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Autism spectrum disorder (ASD) and anxiety disorders (ANX) are common neurodevelopmental conditions with several overlap-
ping symptoms. Notably, many children and adolescents with ASD also have an ANX diagnosis, suggesting shared pathological
mechanisms. Here, we leveraged structural imaging and phenotypic data from 112 youth (33 ASD, 37 ANX, 42 typically developing
controls) to assess shared and distinct cortical thickness patterns of the disorders. ANX was associated with widespread increases
in cortical thickness, while ASD related to a mixed pattern of subtle increases and decreases across the cortical mantle. Despite
the qualitative difference in the case–control contrasts, the statistical maps from the ANX-vs-controls and ASD-vs-controls analyses
were significantly correlated when correcting for spatial autocorrelation. Dimensional analysis, regressing trait anxiety and social
responsiveness against cortical thickness measures, partially recapitulated diagnosis-based findings. Collectively, our findings provide
evidence for a common axis of neurodevelopmental disturbances as well as distinct effects of ASD and ANX on cortical thickness.
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Introduction
Autism spectrum disorder (ASD) and anxiety disorders
(ANX) are two of the most prevalent neuropsychiatric
conditions affecting young people (Krain et al. 2007;
Twenge et al. 2010; Xu et al. 2018; Blumberg et al.
2013) and typically persist into adulthood (Kessler
et al. 2005; Mandell et al. 2005). Traditionally, both are
diagnosed based on clinical history and symptomatology
(Mullin and Funderburk 2013), and their study has
provided valuable human evidence on different aspects
of social and affective processes. ASD has frequently
been associated with atypical social cognition (Frith
and Happé 1994; Baron-Cohen 1997), while ANX is
related to atypical emotional reactivity and regulation
(Campbell-Sills and Barlow 2007; Cisler et al. 2010).

Despite this conceptual distinction, high comorbidities
of ASD and ANX render the situation more complicated,
with 40% of children and adolescents with ASD having
a concurrent ANX diagnosis (van Steensel et al. 2011),
which may be indicative of common neurodevelopmen-
tal perturbations (White et al. 2009; van Steensel et al.
2011). High comorbidity may also be due to challenges

in differential diagnosis using current measures, which
adds impetus to studying ASD and ANX in a more dimen-
sional manner. A handful of neuroimaging studies have
demonstrated qualitatively distinct effects of ANX and
ASD on amygdala volume and task-related activations
(Herrington, Maddox, Kerns, et al. 2017; Herrington,
Maddox, McVey, et al. 2017; Ibrahim et al. 2019). While
these studies focused on localized differences, a more
flexible approach may be beneficial to illuminate a
broader range of shared or unique aspects of neu-
roanatomy in ASD and ANX. Cortical thickness is an
ideal candidate, because it is widely accessible, provides
a clear quantification of brain morphology, and reflects
cellular and synaptic organization (Huttenlocher 1979;
Schuz and Palm 1989; Desrivieres et al. 2015). Starting
from a whole-cortex perspective, we may identify
similarities in large-scale patterns, then narrow toward
unique neuroanatomical features of the disorders within
specific functional systems.

Previous studies have reported cortical anomalies
in ASD relative to typically developing controls (TDC)
(Redcay 2007; Raznahan et al. 2010; Wallace et al. 2010;
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Scheel et al. 2011; Khundrakpam et al. 2017; Pereira
et al. 2018). While also emphasizing considerable
heterogeneity across included sites, several recent large-
scale studies have, nevertheless, generally converged
on increased thickness in frontal and temporal cortical
areas in individuals with ASD (Valk et al. 2015; Hong
et al. 2017; Bedford et al. 2020). Studies assessing
cortical morphology in ANX have also pointed to
increased cortical thickness in medial and lateral frontal
regions relative to TDC (Strawn et al. 2014; Gold et al.
2017), with, however, a seemingly different spatial
topography compared to ASD. It thus remains to be
established whether syndromic differences are also
reflected in divergent signatures of regional morphology,
and whether the locations of unique neuroanatomical
features relate to certain functional systems or types of
symptoms.

This study investigated shared and distinct struc-
tural substrates of ASD and ANX in the cortex, pro-
viding an in vivo neuroanatomical complement to
previous clinical and pharmacological studies (van
Steensel et al. 2011; Vasa and Mazurek 2015). The
importance of community-representative cohorts for
translation and inclusivity in psychiatric research
has been clearly asserted for clinical trials (Geddes
2005; Surman et al. 2010), but is less acknowledged in
neuroimaging research. Based on these recommenda-
tions, ANX and attention-deficit/hyperactivity disorder
(ADHD) comorbidities were nested within the clinical
samples, and we used dimensional correlation analysis
and categorical case–control comparisons to balance
interpretability and external validity (Kraemer et al.
2004; Kapur et al. 2012). Categorical analyses inform
upon the common abnormalities within a primary
diagnosis, whereas dimensional analyses illustrate the
relevance of cortical variations to a specific clinical
symptom.

In light of the comorbidity of ANX in ASD, we
predicted shared morphological alterations in both
primary diagnostic groups compared to controls. We,
nevertheless, also hypothesized that cortical thickness
differences would be concentrated within functional
networks relevant to disorder-specific behaviors, and
these would overlap with dimensional associations of
core symptoms. Specifically, we expected more marked
structural alterations in ANX within networks previously
implicated in emotion processing, such as the limbic and
ventral attention networks (Seeley et al. 2007; Menon
2015), and changes related to ASD within networks
that may more generally contribute to sociocognitive
processing, such as the default mode network (Schilbach
et al. 2008). Our work leveraged data provided by the
Healthy Brain Network (HBN), an ongoing and large-
scale transdiagnostic sample aggregating imaging and
phenotypic data in typically developing children and
adolescents as well as individuals with a neuropsychi-
atric diagnosis, that allowed direct comparison across
the ASD, ANX, and TDC cohorts (Alexander et al.
2017).

Materials and Methods
Participants
We studied the open-access Child Mind Institute HBN
dataset (Alexander et al. 2017), which aims to cover
a broad range of developmental psychopathology.
Participants were recruited via community-referral (for
inclusion criteria, see http://fcon_1000.projects.nitrc.org/
indi/cmi_healthy_brain_network/inclusion.html). HBN
was approved by the Chesapeake Institutional Review
Board. Written informed consent was obtained from all
participants and from legal guardians of participants
younger than 18 years.

The HBN protocol consists of four 3-h sessions
collecting general information, behavioral measures,
diagnostic assessments, and neuroimaging data (for a
complete list of measures, see http://fcon_1000.projects.
nitrc.org/indi/cmi_healthy_brain_network/assessments.
html). Psychiatric diagnoses were assessed and reported
by clinicians according to DSM-5 criteria. Among the 2778
individuals from releases 1–8 with magnetic resonance
imaging (MRI), we restricted inclusion to participants
with a T1-weighted image and no diagnosis, ASD diag-
nosis or ANX diagnosis. Participants were categorized
as ASD, if they had any ASD diagnosis, or ANX, if they
had any ANX diagnosis without an ASD diagnosis. Of
note, individuals in ASD group could also have an ANX
diagnosis. Exclusion criteria were any other psychiatric
or intellectual comorbidities, except for ADHD in the ASD
and ANX groups. We chose to include participants with a
secondary diagnosis of ADHD in these groups due to the
high prevalence and to provide a more representative
community sample of the diagnoses. Although three
collection sites provided data to the included releases
of the HBN dataset, we further restricted inclusion to
participants from the Staten Island (SI) and Rutgers
University Brain Imaging Centre (RU) sites, as an
adequate number of TDC did not pass quality control
in the third site. Following rigorous quality control (see
MRI Processing and Quality Control), we included 112
participants: 33 ASD, 37 ANX, and 42 TDC (Table 1).

MRI Acquisition
Imaging at SI was conducted using a 1.5 T Siemens
Avanto scanner with a 32-channel head coil. Three-
dimensional T1-weighted sagittal magnetization-
prepared rapid acquisition gradient echo (MPRAGE)
structural images were obtained with the following
parameters: repetition time (TR) = 2730 ms, echo time
(TE) = 1.64, 3.5, 5.36, or 7.22 ms, flip angle = 7◦, field-
of-view (FoV) = 256 mm2, resulting in 176 slices with
1.0 × 1.0 × 1.0 mm3 voxels (Alexander et al. 2017).
Imaging at the RUBIC was conducted using a 3 T Siemens
Tim Trio scanner with a 32-channel head coil. Three-
dimensional T1-weighted sagittal MPRAGE structural
images were obtained with the following parameters:
TR = 2500 ms, TE = 3.15 ms, flip angle = 8◦, FoV = 256 mm2,
resulting in 224 slices with 0.8 × 0.8 × 0.8 mm3 voxels
(Alexander et al. 2017).

http://fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_network/inclusion.html
http://fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_network/inclusion.html
http://fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_network/assessments.html
http://fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_network/assessments.html
http://fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_network/assessments.html
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MRI Processing and Quality Control
FreeSurfer (v6.0; http://surfer.nmr.mgh.harvard.edu) was
used to generate cortical surface models and to mea-
sure cortical thickness (Fischl and Dale 2000). In brief,
FreeSurfer automatically reconstructs geometric models
of the inner and outer cortical interfaces using a series of
volume- and surface-based processing steps. Extracted
surfaces in each individual were registered to fsaver-
age5, an average spherical representation with 20 484
surface points, by aligning cortical folding patterns. Sur-
face extractions were visually inspected, and segmenta-
tion inaccuracies were manually corrected by one rater
(S.Y.) blinded to participant diagnoses. We excluded 43%
of participants because of head motion or low tissue
contrast. Thickness data were smoothed using a surface-
based Gaussian kernel with 20 mm full-width-at-half-
maximum. This process reduces noise and misalign-
ment between vertices by replacing values in images
as a weighted average of itself and its neighboring ver-
tices (Lerch and Evans 2005). Subsequent, surface-based
analysis was carried out using SurfStat (https://mica-
mni.github.io/surfstat/; Worsley et al. 2009) for Matlab
(R2017b, The Mathworks).

Phenotypic Assessments
We focused on the Social Responsiveness Scale (SRS-
2) and the Screen for Child Anxiety Related Disorders
(SCARED) to index autism and anxiety risk, respectively.
Both scales have moderate-to-high internal consistency,
interrater reliability, and test–retest reliability (Bölte et al.
2008; Su et al. 2008; Bruni 2014). SRS-2 measures deficits
of social interaction and communication in ASD and
consists of 65 items rated on a 3-point scale by parents
of participants ages 5–17 years (Constantino et al. 2003).
SCARED is a questionnaire consisting of 41 items rated
on a 3-point scale that screens for childhood anxiety
(Birmaher et al. 1999). Parent- and self-report compo-
nents of SCARED were moderately correlated (r = 0.31,
P < 0.001). In line with prior studies (Gold et al. 2017;
Ivarsson et al. 2018), an average score was used. Group
differences (ASD, ANX, TDC) in phenotypes (SRS-2 and
SCARED) were assessed within each site using one-way
analysis of variance. Pair-wise differences were evaluated
post-hoc with a series of Tukey tests.

Brain–Phenotype Analyses
To assess brain–phenotype associations, we fitted linear
models to assess effects of SRS-2 (or SCARED) score on
cortical thickness measures

Ti = β0 + β1 ∗ Sex + β2 ∗ Age + β3 ∗ score + ε.

We included all participants who passed quality con-
trol in this analysis. We tested for significant clusters by
correcting for multiple comparisons with random field
theory (Worsley et al. 2009). This controlled the chance

http://surfer.nmr.mgh.harvard.edu
https://mica-mni.github.io/surfstat/
https://mica-mni.github.io/surfstat/
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Table 2. Balance of age, sex, and comorbidity of ADHD before/after matching

Site 1: Staten Island Site 2: Rutgers University

Unmatched Matched Balance
improvement

Unmatched Matched Balance
improvement

Age (years) ASD 11.96 11.96 12.67 12.67
ANX 11.81 12.30 −127% 12.88 12.75 66%
TDC 12.50 12.69 −34% 10.48 10.93 20%

Sex (female) ASD 6 6 3 3
ANX 6 6 100% 5 4 41%
TDC 13 6 100% 9 7 19%

ADHD ASD 14 14 7 7
ANX 13 11 35% 14 13 2%

Note: ANX and TDC groups were independently matched to the ASD group (fewest participants), as such the ASD group distributions do not change with the
matching procedure.

of reporting a family-wise error (FWE) to P < 0.05. As in
previous study, a cluster defining threshold of P < 0.025
was used (Valk et al. 2017).

To assess shared substrates of both SRS-2 and SCARED
on brain structure, we computed product–moment
correlations between the t-statistic maps of the above
contrast. Spatial dependencies are produced in cortical
measurements by smoothing and motion artifacts, as
well as the spatial constraints of brain organization.
Parametric tests on the correspondence of spatial maps
falsely assume spatial independence, however, leading to
high false-positive rates. Thus, we determined the signif-
icance of spatial map correspondence using the spatial
spin permutation test method with 10 000 permutations
(Alexander-Bloch et al. 2018; Vos de Wael et al. 2020).
In brief, this method generates a null distribution by
comparing a spatial map to a permutated map created by
applying random rotational permutations to a spherical
representation of a cortical surface (Alexander-Bloch
et al. 2018). We deemed the association significant where
Pspin < 0.025.

Case–Control Differences in Cortical Thickness
The matchit package in R (v3.2.5; https://cran.r-project.
org/web/packages/MatchIt/MatchIt.pdf) was used to
match the participants across groups in order to reduce
model dependence and potential for bias (Ho et al. 2007).
Given that the ASD group had fewest participants, we
matched the TDC group to the ASD group based on
age and sex and matched the ANX group to the ASD
group based on age, sex, and ADHD diagnosis. The
procedure was conducted independently within each
site. The argument specifications were “nearest” for
method with a ratio of 1, indicating that participants
should be matched as closely as possible and only once.
The matched cohorts used for within site case–control
contrasts consisted of 54 participants for site 1 and 45 in
site 2. Site 1 and site 2 each had equal representation of
ASD, ANX, and TDC groups. Table 2 summarizes changes
in the groups before and after matching.

Linear models compared cortical thickness at each
vertex i between ANX and TDC as well as ASD and TDC.

The corresponding model at each vertex was

Ti = β0 + β1 ∗ Sex + β2 ∗ Age + β3 ∗ group + ε.

We enacted this model within each site using matched
data. We tested for significant clusters by correcting for
multiple comparisons with random field theory (Worsley
et al. 2009). This controlled the chance of reporting a
FWE to P < 0.05. As in previous work, a cluster defining
threshold of P < 0.025 was used (Valk et al. 2017).

We also repeated the model twice with both sites
combined. In one iteration we harmonized across sites
using ComBat (Johnson et al. 2007), a powerful technique
for batch-effect correction that estimates site-specific
scaling factors and uses empirical Bayes to improve the
estimation for small sample sizes (Fortin et al. 2018), and
in another iteration we simply regressed site within the
linear model

Ti = β0 + β1 ∗ Sex + β2 ∗ Age + β3 ∗ group + β4 ∗ site + ε.

To determine the spatial correspondence of t-statistic
maps, we performed pair-wise product–moment corre-
lations between case–control t-statistic maps (ASD-TDC
and ANX-TDC), as well as dimensional t-statistic maps
(SRS-2 and SCARED), and evaluated significance with
spin permutation testing, as in Brain-Phenotype Analy-
ses.

Common and Distinct Patterns in Functional
Networks
The canonical seven functional networks (Yeo et al.
2011) provide a framework to localize shared and distinct
patterns of ASD and ANX to specific brain systems. First,
we defined types (cross-disorder, categorical vs. dimen-
sional, or between-site) for the key spatial correspon-
dence tests. The type names reflect the parameter that
differs between the two maps. For example, comparison
of site 1 ASD-TDC with site 1 ANX-TDC is a cross-disorder
test, because only the disorder contrast is different
between the maps, while the approach and the site are
the same for both maps. Four tests belong to each type.

https://cran.r-project.org/web/packages/MatchIt/MatchIt.pdf
https://cran.r-project.org/web/packages/MatchIt/MatchIt.pdf
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Next, we repeated each of the typified tests within each
functional network. In other words, we performed pair-
wise product–moment correlations between t-statistics
within each functional network. Then, we calculated
the average and standard deviation of correlation
coefficients for each type and each network to determine
whether spatial correspondence was specific to certain
functional systems.

To examine distinct patterns of the disorders, we
performed linear regression between pairs of t-statistic
maps (ASD-TDC vs. ANX-TDC; SRS-2 vs. SCARED) and
extracted the standardized residuals to represent the
deviation of a region from the common axis of the
two maps. The procedure was performed in each site
separately, then residuals were averaged across the two
sites. The average residual maps were thresholded based
on consistency across sites. Specifically, vertices with
residuals of different signs in each site were set to
zero, thereby maintaining residuals in regions with a
consistent direction of the effect. To test for preferential
localization of distinct effects within certain functional
networks, we compared the average residual within each
network to 10 000 spin permutations of the residual
map. We deemed the association significant where
Pspin < 0.025.

Results
Group Differences in Phenotypes
Studying phenotypic differences among ASD, ANX, and
TDC in site 1 (i.e., Staten Island), we observed group dif-
ferences in SRS-2 (F(2, 60) = 31.65, P < 0.001) and SCARED
(F(2, 55) = 8.12, P < 0.001) (Fig. 1A; Table 1). Post-hoc Tukey
tests showed a graded increase in SRS-2 from TDC to
ANX to ASD. ASD and ANX did not differ on SCARED,
but both were significantly greater than TDC. Repeat-
ing the analysis without the outlier did not impact the
reported effects. Analyzing site 2 (i.e., Rutgers) yielded
similar results. Group differences were found in SRS-
2 (F(2, 42) = 16.46, P < 0.001) and post-hoc Tukey tests
showed that scores in ASD were significantly greater
than both ANX and TDC groups (Fig. 1B; Table 1). Anal-
ysis of variance did not indicate significant differences
between groups for SCARED (F(45) = 2.96, P = 0.06), but
both ASD and ANX groups were greater than TDC at a
trend level.

Associations between Phenotypic and Cortical
Thickness Measures
At the neuroanatomical level, we correlated SRS-2
and SCARED scores with cortical thickness across all
three diagnosis-based groups (Fig. 1A). Higher scores
were variably associated with increased and decreased
cortical thickness but no clusters passed the criteria for
significance after correcting for multiple comparisons.
The SRS-2 and SCARED t-statistic maps were moderately

correlated (r = 0.56) in site 1 (Fig. 1Aiii), suggesting
convergence of the SRS-2 and SCARED associations with
cortical thickness. Spin permutation testing confirmed
that overlap was not attributable to shared spatial auto-
correlation (Pspin = 0.002). We also observed significant
correspondence between SRS-2 and SCARED t-statistic
maps in site 2 (r = 0.37, Pspin = 0.006) (Fig. 1Biii).

Group Differences in Cortical Thickness
In both sites, case–control differences were associated
with varied increases and decreases in cortical thick-
ness (Fig. 2). No clusters passed threshold for signifi-
cance after correcting for multiple comparisons. Com-
bining the two datasets, no clusters passed the thresh-
old for significance, either when harmonizing the data
across sites or regressing site in the linear model. Despite
evident site-wise differences, we consistently observed
correspondence of the ASD-vs-TDC and ANX-vs-TDC t-
statistic maps (site 1: r = 0.47. site 2: r = 0.39), supporting
our hypothesis of common axis of neurodevelopmental
abnormalities in ASD and ANX. Spin permutation tests
indicated that this similarity was not attributable to
shared spatial autocorrelation (Fig. 2iii; Pspin < 0.001).

Furthermore, in site 1, the ASD-vs-TDC contrast
exhibited moderate–strong correspondence with the
main effect of SRS-2 on cortical thickness (Fig. 2A,
r = 0.65; Pspin < 0.001), suggesting convergent cortical
substrates of phenotypic variables of autism risk and
autism diagnosis. Specificity for ASD was suggested, as
the SRS-2 correlation map was only weakly correlated
with the ANX-vs-TDC contrast map (Fig. 2A; r = 0.33;
Pspin < 0.001). Considering the main effect of SCARED on
cortical thickness, the t-statistic map was moderately
correlated with the ANX-vs-TDC contrast (r = 0.42;
Pspin < 0.001) and weakly correlated with the ASD-vs-
TDC contrast (r = 0.34, Pspin < 0.001). Overall similar, albeit
weaker, findings were seen in site 2 (Fig. 2B). The t-
statistic maps of SRS-2 and ASD-vs-TDC effect were
moderately correlated (r = 0.53; Pspin < 0.001), while no
correspondence with ANX-vs-TDC was indicated (r = 0.09
Pspin = 0.133). Moreover, the t-statistic map of the SCARED
effect was moderate–weakly correlated with both the
ANX-vs-TDC contrast (r = 0.38, Pspin < 0.001) and the ASD-
vs-TDC comparison (r = 0.28, Pspin = 0.006).

Combining Brain–Phenotype and Case–Control
Analyses
We sought to aggregate analyses to determine the
consistency of our key results. Cross-correlation of the
eight maps shown in Figures 1–2 highlights common
effects, despite site-related idiosyncrasies (Fig. 3A).
We observed moderate spatial correlations of ASD-
related and ANX-related cortical thickness differences,
regardless of site or whether a categorical or dimensional
approach was used (r = 0.45 ± 0.08; Fig. 3B). Additionally,
we found moderate spatial correlations between cortical
thickness differences of categorical and dimensional
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Fig. 1. Dimensional analyses of ASD- and ANX-related risk. Boxplots show the range of (i) SRS-2 and (ii) SCARED scores within each group, ∗∗∗P < 0.001.
Cutoff scores for risk of ASD and ANX are shown on the boxplots (60 for SRS-2 and 25 for SCARED; Birmaher et al. 1997, Constantino et al. 2007; Canals
et al. 2012; Moody et al. 2017). Surface plots show the main effect of (i) SRS-2 and (ii) SCARED scores on cortical thickness. (iii) Scatter plots show spatial
map correspondence between the main effect of SRS-2 and the main effect of SCARED.

Fig. 2. Case–control analysis. Cortical thickness comparison of TDC with (i) ASD and (ii) ANX. The neighboring plots show the correlation coefficient of
the correspondence between each group difference map with each phenotypic map (from Fig. 1). The large black dots indicate the empirical correlation
coefficient, while the gray areas represent the null distribution. Thereby, when the black dot is higher than the gray area, the correlation is significant.
(iii) Scatter plots show spatial map correspondence between ASD-vs-TDC and ANX-vs-TDC.

approaches, regardless of site or whether the predictor
focused on ASD or ANX (r = 0.50 ± 0.12; Fig. 3B). Further-
more, to test whether correspondences were specific
to certain functional networks, we repeated analyses
using cross-correlation of t-statistics within functional
networks (Yeo et al. 2011). We observed overlapping effect

sizes across all networks, showing distribution of the
correspondences across the brain (Fig. 3C).

Distinct Patterns within Functional Networks
The preceding analyses highlighted moderate spatial
correspondence of ASD and ANX associations with
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Fig. 3. Comparison and aggregation of spatial maps. (A) The matrix depicts the spatial correlation of case–control and dimensional maps across sites.
(B) Labeling the cross-correlation estimates by analysis type, we can observe consistency of cross-disorder similarities and categorical-vs-dimensional
approaches, whereas similarities across sites are consistently low. (C) Cross-correlations performed within functional network (Yeo et al. 2011), organized
by type. DAN = dorsal attention network. VAN = ventral attention network. DMN = default mode network.

cortical thickness, using both dimensional and case–
control approaches. Certain regions exhibit distinctively
stronger effects in one phenotype or one disease, which
is reflected by the residuals of linear models (Fig. 4).
To robustly define distinctive regions, we thresholded
the residual map based on consistency across the two
sites. Stratifying residuals by functional networks, dorsal
attention and frontoparietal cortical thickness showed
stronger increases related to SCARED than SRS-2 (dor-
sal attention: residuals = 0.55 ± 0.81, Pspin = 0.035; fron-
toparietal: residuals = 0.56 ± 0.83, Pspin = 0.013; Fig. 4A).
Conversely, the limbic network showed stronger effects
related to SRS-2 than SCARED (residual = −0.78 ± 0.51,
Pspin = 0.049; Fig. 4A), which reflects the positive asso-
ciation of SRS-2 and negative association of SCARED
with cortical thickness in the limbic network (Fig. 1).
Similarly, limbic network showed stronger effects related
to ASD than ANX (residual = −0.95 ± 0.46, Pspin = 0.013;
Fig. 4B), reflecting a slightly positive association of
ASD and slightly negative association of ANX with
cortical thickness in the limbic network (Fig. 2). Thus,
neuroanatomy of the limbic network may dissociate ASD
and ANX.

Discussion
Our study aimed at identifying shared and distinct cor-
tical substrates of primary diagnoses of ASD and ANX
as well as phenotypic risk measures. Case–control dif-
ferences in cortical thickness significantly overlapped,
demonstrating a common axis of ANX- and ASD-related
cortical malformations, though cortical thickness signa-
tures in the limbic network differed between the disor-
ders. Our case–control findings were complemented by
phenotypic correlation analyses, lending a dimensional
perspective on structural substrates of ASD and ANX risk.

Behavioral phenotypes captured similar morphological
patterns as group-level differences, particularly in the
case of ASD. In addition, we identified a unique signature
of the anxiety phenotype in increased cortical thickness
within dorsal attention and frontoparietal networks. Col-
lectively, our neuroanatomical findings support emerg-
ing transdiagnostic frameworks in highlighting common
substrates of neurodevelopmental disorders.

Our regional analysis harnessed MRI-based cortical
thickness measures, a reliable technique that has pre-
viously been applied to profile morphological variations
across a broad spectrum of typical and atypical neu-
rodevelopment (Raznahan et al. 2010). In line with prior
surface- and voxel-based analyses, our results were sug-
gestive of diffuse gray matter increases in individuals
with ASD (Raznahan et al. 2010; Wallace et al. 2010;
Scheel et al. 2011; Valk et al. 2015; Hong et al. 2017;
Khundrakpam et al. 2017; Pereira et al. 2018; Bedford
et al. 2020), as well as ANX (Strawn et al. 2014; Gold et al.
2017). However, sensitivity of the present transdiagnostic
sample was relatively low for specifying localized differ-
ences. While limitations in sensitivity may result from
our modest sample size, our study benefitted from strict
inclusion criteria with respect to data quality, together
with formal matching procedures that ensured similar
age and sex distributions across the cohorts as well as
a matched prevalence of ADHD comorbidity in ASD and
ANX groups. Furthermore, increasing the sample size, by
combining the sites and performing batch-effect harmo-
nization (Johnson et al. 2007; Fortin et al. 2018), did not
provide significant clusters of case–control differences.
Heterogeneity in cortical thickness estimates within each
group were pronounced. Further stratification of diag-
nostic groups may facilitate identification of regional
disruptions, as has been shown in ASD (Hrdlicka et al.
2005; Hong et al. 2019; Chen et al. 2019). As the HBN
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Fig. 4. Distinct cortical thickness signatures within functional networks. Left correspondence of t-statistic maps for site 1, colored by standardized resid-
uals. Centre averaged, consistency-thresholded standardized residuals, taken across both sites. Right residual stratified by functional networks (Yeo et al.
2011). ∗Pspin < 0.05. VIS = visual. SOM = somatomotor. DAN = dorsal attention network. VAN = ventral attention network. LIM = limbic. FP = frontoparietal.
DMN = default mode network. (A) Comparison of SRS-2 and SCARED maps. (B) Comparison of ASD-TDC and ANX-TDC maps.

cohort increases, normative modeling approaches could
be used to approximate deviations within the TDC across
age, then individual deviations from normative curves
may be estimated for ASD and ANX (Marquand et al.
2016; Bethlehem et al. 2020).

In addition to the categorical case–control analyses,
we examined the association of regional markers of
cortical thickness with behavioral risk indices of ASD
and ANX. Diagnostic and phenotypic associations closely
overlapped in the case of ASD but were less convergent
in the case of ANX. This suggests that SRS-2 captures
a relationship between cortical morphology and clinical
phenotype that transcends diagnostic boundaries but is
most severe in ASD. SCARED scores were not significantly
correlated with cortical thickness across the cohort. Two
previous studies with larger sample sizes of typically
developing children (Merz et al. 2018) or both typically
developing children and children with an ANX (Gold et al.
2017) also reported a null relationship of SCARED with
vertex-wise estimates of cortical thickness, suggesting
the lack of brain–behavior relationship is not simply due
to sample size or the use of a transdiagnostic cohort. As
this approach aggregates multiple forms of anxiety, more
fine-grained phenotyping may be necessary to identify
brain–behavior associations of anxiety. This may be
especially crucial in transdiagnostic research programs,
where diagnostic categories are associated with distinct
forms of anxiety.

The diagnostic groups share a common axis of cortical
thickness differences relative to TDC. This was confirmed
by spin tests that control for the shared spatial auto-
correlations in two surface-based maps (Alexander-Bloch
et al. 2018) and was observed within both sites. Genome-
wide association studies indicate that major neuropsy-
chiatric disorders have overlapping polygenic risk pro-
files (Cross-Disorder Group 2013). These genetic poly-
morphisms can perturb neurodevelopment in a region-
ally specific manner, providing a plausible mechanism
for the emergence of common axis of cortical abnor-
malities across ASD and ANX. The overlap observed in
the present study may also be driven by a subgroup
within the ASD cohort with high ANX. Several studies
have demonstrated neuroanatomical subtypes of ASD
(Hrdlicka et al. 2005; Hong et al. 2019; Chen et al. 2019),
although the relation to ANX remains unclear as it is
often an exclusion criterion. Alternatively, the common
axis may reflect shared symptoms that are not asso-
ciated with ASD or ANX specifically, such as attention
deficits and hyperactivity. While each of these possi-
bilities is concordant with the hypothesis that genetic
similarities underlie the common axis of cortical abnor-
malities, it remains to be seen whether this spans the two
diagnoses and is related to specific subtypes or shared
symptoms.

While ASD and ANX share a common axis of morpho-
logical abnormalities, we observed their dissociation in
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the limbic network. Using both case–control and dimen-
sional approaches, ASD (or ASD-related risk) was associ-
ated with slight increases in thickness, whereas ANX (or
ANX-related risk) was associated with slight decreases
in thickness. Localizing this divergence was enabled by
focusing on effects that were consistent across both sites
and by expanding our field of view from vertices to func-
tional networks. Notably, the limbic network, encom-
passing the temporal pole and orbitofrontal cortex, is
strongly connected to the amygdala (Kerestes et al. 2017).
Previous studies on the dissociation of ASD and ANX cen-
tered on the amygdala, and indeed suggested disorder-
related differences (Herrington, Maddox, Kerns, et al.
2017; Herrington, Maddox, McVey, et al. 2017; Ibrahim
et al. 2019). Thus, our findings add to a growing body
of evidence on limbic system dissociation between ASD
and ANX.

As the HBN spans many neurodevelopmental disor-
ders, there are only modest sample sizes of individuals
diagnosed with specific disorders who met our inclusion
criteria. Given these limitations, we have focused on
effects that were replicable in both sites, such as the
common axis of case–control differences in ASD and
ANX. Shared ADHD comorbidities may partially account
this overlap, however, we lacked the sample size to test
this hypothesis with sensitivity analyses. Nevertheless,
including individuals with multiple diagnoses is an
important step toward more inclusive research that is
generalizable to clinical populations. The proportion
of individuals with ASD and ADHD in the present
study resides within population estimates [37% (Gadow
et al. 2006) and 85% (Lee and Ousley 2006)]. Our
dimensional analysis further aimed to address high rates
of comorbidity and substantial within-group hetero-
geneity. Additional questionnaires should be analyzed to
determine whether questionnaires targeted at different
behavioral dimensions of ASD and ANX capture other
brain–behavior associations and disentangle anxious
symptoms in ASD from ANX.

Our assessment of regional morphology lends support
to the power of transdiagnostic approaches to unveil
neurobiological factors that may play a role in the risk
for prevalent mental health conditions such as ASD and
ANX. The present study demonstrates that primary diag-
noses of ASD and ANX relate to distinctive patterns
of cortical morphology, even though many individuals
shared comorbid disorders. Further understanding the
neuroanatomical intersections and divergences of over-
lapping neurodevelopmental disorders will be benefitted
by the continued growth of open access transdiagnostic
datasets.
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