases (32, 33) in human cancer cells.
Thiostrepton, a natural antibiotic produced by bacteria, could
induce upregulation of several heat shock proteins in various
human cancer cells (34) and inhibit cancer stem cell growth (35).
Chrysin could inhibit cancer growth via induction of apoptosis,
alteration of the cell cycle, and inhibition of angiogenesis without
causing any toxicity to normal cells (36, 37). Camptothecin (38),
menadione (39, 40), DL-thiorphan (41), and sanguinarine (42)
are also reported to have a strong relationship with cancer
therapy. Moreover, many previous studies have been reported
to have anticancer effects in prostate cancer cells, such as chrysin
(43), phenoxybenzamine, thiostrepton (44), sanguinarine (45),
camptothecin (46), menadione (47), and sanguinarine (48, 49).
Finally, the mRNA expression profiles of nine hub genes were
explored in TCGA-PRAD and validated in Oncomine, the HPA
dataset, and prostate cancer cells based on RT-qPCR.

Although our study have comprehensive analyzed the
CCRGs in PRAD, there were still some limitations. Firstly, we
A B

DC

FIGURE 5 | The differences of mRNAsi, MKI67, and potential biological pathways of high- and low-risk groups. (A) mRNAsi. (B) The correlations between MKI67
and risk score. (C) The hallmark enrichment based on the GSEA method. (D) The KEGG enrichment calculated by GSVA method. MSI, microsatellite instability;
GSEA, Gene Set Enrichment Analysis; KEGG, Kyoto Encyclopedia of Genes and Genomes; GSVA, gene set variation analysis.
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constructed and validated the CCRGs risk model only including
public datasets, so more real-world data of PRAD are needed to
verify the model’s prognostic performance. Secondly, we only
validated the mRNA expression profiles of nine hub CCRGs in
prostate cancer cells; more experimental studies are still
necessary to confirm for clinical application, and more
underlying mechanisms of these genes should be explored for
further research.

In conclusion, this preliminary research of CCRGs in PRAD
patients has profiled the expression levels and genetic alterations
of CCRGs in PRAD, which may open up the development of
novel drugs against PRAD. The prognostic model based on nine
Frontiers in Oncology | www.frontiersin.org 9
hub CCRGs was strongly correlated with high CNV load, TMB
load, mRNAsi, infiltration of different types of immune cells, and
chemo-/immunotherapy response, which may provide novel
ideas for PRAD with patients chemo-/immunotherapy response.
MATERIALS AND METHODS

Prostate Cancer Datasets and Samples
We used TCGA-PRAD cohort data, which includes mRNA
expression data, clinicopathological features, and RFS data
A

B

D E

C

FIGURE 6 | TME immune cell infiltration landscapes of different risk groups. (A) Differences of 24 TME infiltration cells based on CIBERSORT algorithm. (B) The
mRNA expression profiles of common immune checkpoint genes. (C) The correlations between 9-risk genes and TME infiltration cell type. Red, positive; blue,
negative. (D) The correlation between 9-risk genes and immune checkpoint molecules. (E) The correlation between REC, CTLA4, and PDCD1 (PD1). TME, tumor
microenvironment. ns, no significance. *p < 0.05, **p < 0.01, ***p < 0.001.
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from the UCSC Xena (https://xenabrowser.net/datapages/)
dataset. The raw read counts of RNA-seq were transformed
into transcripts per kilobase million (TPM) values. The DNA
methylation information and genetic mutations were collected
from cBioPortal (50).
Frontiers in Oncology | www.frontiersin.org 10
The external validation cohort, including the MSKCC
(GSE21032) and GSE70770, were log2 normalized microarray
matrix downloaded from http://cbio.mskcc.org/cancergenomics/
prostate/data/ and Gene Expression Omnibus (GEO) (https://
www.ncbi.nlm.nih.gov/geo/) dataset.
A B

D

E

C

FIGURE 7 | The roles of risk scores in the prediction of immuno-/chemotherapeutic benefits and candidate drugs. (A) Risk scores in high- and low-risk groups with
different anti-PD-1 clinical response statuses. p < 0.001. (B) KM curves for high- and low-risk groups in the IMvigor210 cohort. Log-rank test, p = 0.032. (C) Rate of
clinical response rate to anti-PDL1 immunotherapy in high- and low-risk groups in the IMvigor210 cohort. (D) Estimated IC50 for 138 compounds based on GDSC
dataset. (E) 2D conformer of six significant candidate drugs. KM, Kaplan–Meier; GDSC, Genomics of Drug Sensitivity in Cancer.
TABLE 3 | Results of CMap analysis.

CMap name Mean n Enrichment p Specificity

GW-8510 −0.770 4 −0.967 <0.001 0.0534
Phenoxybenzamine −0.784 4 −0.949 <0.001 0.0091
Thiostrepton −0.716 4 −0.902 <0.001 0.0093
Chrysin −0.756 3 −0.957 <0.001 <0.001
Camptothecin −0.767 3 −0.918 <0.001 0.1023
Menadione −0.752 2 −0.967 0.002 0.0115
DL-Thiorphan −0.724 2 −0.939 0.007 0.0171
Sanguinarine −0.752 2 −0.932 0.009 0.0188
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Gene Set Variation Analysis, Gene Set
Enrichment Analysis, Difference Analysis,
and Consensus Clustering
The hallmark enrichment between PRAD and normal tissues
and the KEGG enrichment for high and low risk were performed
using the GSVA method. The hallmark enrichment between the
high- and low-risk groups was generated by the GSEA method.
Then, a panel of 1,875 CCRGs were recognized from MSigDB
(51), as previously described (7). The differentially expressed
CCRGs were calculated using the limma package in R with FDR <
0.05 and |logFC| > 0.5. Next, a consensus clustering algorithm was
utilized to evaluate the prognostic ability of CCRGs using the
ConsensusClusterPlus (52) R package.
Frontiers in Oncology | www.frontiersin.org 11
Calculation of the Cell Cycle-Related Gene
Score for Prostate Cancer Patients
In TCGA-PRAD cohort, differentially expressed CCRGs were
processed to univariate Cox regression analysis. The random
forest algorithm was applied to select the candidate genes. Only
genes included in the top 15 lists for both minimal depth and
VIMP were selected. Then, PCA was also performed in R.
Finally, the candidate genes were brought into the multivariate
Cox regression analysis to build the prognosis model. The risk
score of the CCRGs for each PRAD patient was computed based
on the mRNA expression of selected CCRGs weighted by the
multivariate Cox regression coefficient. Based on the median
CCRG score, the patients were divided into high- and low-risk
A B

D E

C

FIGURE 8 | The mRNA expression patterns, genomic alterations, and methylation of nine hub genes. (A) The overview of nine hub genes in the Oncomine database.
(B) The mRNA expression profiles of nine hub genes in TCGA-PRAD. (C) The genetic alterations of nine hub genes based on cBioPortal. (D) The correlations between
these nine hub genes. (E) The correlations between mRNA expression and methylation, and copy number variation of nine hub genes. TCGA-PRAD, The Cancer
Genome Atlas-Prostate Cancer. NA, not avaiable. *p < 0.05, **p < 0.01, ***p < 0.001.
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groups. Next, PCA was performed to explore the distribution of
different risk groups. Finally, the prognostic values of CCRG
score were evaluated using KM curve and the 1-, 3-, and 5-year
ROC curves. A heatmap plot was utilized to display the
expression profiles for the different groups.

As for the MSKCC and GSE70770 cohorts, the KM curve,
ROC curve, and heatmap plot were also drawn to validate the
prognostic performance.

Identification of Somatic Alteration, Copy
Number Variation, Tumor Mutational
Burden, Tumor Stemness, and Immune
Cell Infiltration in Different Groups
Somatic mutations data were downloaded from TCGA GDC
(https://portal.gdc.cancer.gov/) using “TCGABiolinks” (53) R
package. Copy number alterations data were calculated by
Frontiers in Oncology | www.frontiersin.org 12
GISTIC2.0 from GDAC Firehose (https://gdac.broadinstitute.
org). The total number of mutations per megabyte of tumor
tissue (TMB) was generated by the number of nonsynonymous
mutations per million. Tumor stemness was previously study
calculated by using the one-class logistic regression (OCLR)
method (54). The CIBERSORT (55) method was processed to
infer the proportion of immune cell infiltration in different
tumor groups. The connectivity Map (CMap) (56) was utilized
to screen potential candidate drugs.
Screening of Immunotherapy,
Chemotherapy Responses,
and Potential Drugs
The IMvigor210 dataset was downloaded from IMvigor210CoreBiologies
(57) to evaluate the predictive power of the CCRG scores. The
A

B

FIGURE 9 | The IHC expression pattern based on HPA dataset and mRNA levels by qRT-PCR of CCNL2, CDCA5, CDC20, CDK4RAP3, EME2, KAT2A, PTTG1,
REC8, and SPC24. (A) The IHC results of nine hub genes in prostate cancer and normal tissues based on HPA. (B) The mRNA level of nine hub genes in normal
prostatic epithelial cell (RWPE-1) and prostate cancer cell lines. IHC, immunohistochemistry; HPA, Human Protein Atlas. ns, no significance. *p < 0.05, **p < 0.01,
***p < 0.001.
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estimated IC50 of 138 compounds in the GDSC (58) website was
calculated using the “pRRophetic” (59) R package.

The Characteristic of Nine Hub Cell
Cycle-Related Genes
The mRNA expression levels of these nine hub CCRGs among
pan-cancer were retrieved from Oncomine (https://www.
oncomine.org/) with a threshold p-value <0.05 (60). The
mRNA expression profiles of nine hub CCRGs in TCGA-
PRAD were downloaded from UCSC Xena (61). The mutation
alteration data, CNV, and DNA methylation data were
downloaded from cBioPortal (http://www.cbioportal.org). The
immunohistochemistry (IHC) results of nine hub genes were
collected from the HPA (https://www.proteinatlas.org/) (62).

Detection of the mRNA Levels of Hub
Genes Using Real-Time Quantitative PCR
The human RWPE-1 cell lines were cultured in K-SFM
(Biotecnómica, Porto, Portugal) medium, and human epithelial
PRAD cell lines (PC-3, C4-2, and DU145) were cultured with
DMEM 1640 medium. Total RNA, cDNA, and RT-qPCR were
operated according to the manufacturer’s protocol. Independent
experiments were performed in triplicate, and GAPDH served as
the internal control. The primers are as follows:

CCNL2 gene 5′-GTACTCCGGGGTGCTCATC-3′ (sense)
and 5′-GAGGTCGGTCTCTGTGTCG-3′ (antisense).

CDCA5 gene 5′-GAGGTCCCAGCGGAAATCAG-3′ (sense)
and 5′-TCTTTAAGACGATGGGCTTTCTG-3′ (antisense).

KAT2A gene 5′-GCAAGGCCAATGAAACCTGTA-3′ (sense)
and 5′-TCCAAGTGGGATACGTGGTCA-3′ (antisense).

SPC24 gene 5′-GCCTTCCGCGACATAGAGG-3′ (sense)
and 5′-CCTGCTCCTTCGCATTGAGA-3′ (antisense).

EME2 gene 5′-CGCCGTTACCAAGGCTCTC-3′ (sense) and
5′-GCTGACCCGACTGAACTGC-3′ (antisense).

CHTF18 gene 5′-GAGCCGACTGACGGTCAAG-3′ (sense)
and 5′-CGGTTGGTGAAGTCATCACTG-3′ (antisense).
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CDK5RAP3 gene 5′-GAGTCTGGTGCTGACGATCC-3′
(sense) and 5 ′-TGTGAAGAGTATCGGCCAAAAAT-
3′ (antisense).

CDC20 gene 5′-GCACAGTTCGCGTTCGAGA-3′ (sense)
and 5′-CTGGATTTGCCAGGAGTTCGG-3′ (antisense).

PTTG1 gene 5′-ACCCGTGTGGTTGCTAAGG-3′ (sense)
and 5′-ACGTGGTGTTGAAACTTGAGAT-3′ (antisense).

Statistical Analysis
All statistical analyses were executed on the R platform (Version
4.1.0). A significant difference between the two groups was
assessed using the Wilcoxon rank test, and among three or
more groups, it was calculated using one-way ANOVA and
Kruskal–Wallis tests. In addition, KM curves were produced,
and a log-rank test was used, together with hazard ratios (HR)
with 95% CI using univariate and multivariate Cox regression
analyses, as well as correlation tests with Spearman’s method.
All statistical p-values were two-sided, with p < 0.05
statistically significant.
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