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Abstract

This paper describes a web server developed for designing therapeutic peptides with

desired half-life in blood. In this study, we used 163 natural and 98 modified peptides whose

half-life has been determined experimentally in mammalian blood, for developing in silico

models. Firstly, models have been developed on 261 peptides containing natural and modi-

fied residues, using different chemical descriptors. The best model using 43 PaDEL descrip-

tors got a maximum correlation of 0.692 between the predicted and the actual half-life

peptides. Secondly, models were developed on 163 natural peptides using amino acid com-

position feature of peptides and achieved a maximum correlation of 0.643. Thirdly, models

were developed on 163 natural peptides using chemical descriptors and attained a maxi-

mum correlation of 0.743 using 45 selected PaDEL descriptors. In order to assist research-

ers in the prediction and designing of half-life of peptides, the models developed have been

integrated into PlifePred web server (http://webs.iiitd.edu.in//raghava/plifepred/).

Introduction

The technological advances have led to the revival of interest of the pharmaceutical industry

in peptide-based therapeutics [1]. Peptides show diverse therapeutic properties [2,3] like anti-

cancer [4], antimicrobial [5,6], antiparasitic [7], cell penetrating [8,9], antihypertensive [10],

tumor homing [11]. The peptides have a number of advantages over small molecule-based

drugs that include high specificity and low side effects [1,12]. Despite many advantages, thera-

peutic peptides still face many roadblocks on the road to the pharmaceutical market. The

major hurdle that is blocking the path of development of therapeutic peptides is their short

half-life due to their susceptibility to enzymatic degradation that reduces their bioavailability.

Different routes of peptide deliveries have been explored that include intranasal [13], transder-

mal [14], oral [15], pulmonary [16], rectal [17]. The parenteral route of peptide delivery is pre-

ferred over other routes of administration for efficient systemic delivery as it prevents cleavage

of peptides by the gastrointestinal enzymes.

In the past, numerous attempts have been made to increase the half-life of peptides in

blood that includes cyclization of peptides, incorporation of modified residues and terminal

modifications [18]. These methods not only enhance the in-vivo half-life but also increase
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bioavailability. Determination of half-life of novel peptides in blood is one of the major chal-

lenges in understanding their stability. The experimental techniques to determine the half-life

of peptides are well established and highly accurate. Unfortunately, these experimental tech-

niques are costly, cumbersome and time-consuming. Therefore, alternate methods are

required for estimating the half-life of peptides. An in silico method to predict and design half-

life of peptides in blood will be an invaluable tool for the researchers working in the field of

therapeutic peptides. Previously, computational tools have been developed for predicting the

half-life of proteins. ProtLifePred [http://protein-n-end-rule.leadhoster.com/] and ProtParam

[19] are based on the N-end rule and predict the half-life of proteins in E.coli, S. cerevisiae and

mammalian cells. The stability of HIV-derived peptides in the cytosol of human peripheral

blood mononuclear cells can be judged using the Stability Prediction tool [20]. SprotP server

[21] identifies proteins with a half-life less than 30 minutes in human embryonic kidney 293T

cells. Recently, our group developed a web server HLP [22] for predicting half-life of peptides

in the intestine-like environment.

To the best of the authors’ knowledge no in silico method has been developed to predict the

half-life of peptides in mammalian blood. Thus, we made a systematic attempt to understand

the nature of peptides having long life and short life in mammalian blood. In the present

study, we have developed in silico models using various machine learning techniques and fea-

tures namely, amino acid composition, dipeptide composition, binary profile, atom composi-

tion and chemical descriptors to predict the half-life of peptides in blood.

Methods

Dataset

We extracted sequences and structures of the experimentally determined half-life of peptides

from PEPlife [23], which is a database of the half-life of 2230 peptides in various environments

like blood, urine, intestinal, kidney and brain homogenates, various cell lines and media like

PBS, etc. We used following procedure to derive our dataset. Firstly, we extracted the peptides

whose half-life had been experimentally validated in mammalian blood from PEPlife and

obtained 1392 entries. Secondly, we removed all peptides having number of residues more

than 50 or less than 5. Thirdly, we removed all those peptides having half-life more than 24

hours and less than 20 seconds. After the above filters, we got 1119 peptides having length

from 5 to 50 and half-life from 20 seconds to 24 hours. Fourthly, from these 1119 peptides, we

removed peptide sequences that had complex terminal modifications like PEGylation, biotiny-

lation etc. or complex non-terminal modifications like sarcosine, β-alanine, etc. The peptides

whose structures were not available in PDB database or PEPlife database were also removed;

we got 682 peptides after this step. Finally, we got 261 unique peptides (See Supporting infor-

mation pdb_files.zip) after removing redundancy, where no two peptides are identical. We

called this dataset of 261 peptides as modified dataset as it contains natural and modified pep-

tides. We also created dataset of natural peptides that contain only 163 natural peptides. The

dataset consists of unique non-identical sequences, though few sequences may have up to

90% sequence similarity due to availability of limited dataset. Detailed information of the pep-

tides containing natural as well as modified residues is given in Supporting Information file

261_natural+modified.xlsx whereas information of the peptides containing only natural resi-

dues is provided in Supporting Information file 163_natural.xlsx. Literature shows that even a

single residue mutation or chemical modification in the peptide can change its half-life consid-

erably [24,25]; so such peptides were retained in the dataset. In order to present half-life on a

linear scale we have taken log2 of the half-life of peptides in seconds. The construction of data-

sets and the prediction approach followed is shown in Fig 1.

In silico approaches for predicting the half-life of natural and modified peptides in blood

PLOS ONE | https://doi.org/10.1371/journal.pone.0196829 June 1, 2018 2 / 10

Competing interests: One of the co-authors,

Gajendra. P. S. Raghava, is an academic editor of

PLoS ONE. This does not alter the authors’

adherence to all the PLOS ONE policies on sharing

data and materials.

http://protein-n-end-rule.leadhoster.com/
https://doi.org/10.1371/journal.pone.0196829


Development of models

We used various machine learning techniques in this study for developing regression models.

We implemented support vector machine (SVM) using SVM light software available at http://

www.cs.cornell.edu/People/tj/svm_light/. SMOreg, Linear Regression, Gaussian Processes,

IBk were implemented using Weka [26], a Java-based software package. In order to evaluate

performance of models, we used leave-one-out cross-validation (LOOCV) technique. In

LOOCV technique, for N number of peptides in the dataset, N-1 peptides are employed for

training while the remaining one is used for testing. This process is repeated N times in order

Fig 1. Workflow of PlifePred.

https://doi.org/10.1371/journal.pone.0196829.g001
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to test each peptide once. We also evaluated the performance of the model on 10% indepen-

dent dataset of the natural peptides selected randomly. The experiment was perfromed 5 times

and the average values were reported. In the present study, we used different types of features

for developing models; the following is a brief description of the features.

• Residue composition: In this study, we used amino acid composition of peptides for devel-

oping models, where a vector of dimension 20 presents peptide. Similarly, models were also

developed using dipeptide composition of peptides where the peptide is represented by a

vector of dimension 400 [27,28].

• Binary pattern: The order and frequency of residues can be studied using the binary pattern

profile of peptides [22]. To analyze the role of the terminal residues we took five residues

from both the N and C terminus and calculated their binary profiles.

• Atom composition: It represents the frequency of 8 types of atoms (C, H, O, N, S, F, Cl, Br)

present in the peptide sequence [29]. The atom composition was calculated from the

SMILES of the peptide sequences, which includes the information of the chemical modifica-

tions as well as the amino acid.

• Chemical descriptors: Chemical descriptors are useful for developing QSAR models of

peptides. We used PaDEL [30] which is an open source software for calculating more than

15,400 descriptors, consisting of 2D, 3D and fingerprints. To select the minimum number of

descriptors that correlate to the half-life of peptides, we employed the CfsSubsetEval along

with BestFirst modules of Weka.

Results

Analysis of peptides

We examined the physicochemical properties and amino acid composition of 20 peptides with

the highest and the lowest half-lives (Fig 2). It was observed that peptides with long half-lives

showed a high frequency of negatively charged (Glu) and small sized residues (Ala, Glu, Ile

and Leu). These amino acids might be involved in stabilizing the half-life of peptides. The pep-

tides with a short half-life are enriched in aromatic (Tyr and Phe) and neutral amino acids

(Gly, His, Ser and Tyr). Previously, Morozumi et al., 2011 have shown that substitution of Glu

with neutral amino acids resulted in lowering of the half-life of analogs of motilin-grehlin chi-

meric peptides [27]. We studied the distribution of half-life of the peptides with different

sequence similarity present in our natural peptide dataset (S1 Fig) and observed that even the

substitution of a single or double residue results in changing the half-life of the peptide signifi-

cantly (S1 Table). The correlations between the half-lives of all 163 natural peptides with

amino acid composition and physicochemical properties also show similar patterns (S2 and S3

Tables). It was observed that composition of amino acid Ala (a hydrophobic, non-polar resi-

due) shows highest correlation followed by Glu (a negative charge residue) (S2 Table). In con-

trast, the composition of Phe (an aromatic residue) shows highest negative correlation with

half-life of peptides. Previous studies have also reported lowering of half-life in peptides

enriched in aromatic amino acids[31–33].

Prediction of half-life on the natural dataset

In silico models have been developed on 163 natural peptides, to predict the half-life of pep-

tides using different types of sequence-based features (Table 1). The amino acid composition

based regression model achieved a maximum Pearson’s correlation coefficient (R) of 0.643
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with mean absolute error (MAE) 1.531. The dipeptide composition based model attained R of

0.640 with MAE of 1.539. The atom composition achieved R of 0.532. To analyze the role of

the amino acids present at the termini of the sequence, the first five residues of the N-terminus

and the 5 residues from the C-terminus were used to develop models. Amino acid composition

Fig 2. Comparison of the (a) physiochemical properties and (b) amino acid composition of top 20 peptides with the longest and shortest half-life.

https://doi.org/10.1371/journal.pone.0196829.g002
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of N5 reached R of 0.251 with MAE of 2.723 while C5 achieved R of 0.245 with MAE of 2.317.

Dipeptide composition of N5 reached R of 0.163 while R of C5 was 0.230. The binary composi-

tion of N5 showed R = 0.174 with MAE of 2.515 while C5 reached R = 0.271, MAE being

2.304. To develop structure-based regression models we used 45 selected PaDEL descriptors

(S4 Table) and applied various machine-learning techniques. The maximum R of 0.743 with

MAE = 1.369 was achieved on SMOreg (Table 2). Performance of the model trained on

PaDEL descriptors was also evaluated on the 10% independent dataset. We achieved R of 0.2

with MAE 1.646 and RMSE of 2.11. Detailed description of the features can be obtained from

http://www.yapcwsoft.com/dd/padeldescriptor/.

Prediction of half-life on the modified dataset

On the dataset with 261 sequences containing both modified and natural sequences, we used

atom composition and PaDEL descriptors as input features. Atom composition attained R of

0.586 with MAE of 1.756. The 43 selected PaDEL features (S5 Table) achieved a maximum

Pearson’s correlation coefficient of 0.692 with MAE = 1.564. The performances of the models

of other machine learning techniques are given in Table 3.

Table 1. Performance of SVM based regression models on various input features on 163 natural peptide dataset.

Features Residues in peptide R MAE RMSE

Amino acid composition All residues 0.643 1.531 2.186

5 N-terminal 0.251 2.723 3.359

5 C-terminal 0.245 2.317 2.825

Dipeptide composition All residues 0.640 1.539 2.196

5 N-terminal 0.163 2.767 3.299

5 C-terminal 0.230 2.378 2.821

Binary pattern 5 N-terminal 0.174 2.515 2.958

5 C-terminal 0.271 2.304 2.786

Atom composition All residues 0.532 1.761 2.426

https://doi.org/10.1371/journal.pone.0196829.t001

Table 2. Results of the performance of various machine-learning techniques using 45 selected PaDEL descriptors

as input feature on 163 natural peptide dataset.

Methods R MAE RMSE

SVM 0.734 1.503 1.992

SMOreg 0.743 1.369 1.932

Linear Regression 0.696 1.659 2.119

Gaussian Processes 0.561 1.804 2.389

IBk 0.515 1.913 2.789

https://doi.org/10.1371/journal.pone.0196829.t002

Table 3. Results of the performance of various machine-learning techniques using 43 selected PaDEL descriptors

as input feature on 261 peptides containing both natural and modified residues.

Methods R MAE RMSE

SVM 0.692 1.564 2.075

SMOreg 0.618 1.671 2.254

Linear Regression 0.630 1.656 2.208

Gaussian Processes 0.575 1.750 2.292

IBk 0.471 1.949 2.751

https://doi.org/10.1371/journal.pone.0196829.t003
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Implementation and description of web-server

In order to contribute to the community, we have implemented the models developed in the

form of a freely accessible web server called ‘PlifePred’. Researchers can utilize this platform to

predict and design the half-life of peptides. This web-server has two main modules-Natural

and Modified. The Natural module has two sub-modules-Sequence Based and Structure

Based. The Sequence Based module has three modules: Analog Generation, Batch Submission

and Protein Scan. These modules will facilitate users with peptide composed of all natural

residues in the sequence. Analog Generation module allows users to predict the half-life of

a natural peptide and generates all possible single point mutation analogs along with the phy-

siochemical properties, facilitating the scientific community in designing peptides with desired

half-life and physiochemical properties. Batch Submission module assists users to screen

peptide sequences in bulk and predicts half-life as well as physiochemical properties of the

sequences. The Protein Scan tool allows users to submit a protein sequence and it predicts the

half-life of overlapping peptides of a length chosen by the user along with their physiochemical

properties, besides allowing generation of mutant peptides of peptide fragment selected by the

user. The Structure Based module has two modules: Draw and File. In the Draw module, Mar-

vin Draw applet has been integrated to facilitate users to draw and submit queries of desired

peptide structures. Users with pdb files of their query peptide can use the File module to pre-

dict the half-life of peptides in blood. The Modified module also has Draw and File sub-mod-

ules which will be useful in the rational designing of the half-life of peptides with chemical

modifications and non-natural amino acids. This module will be useful for users to study

the effect on the half-life of peptides when different modifications are introduced within its

sequence. The PlifePred web-server was implemented using HTML, PHP and Perl languages

and is available at URL http://webs.iiitd.edu.in/raghava/plifepred/.

Discussion

Despite the advantages of peptides over small drugs, many of them fail to reach the market

because of their low stability in vivo as a result of degradation by proteases. The half-life of

therapeutic peptides governs their bioavailability, biodistribution and their dosing regimen. In

the wet-lab, it is a costly and time-consuming process to synthesize peptides and examine the

effect of mutating different residues and the role of different chemical modifications on the

desired peptide. To help researchers and expedite their research, in the present study, we

have developed in silico models to predict the half-life of modified as well as natural peptide

sequences. The models have been developed on the largest available dataset of experimentally

validated half-life of peptides in blood. The structure-based models using chemical descriptors

as input features gave the best results for both modified and natural dataset followed closely by

the amino acid composition-based model on the natural dataset. We also benchmarked our

result with the tools (ProtLifePred, ProtParam and HLP) already available in the literature and

observed that none of them were able to outperformed our method. ProtLifePred and Prot-

Param showed R of 0.051 with MAE 35298 whereas HLP showed the R of 0.08 with MAE of

2821. One possible reason could be that these softwares are not specifically designed for pre-

dicting half-life of peptides present in blood. The compositional analysis revealed that the

charge and size of peptides are important parameters governing peptide stability. The shorter

half-life is observed in peptides rich in large and aromatic amino acids whereas peptides with

negatively charged and small amino acids have a longer half-life. These results are concordant

with the study performed by Sharma et al. for analyzing the half-life of peptides in intestine-

like environment [22]. The models obtained in the present study have been integrated in a

freely available web server ‘PlifePred’ to aid the scientific community in the rational designing
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of peptide half-life. PlifePred will be a useful resource to predict and study the effects of various

mutations and modifications on the half-life of peptides in blood.
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