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Abstract: Water-in-oil (W/O) emulsions have high potential for several industrial areas as delivery
systems of hydrophilic compounds. In general, they are less studied than oil-in-water (O/W) systems,
namely in what concerns the so-called fluid systems, partly due to problems of instability. In this
context, this work aimed to produce stable W/O emulsions from a natural oil, sweet almond oil,
to be further tested as vehicles of natural hydrophilic extracts, here exemplified with an aqueous
cinnamon extract. Firstly, a base W/O emulsion using a high-water content (40/60, v/v) was developed
by testing different mixtures of emulsifiers, namely Tween 80 combined with Span 80 or Span 85
at different contents. Among the tested systems, the one using a 54/46 (v/v) Span 80/Tween 80
mixture, and subjected to 12 high-pressure homogenizer (HPH) cycles, revealed to be stable up to 6
months, being chosen for the subsequent functionalization tests with cinnamon extract (1.25–5%; w/v;
water-basis). The presence of cinnamon extract leaded to changes in the microstructure as well as in
the stability. The antimicrobial and antioxidant analysis were evidenced, and a sustained behavior
compatible with an extract distribution within the two phases, oil and water, in particular for the
higher extract concentration, was observed.

Keywords: emulsions; water-in-oil; cinnamon extract; sweet almond oil; hydrophilic extracts;
natural compounds

1. Introduction

Emulsions are colloidal systems consisting of two liquid phases, oil and water, one of which is
dispersed into the other [1,2]. Water-in-oil (W/O) emulsions consist of an aqueous phase dispersed,
in the form of small droplets, into a continuous oil phase [3,4]. W/O emulsions have high potential
for cosmetic, pharmaceutical, agricultural, and food industries [3,5–7]. For example, this type of
emulsion can be used for the encapsulation of medicines, immobilizing enzymes, and loading protein
drugs [5,8,9]. Its structure is suitable for the delivery of hydrophilic compounds, which, in turn,
may bring different functions to the emulsified system, such as antimicrobial and antioxidant activities.
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The main challenge in emulsion technology is their stability, once they are thermodynamically
unstable systems [10–12]. However, the kinetic transition to the water/oil separated phases can be
so slow that the emulsion may be considered metastable [13]. W/O emulsions generally present
lower stability than the oil-in-water (O/W) counterparts, due to the high mobility of water droplets,
which causes sedimentation, flocculation, or coalescence. Besides that, only steric forces are expected to
stabilize this type of emulsions due to the low electrical conductivity of the oil continuous phase [14,15].

In fact, there are only a few studies dealing with liquid W/O emulsions in the literature [3,5,15–17].
Some of these works are focused on the production of W/O emulsions by non-conventional methods,
i.e., without using mechanical processes [3,5], and both works corroborated the lack of studies in this
field. Cheng and co-workers carried out the preparation of highly monodispersed W/O emulsions
by membrane emulsification using Shirasu porous glass (SPG) membranes [5]. The emulsions were
composed by water, polyglycerol polyricinoleate (PGPR), and kerosene, being characterized by
a droplet size of 2–10 µm and a dispersion coefficient of 0.25. Ito and co-workers used the microchannel
(MC) emulsification technique to prepare monodisperse W/O emulsions from olive oil [3]. The main
objective was to study the effect of process parameters in emulsion formation, providing information
about interfacial and microfluidic phenomena of W/O systems for food applications.

The difficulty to obtain stable fluid W/O emulsions and the need to better understand the
interactions between their components at the water–oil interface was highlighted by Ushikubo et al. [15].
They evaluated the stability of emulsions formulated with different types of oils (hexadecane and
soybean oil) and emulsifiers (Span 80, lecithin, and PGPR) at two W/O ratios in order to promote the
development of new products based on liquid W/O emulsions. In another study, the stability of W/O
emulsions was studied concerning the evaluation of the effect of adding calcium salts in the dispersed
aqueous phase [16]. The system comprised the use of PGPR and sunflower oil as the emulsifier
and oil phase, respectively. Regarding food applications, Yi and collaborators analyzed the effect of
emulsifiers added to the aqueous phase, namely type and concentration, on lipid oxidative stability of
a water-in-walnut oil emulsion with a fixed PGPR content incorporated at the oil phase [17]. The lipid
oxidation is an undesirable occurrence in food due to the production of unpleasant odors and flavors.

Due to the lack of studies about W/O emulsions, comparatively with O/W emulsions, most of
the studied cases focus on emulsion’s properties such as stability and droplet formation, as well as
the effects of the used preparation method. The development of functionalized W/O emulsions is
therefore inexistent. In addition, there is a high tendency to use PGPR as emulsifier to achieve stable
W/O emulsions, since this compound is able to increase the viscosity of the medium, reducing the rate
of coalescence of water droplets [16]. Indeed, most of W/O emulsions correspond to solid or semi-solid
products, butter being a common example [15]. However, these forms may not be desired for certain
applications, such as topical and oral applications, justifying the need to study fluid W/O systems.

In this context, the objective of this work was to produce a stable W/O emulsion system using
a natural oil to be tested as a base vehicle to incorporate natural hydrophilic extracts. The sweet
almond oil is well known for its moisturizing, softening, and nutritive properties, being already used
in the cosmetic and pharmaceutical industries [18]. Its use as the continuous phase confer to the
emulsions high-added value for topical applications. Thus, the development of stable emulsions with
this natural oil gives the possibility to create different emulsion-based products, depending on the
added hydrophilic compound and imparted bioactivities.

To achieve the stated objective, a systematic study was carried out in order to find the best
formulation in terms of stability along storage time. For that, different base emulsions systems were
prepared by varying the emulsifier composition (Span 80/Tween 80 at 54/46 and 80/20 ratios, and Span
85/Tween 80 at 80/20 ratio) at a fixed content. A W/O ratio of 40/60 (v/v) was chosen to guarantee
a high-volume fraction of water, which may facilitate the incorporation of the intended hydrophilic
compounds. Moreover, the effect of the used number of high-pressure homogenization cycles was
evaluated. The best base formulation was used to incorporate a cinnamon (Cinnamomum zeylanicum)
aqueous extract, a natural extract with antimicrobial properties [19–21]. The obtained emulsions
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were characterized, and compared to the base emulsion, in terms of physical appearance, typology,
and microstructure, stability, and for antimicrobial and antioxidant activities.

2. Results and Discussion

2.1. Systematic Study and Base Emulsion Selection

In order to find the best base formulation and the corresponding preparation method, the prepared
emulsions were analyzed at both microscopic and macroscopic scale by optical microscopy (OM)
and visual inspection, respectively. The objective was to inspect for the occurrence of destabilization
phenomena during storage time. The base emulsion systems were composed by water and sweet
almond oil, at a W/O ratio of 40/60 (v/v), and an emulsifier mixture. The emulsifiers Span 80 (S80),
Span 85 (S85) and Tween 80 (T80), as well as the emulsifiers’ mixtures were chosen based on previous
works [7,22,23]. The emulsifier composition (v/v) was S80/T80 at 54/46 (HLB 9.2) and 80/20 ratios
(HLB 6.4), and S85/T80 at 80/20 ratio (HLB 4.4), coded as S80/T80 54/46, S80/T80 80/20 and S85/T80
80/20, respectively. The chosen HLB range (4–9), which in the classical HLB scale covers W/O and
wettability agents, was chosen to be further experimentally validated as effective stabilizers for W/O
systems. The used content of emulsifier was 6% (total emulsion-basis, v/v (%)). The effect of passing
the primary emulsions through a high-pressure homogenizer (HPH) using different number of cycles
(12, 21, and 24) was analyzed.

2.1.1. Analysis at the Microscopic Level

The morphology of the base emulsions, namely the primary emulsion, and emulsions subjected
to 12 HPH cycles, analyzed right after production, are shown in Figure 1. The OM images after 21 and
24 cycles can be visualized in supplementary information (Figure S1).
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Figure 1. Optical microscopy of the produced 40/60 water-in-oil (W/O) emulsions. Primary emulsions:
(a) S80/T80 54/46; (b) S80/T80 80/20; (c) S85/T80 80/20. After 12 high-pressure homogenizer HPH cycles:
(d) S80/T80 54/46; (e) S80/T80 80/20; (f) S85/T80 80/20. Bar = 10 µm, 200×magnification.
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Analyzing the images, it was observed that, in general, all emulsions presented small and spherical
droplets, evidencing a droplet size reduction, and size homogeneity increase with the applied number
of HPH cycles. It should be highlighted that the emulsifiers using a ratio of 80/20 (samples S80/T80
80/20 and S85/T80 80/20, the ones with lower HLB resulted in similar morphologies after 12 HPH
cycles, regardless of the used type of emulsifiers (Figure 1e,f, respectively).

Based on the OM images, droplet size range was determined in the primary emulsions and after
subjecting them to 12, 21, and 24 HPH cycles, by randomly measuring 30 droplets in each acquired
image. Considering the detection limit of the optical microscope, it was not possible to perform the
measurements for all samples, implying that the droplet size of this emulsions was lower. The droplet
size range of the analyzed emulsions is summarized in Table 1.

Table 1. Droplet size evolution of base emulsions as a function of the applied number of HPH cycles.

Base Emulsion
Droplet Size (µm)

Primary Emulsion 12 Cycles 21 Cycles 24 Cycles

S80/T80 54/46 3.5–7.1 ND ND 0.5–1.4
S80/T80 80/20 0.5–1.1 0.4–1.0 ND ND
S85/T80 80/20 0.7–1.7 0.6–1.2 0.2–0.7 ND

ND: not determined due to the detection limit of the microscope.

In general, as previously observed in the OM images, the emulsions presented small droplet sizes,
corroborating the suitability of the used emulsifiers combination (S80/T80 and S85/T80) to prepare
high-water content emulsion W/O systems, one of the objectives of this work. Within the observed
small size ranges, it was appreciated that for the emulsifier system S80/T80, the ratio variation from
54/46 to 80/20 led to a considerable decrease in the droplet size, already in the primary emulsion.
Thereafter, the reduction of the droplet size due to the effect of the applied number of HPH cycles was
more effective in the S80/T80 54/46 system. In the case of using 24 cycles, an increase in the size range
was observed, a fact that could be related with the occurrence of coalescence phenomena induced by an
excessive number of HPH cycles, which may lead to the agglomeration of droplets as also previously
reported [24]. Considering the used emulsifiers, it was observed that, for the tested ratio 80/20, a slight
increase in the droplet size was observed when replacing S80 by S85.

2.1.2. Analysis at the Macroscopic Level

The visual inspection of the emulsion systems along time was done in order to check for instability
phenomena appearance at the macroscopic level. The stability of the emulsion systems prepared at
a different number of HPH cycles was analyzed over 180 days and the obtained results are shown in
Figure 2.

Analyzing the stability of the base emulsions, it was observed that all primary emulsions showed
phase separation after a short time-period, notably, no one surpassed 2 days of stability. After applying
HPH, it was observed a general tendency for a stability increase. Nevertheless, it was also observed
that an excessive number of HPH cycles can revert this effect by decreasing the stability. This is in
accordance with the work of Lee et al. [24] that pointed out that the application of an excessive number
of HPH cycles induces destabilization phenomena, causing the emulsions to be stable for shorter
periods of time. In this work, and for the analyzed conditions (12, 21, and 24 cycles), the use of 12 HPH
cycles was the most suitable solution conducting to higher stability for all the three studied systems,
namely 180 days for the systems S80/T80 54/46 and 80/20, and 123 days for the S85/T80 80/20 system.
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Regarding the effect of the emulsifier composition, it was verified that the mixture S80/T80 54/46,
the one using the emulsifier mixture with higher HLB (9.2), gives rise to higher stability. The emulsion
using this emulsifier composition resulted in being stable up to 180 days of storage at room temperature,
regardless of the number of applied HPH cycles. In turn, emulsions using S80/T80 80/20 (HLB 6.4)
were less stable, namely when the number of applied cycles increased. Moreover, the replacement of
S80 by S85 resulted in less stable emulsions.

2.1.3. Base Emulsion Selection

At a microscopic level, all the 3 produced emulsions showed small droplet sizes (particularly after
applying HPH), favoring stability due to the lowering of collision efficiency [16,25]. Concerning the
stability studies analyzed at a macroscopic level, the S80/T80 54/46 sample (Figure 3) was the
one presenting the higher stability (180 days), a time-frame suitable for commercial applications.
Furthermore, the high stability of this emulsion, independent of the applied number of HPH cycles,
offers the possibility to choose 12 HPH cycles, enhancing its competitiveness for industrial scale up,
considering the lower number of cycles, short preparation time, lower energy requirements, and minor
gas consumption (used to pressurized the HPH system). Thus, the formulation S80/T80 54/46 was
chosen as the base formulation to proceed with the cinnamon extract incorporation studies. It possesses
a high-water fraction (W/O 40/60) and is stable for a long period of time (180 days).

Molecules 2020, 25, x FOR PEER REVIEW 5 of 14 

 

Analyzing the stability of the base emulsions, it was observed that all primary emulsions showed 

phase separation after a short time-period, notably, no one surpassed 2 days of stability. After 

applying HPH, it was observed a general tendency for a stability increase. Nevertheless, it was also 

observed that an excessive number of HPH cycles can revert this effect by decreasing the stability. 

This is in accordance with the work of Lee et al. [24] that pointed out that the application of an 

excessive number of HPH cycles induces destabilization phenomena, causing the emulsions to be 

stable for shorter periods of time. In this work, and for the analyzed conditions (12, 21, and 24 cycles), 

the use of 12 HPH cycles was the most suitable solution conducting to higher stability for all the three 

studied systems, namely 180 days for the systems S80/T80 54/46 and 80/20, and 123 days for the 

S85/T80 80/20 system. 

Regarding the effect of the emulsifier composition, it was verified that the mixture S80/T80 54/46, 

the one using the emulsifier mixture with higher HLB (9.2), gives rise to higher stability. The emulsion 

using this emulsifier composition resulted in being stable up to 180 days of storage at room 

temperature, regardless of the number of applied HPH cycles. In turn, emulsions using S80/T80 80/20 

(HLB 6.4) were less stable, namely when the number of applied cycles increased. Moreover, the 

replacement of S80 by S85 resulted in less stable emulsions. 

2.1.3. Base Emulsion Selection 

At a microscopic level, all the 3 produced emulsions showed small droplet sizes (particularly 

after applying HPH), favoring stability due to the lowering of collision efficiency [16,25]. Concerning 

the stability studies analyzed at a macroscopic level, the S80/T80 54/46 sample (Figure 3) was the one 

presenting the higher stability (180 days), a time-frame suitable for commercial applications. 

Furthermore, the high stability of this emulsion, independent of the applied number of HPH cycles, 

offers the possibility to choose 12 HPH cycles, enhancing its competitiveness for industrial scale up, 

considering the lower number of cycles, short preparation time, lower energy requirements, and 

minor gas consumption (used to pressurized the HPH system). Thus, the formulation S80/T80 54/46 

was chosen as the base formulation to proceed with the cinnamon extract incorporation studies. It 

possesses a high-water fraction (W/O 40/60) and is stable for a long period of time (180 days).  

 

Figure 3. Images of system S80/T80 54/46 with 12 cycles HPH: (a) Fresh. (b) After 6 months of storage 

at room temperature. 

2.2. Cinnamon Extract Loaded Emulsions 

The used bark extract of Cinnamomum zeylanicum, also known as true cinnamon or Ceylon 

cinnamon, presents a high content of phenolic and flavonoid compounds, including a high content 

of cinnamaldehyde (around 50.0%), an aromatic aldehyde that exhibits antimicrobial properties [20]. 

Based on the selected S80/T80 54/46 system, and the preparation method considering 12 HPH, 

emulsions containing cinnamon aqueous extract at different concentrations (1.25%, 2.5%, 3.75%, and 

5% w/v, water-basis) were prepared and characterized concerning droplet size range (by OM), 

confocal laser scanning microscopy (CLSM), antimicrobial and antioxidant activity, and stability. In 

order to compare the results, the base emulsion was also characterized. Samples were coded as E1.25, 

E2.5, E3.75, and E5, reflecting the used amount of extract. The visual appearance of the produced 

Figure 3. Images of system S80/T80 54/46 with 12 cycles HPH: (a) Fresh. (b) After 6 months of storage
at room temperature.

2.2. Cinnamon Extract Loaded Emulsions

The used bark extract of Cinnamomum zeylanicum, also known as true cinnamon or Ceylon
cinnamon, presents a high content of phenolic and flavonoid compounds, including a high content
of cinnamaldehyde (around 50.0%), an aromatic aldehyde that exhibits antimicrobial properties [20].
Based on the selected S80/T80 54/46 system, and the preparation method considering 12 HPH, emulsions
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containing cinnamon aqueous extract at different concentrations (1.25%, 2.5%, 3.75%, and 5% w/v,
water-basis) were prepared and characterized concerning droplet size range (by OM), confocal laser
scanning microscopy (CLSM), antimicrobial and antioxidant activity, and stability. In order to compare
the results, the base emulsion was also characterized. Samples were coded as E1.25, E2.5, E3.75, and E5,
reflecting the used amount of extract. The visual appearance of the produced emulsions is shown in
Figure 4, where it can be observed that all of them resulted similar, observing a slight browning with
the increase of extract content.
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Figure 4. Images of W/O (a) base emulsion and emulsions containing (b) 1.25%, (c) 2.5%, (d) 3.75%,
and (e) 5% of cinnamon extract.

2.2.1. Droplet Size Range of Loaded Emulsions

Analogously to the base emulsions, for the extract loaded ones, the droplet size range was
determined by OM, and the obtained results are shown in Table 2. The images of OM employed for
the determination are included in supplementary information (Figure S2).

Table 2. Droplet size range of cinnamon extract loaded emulsions.

Sample Cinnamon Content
(%, w/v)

Droplet Size (µm)

Primary Emulsion 12 Cycles

Base Emulsion 0 3.5–7.1 ND
E1.25 1.25 1.0–15.4 0.8–1.4
E2.5 2.50 1.5–10.0 0.8–2.0

E3.75 3.75 1.0–14.8 0.7–1.3
E5 5.00 1.0–11.3 0.6–1.6

ND: not determined due to the detection limit of the microscope.

Analyzing the results in comparison with the base emulsions, it was observed a slight increase
of the droplet size due to the incorporation of the extract. For example, the base emulsion presented
a droplet size under the detection limit of the microscope after 12 HPH cycles, while the corresponding
loaded emulsions presented sizes ranging from 0.6 to 2.0 µm. This fact was directly attributed to the
extract solubilization in the aqueous phase. Even in the primary emulsions, the loaded emulsions
droplet size showed a broadening trend, indicating the lower size homogeneity derived from the
incorporation of the extract. Nevertheless, it should be also noted the considerable reduction in
the droplet size after the HPH treatment. These results pointed out for the effectiveness of the
chosen preparation method, which leads to the obtainment of droplet size reduction, and increased
size homogeneity.

2.2.2. Confocal Microscopy Analysis

The microstructure of emulsions was analyzed by CLSM, using the fluorescent dye Nile Red.
This dye causes the lipid background of the oil to fluoresce and the water droplets to appear as
non-fluorescing black areas [26]. Figure 5 presents the images obtained from this analysis for
each sample.
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The prevalent continuous red coloration observed in the images is a positive indication of the
formed emulsion type, water-in-oil. The water droplets are not easily perceptible due to the used
magnification of 10 µm, once the water droplets might present sizes lower than 2 µm (Table 2). In fact,
the deep penetration of the CLSM laser into the emulsions causes light scattering causing focus loss,
being difficult to capture higher magnification images [27].

Figure 5a corresponds to the CLSM image of the base emulsion, where the presence of a fine
structure can be observed. However, the continuous phase presents an inhomogeneous spatial
distribution of oil, since the presence of circular red regions are noted (some areas are lighter than
others). This can be due to the used W/O ratio of 40/60, which might be close to the phase inversion
conditions. Furthermore, water droplets are not easily distinguished on the image due to their small
size (only a fine black dotted pattern is perceptible).

Upon extract incorporation (Figure 5b–e), the appearance of black microstructures starts to be
perceptible, which increased as the extract concentration in the formulation increased. The extract
has a hydrophilic character, meaning that it will contribute to the increase of the back hue and the
appearance of more defined black structures. Namely, at higher extract concentrations, 3.75% and 5%
(Figure 5d,e, respectively), this effect is intensified, and a distribution of the extract also into the oil
phase might have occurred. This is expected due to the possible saturation of the water phase and
the fact that some extract compounds can show affinity with the oil phase. This distribution of the
extract within both phases can impact positively in the final functional emulsion’s behavior, since it is
expected that the extract present in the continuous phase become more readily available to exert the
intended functionalities. The one inside the water dispersed phase with guarantee the sustainable
release, and thereafter the long-lasting effect of the developed products.

2.2.3. Antimicrobial Analysis

The incorporation of the cinnamon extract may give enhanced antimicrobial activity to the
developed emulsions. In this way, this activity was qualitatively evaluated by the agar diffusion
method with Staphylococcus aureus (gram+), Escherichia coli (gram-), and Pseudomonas aeruginosa (gram-)
bacteria. The inhibition halos obtained for each formulation (base emulsion and emulsions added
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with the extract), pure components, aqueous extract solutions (AE), and positive control (kanamycin
antibiotic), measured after 24 and 96 h of incubation at 37 ◦C are presented in Table 3.

Table 3. Inhibition zones achieved with the evaluated formulations through the agar diffusion test.

Sample % Cinnamon (w/v)
Inhibition Zone 1 (mm)

After 24 h After 96 h

S. aureus E. coli P. aeruginosa S. aureus E. coli P. aeruginosa

Base Emulsion 0 - - - - - -
E1.25 1.25 9 - - 9 9 -
E2.5 2.5 9 - - 9 9 -
E3.75 3.75 9 - - 9 9 -

E5 5 9 - - 9 9 -
AE1.25 1.25 10 - - 9 9 -
AE2.5 2.5 10 - - 9 9 -
AE3.75 3.75 10 - - 10 9 -

AE5 5 14 7 - 12 9 -
Kanamycin 0 30 30 15 30 32 35

Sweet Almond Oil 0 - - - - - -
Emulsifier mixture 0 - - - - - -

1 Inhibition zone including hole with 7 mm of diameter. - means no inhibition.

Analyzing the obtained results, it can be noticed that the pure components, sweet almond
oil, and the Span 80/Tween 80 54/46 aqueous solution (emulsifiers mixture), as well as the base
emulsion, did not exhibit antimicrobial activity against all the tested bacteria during the assayed
incubation period. Oppositely, the emulsions containing the cinnamon aqueous extract (E1.25 to
E5) presented activity against S. aureus at the incubation time of 24 h (inhibition halo of 9 mm).
After 96 h of incubation, the inhibition halo detected against S. aureus was maintained for all the tested
concentrations, and activity against E. coli was also revealed (inhibition halo of 9 mm). This result
is a direct consequence of the extract presence in the emulsion, which was protected and released
throughout a period (sustained release). The prompter effect achieved at 24 h might be also related
with the extract fractions present in the oil phase, which are expected to be more accessible to exert
their function. Furthermore, the emulsions added with the extract presented similar inhibition zones,
independently of the used extract concentration, meaning that concentration does not have a significant
impact in the antimicrobial activity, for the tested times. Nevertheless, it is expected that a higher
extract concentration would lead to products with higher long-lasting effect, a fact not evaluated in the
present study due to the constraints associated to the used methodology.

Regarding the extract aqueous solutions (AE1.25 to AE5), the antimicrobial activity against S. aureus
was detected after 24 h of incubation for all the tested concentrations, while only the Sample AE5
(5% extract) exhibited activity against E.coli, being the obtained diameters 14 and 7 mm, respectively.
After 96 h of incubation, a decrease in the inhibition zones for S. aureus was noticed, indicating the
decreased antimicrobial effect of the analyzed sample, oppositely to what happens with the loaded
emulsions, where an increased effect (compatible with a sustained release) was observed.

All the tested samples (extract solutions or emulsions) did not exhibit activity against P. aeruginosa.
This result observation might be justified by the fact that this bacterium has a double membrane
involving the cell nucleus, which leads to a higher resistance against antimicrobial agents [28].
As expected, the positive control, kanamycin, presented higher inhibition zones for all the tested bacteria.

2.2.4. Antioxidant Analysis

The change in the absorbance produced by reduced DPPH was used to evaluate the antioxidant
ability of the base emulsion, the emulsions added with cinnamon extract, and the four cinnamon
extract solutions (methanol/water 80/20, v/v). The base emulsion did not present antioxidant activity,
which indicates that the detected activity in the other samples is related with the presence of cinnamon
extract. Figure 6 shows the obtained results, expressed as percentage of DPPH scavenging activity,
for the formulations with cinnamon extract and for the extracts in solution.
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cinnamon extract and the extract methanol/water solutions, for a 50× dilution. (b) Emulsions containing
cinnamon extract at different dilutions.

From the analysis of the results presented in Figure 6a, it can be noticed that the emulsion
formulations presented an increased antioxidant activity as the cinnamon extract concentration
increases; however, with values smaller than the ones of the corresponding cinnamon extract solutions.
At lower concentrations (1.25% and 2.5%), there is a large difference between the antioxidant activity
of the emulsions and the corresponding extract solutions. This behavior is compatible with cinnamon
extract being mostly protected inside the water droplets of the emulsified system, and thus not
providing a prompt effect. On the other hand, for higher concentrations (3.75% and 5%), a smaller
difference was noticed, which might be justified by the presence of cinnamon extract also in the external
phase, as suggested by the CLSM analysis.

Figure 6b presents the comparison of the obtained results for the tested formulations using
different dilutions (50, 100, 500, and 2000×). The increase in the dilution promoted the decrease of
the % DPPH scavenging, i.e., the decrease of the antioxidant activity power; with values becoming
closer. In addition, the performance similarity between the formulations using 3.75% and 5% is noted,
as previously discussed.

2.2.5. Stability Tests

Accelerated stability tests were performed according to centrifugation and thermal stress tests
to evaluate the robustness of the produced emulsions along storage time. The appearance of the
emulsions after being subjected to centrifugation stability test are shown in Figure 7. Results revealed
that the base emulsion presented higher stability, once after being subjected to centrifugation at
3000 rpm (four cycles), macroscopic homogeneity was maintained, as can be observed in Figure 7a.
Oppositely, for the emulsions containing the cinnamon extract, sedimentation of the extract was noticed
after one centrifugation cycle, as can be appreciated in Figure 7b. The extract fractions present in
the oil phase may correspond to the sedimented part (unprotected), since it was detected for all the
formulations added with the extract, independently of the used concentration, but increasing with
concentration increase. In addition, after the second cycle, the presence of phase separation was
detected for all these formulations. Thus, the presence of cinnamon extract in the emulsion composition
induced potential instability to the system.
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Figure 7. Appearance of emulsions after centrifugation at 3000 rpm for (a) 4 cycles and (b) 1 cycle.

Regarding the thermal stress tests, Figure 8 shows the appearance of the emulsions after the
thermal treatment at 80 ◦C. All the formulations were considered highly stable to temperature,
since they kept the same visual aspect up to 60 ◦C. At 65 ◦C, the emulsion added with 5% extract
showed extract sedimentation and changes in the consistency. Then, at 70 ◦C, the system added with
3.75% extract showed a similar behavior. The thermal stress was performed until 80 ◦C, in which the
base emulsion and the emulsions with 1.25% and 2.5% extract remained stable. These results suggest
that the incorporation of high extract amounts could reduce the thermal stability of emulsions, but only
noticed at high temperatures.
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The observed thermal stability up to 60 ◦C is considered adequate for applications such as
cosmetics and pharmaceuticals. For higher temperature applications, a balance between the cinnamon
content and stability should be considered in view of the desired bioactivities. The antimicrobial
properties were found not to be a limiting parameter, since all the loaded emulsions showed quite
similar results. For the antioxidant properties, a balance should be attained, e.g., the antioxidant
properties of the 3.75% and 5% loaded emulsions are proximate, with the 3.75% one showing a higher
thermal stability.

3. Materials and Methods

3.1. Materials

Polyethoxylated sorbitan ester Tween 80 (T80), and sorbitan esters Span 80 (S80) and Span 85
(S85), used as emulsifiers, were purchased, respectively, from PanReac AppliChem (Barcelona, Spain),
AlfaAesar (Karlsruhe, Germany) and Sigma-Aldrich (Darmstadt, Germany). The sweet almond oil was
acquired from LabChem (Santo Antão do Tojal, Portugal), and the cinnamon (Cinnamomum zeylanicum)
aqueous extract supplied by Essência D’um Segredo (Seixal, Portugal). The Nile Red was supplied
by Sigma-Aldrich (Darmstadt, Germany), and Isopropyl alcohol from Merck (Darmstadt, Germany).
Kanamycin sulfate (antibiotic) was purchased from Merck (Darmstadt, Germany), Mueller Hinton II
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Agar was purchased from Liofilchem (Roseto degli Abruzzi, Italy). For Ringer solution preparation,
Sodium Chloride, Sodium Hydrogen Carbonate and Calcium Chloride 2-hydrate were purchased from
Pancreac Applichem (Barcelona, Spain), Potassium Chloride was purchased from HiMedia (Mumbai,
India). Methanol and 2,2-Diphenyl-1-picrylhydrazyl (DPPH) were purchased from Sigma-Aldrich
(Darmstadt, Germany). All reagents were directly used without further purification. Water used in
this work was distilled water.

3.2. Emulsions Preparation

To prepare the base system, a high-water content (W/O of 40/60, v/v), and an emulsifier content of
6% (total emulsion-basis, % (v/v)), were chosen. Three emulsifier systems were tested, namely S80:T80
54:46 (v/v), S80:T80 80:20 (v/v), and S85:T80 80:20 (v/v). The chosen compositions and contents
were based on previous published works [7,22,23]. The preparation method, developed in-house,
comprised, firstly, the preparation of a primary emulsion, followed by the application of successive
HPH cycles (12, 21, and 24). The primary emulsion comprised the addition of the emulsifier mixture
to the water phase for homogenization (10 min under stirring) followed by the addition of the oil
phase and homogenization using a Unidrive X1000 Homogenizer Drive (CAT Scientific, Germany) at
11,000 rpm for 5 min. An aliquot of this primary emulsion was withdrawn for microscopic analysis.
Afterwards, the primary emulsion was subjected to successive HPH cycles using an EmulsiFlex-C3
(Avestin, Canada) at 1500 bar.

To prepare the emulsions loaded with the cinnamon (Cinnamomum zeylanicum) aqueous extract,
the extract (1.25%, 2.5%, 3.75%, and 5%; w/v; water-basis) was previously dissolved in the water phase
before adding the emulsifier mixture. The following steps were as previously described for the base
emulsion preparation.

3.3. Optical Microscopy Analysis

For microscopic images, a drop of emulsion was placed on a microscope slide and then covered
with a cover slip. The used apparatus was an optical microscope NiU (Nikon microscope Eclipse
Ni, Nikon Corp., Tokyo, Japan) equipped with a digital camera and NIS-Elements Documentation
software. The images were made shortly after the preparation of each system, using a magnification of
200×. The images were employed for the determination of the droplet size by averaging the diameter
of 30 droplets in the image. Both base emulsions and emulsions added with extract were analyzed.

3.4. Visual Analysis

The macroscopic appearance of the produced emulsions was periodically checked by visual
inspection and photographically registered. This procedure was used for the base emulsions along
a 6-month period. The samples were stored at room temperature.

3.5. Confocal Microscopy Analysis

Confocal Laser Scanning Microscopy (CLSM) was done using a Leica TCS-SP5 AOBS confocal
microscope (Leica Microsystem Inc., Wetzlar, Germany). Emulsions were stained after their preparation
by mixing 15 mL of each sample with 1 mL of Nile Red solution in isopropyl alcohol (0.1% w/v) to stain
the oily phase. Then, 10 µL of the sample were placed on a concave glass slide and examined using
a 40× objective. The CLSM was operated using a laser excitation wavelength of 561 nm. Only the base
emulsion and emulsions added with extract were analyzed.

3.6. Antimicrobial Assays

The antimicrobial activity evaluation followed the agar diffusion procedure based on Kirby-Bauer
method according to the ASTM E2149-01 standard [29]. The tested microorganisms were the
Pseudomonas aeruginosa ATCC 9027, the Escherichia coli AATCC 10536, and the Staphylococcus aureus
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ATCC 29213. The base emulsion, the four emulsions added with the cinnamon extract, and the four
extract aqueous solutions prepared at the same extract concentration as the corresponding emulsion,
plus the pure sweet almond oil, the aqueous mixture of Span 80/Tween 80 54/46 (v/v), were assayed.
Kanamycin solution (1 mg/mL) was used as the positive control. Briefly, each bacterium was first
cultured in a nutrient broth at 37 ◦C for 24 h. The inoculum was diluted to 0.5 McFarland turbidity
standard (1.5–3.0 CFU/mL) using sterilized Ringer solution. Then, the bacteria solution was inoculated
in Mueller Hinton Agar plates, using a sterilized swab. The inoculated plates were left to dry for
a short period of time. After that, a hole with 7 mm of diameter was made in the center of the plate and
100 µL of each sample placed in the hole. The plates were prepared in duplicate and incubated at 37 ◦C
for 24 h. After this period, the diameter of the inhibition zone was measured, the incubation proceeded
for a further 4 days and the diameter of the inhibition zone was measured again. The inhibition zone
was determined according to the Kirby–Bauer method [30].

3.7. Antioxidant Assay

The antioxidant activity of the base emulsion and the four emulsions added with the cinnamon
extract were assayed by evaluating the ability to scavenge 2,2-diphenyl-1-picrylhydrazyl (DPPH),
a stable free radical [31,32]. The samples were diluted 50-, 100-, 500-, and 2000-fold in an 80/20 (v/v)
methanol aqueous solution. To compare the results with the performance of the free extract, the same
procedure was applied to solutions prepared from the same solvent mimicking the extract concentration
used in the emulsions. A methanol solution was used as control. The prepared solutions (30 µL) were
added with 270 µL of DPPH·methanol solution (6 × 10−5 mol/L) and then incubated at 37 ◦C for 1 h in
dark conditions. The absorbance of the reaction solution was measured at 517 nm using a microplate
reader (BioTek, Winooski, VT, USA). Each sample was analyzed in triplicate. The percentage of the
free radical scavenging was calculated according to Equation (1):

% Scavenging activity =
Abs (control) −Abs (sample)

Abs (control)
× 100 (1)

where Abs (control) and Abs (sample) are the absorbances measure for the control and the analyzed
sample, respectively.

3.8. Stability Tests

The base emulsion and the four emulsions with cinnamon extract were submitted to accelerated
stability tests, namely, the centrifugation and thermal stress tests. The centrifugation test was performed
in duplicate by using a microcentrifuge (Labogene, Copenhagen, Denmark), in which conical Eppendorf
tubes containing a sample volume of 2 mL were submitted to four cycles at 3000 rpm for 30 min.
After each cycle, the emulsions were visually inspected [33,34].

The thermal stress test was performed using an incubator (Raypa, Barcelona, Spain). For that,
the samples, in duplicate, were successively heated along a temperature range from 25 ◦C to 80 ◦C,
in which the temperature was increased 5 ◦C every 30 min and the emulsions visually observed at
each increase [33,34].

4. Conclusions

In this work, a stable W/O base emulsion was prepared from a natural oil, sweet almond oil,
aiming at testing the incorporation of natural hydrophilic extracts. The systematic study with the three
base formulations pointed out the one using Span 80/Tween 80 at a ratio of 54/46 (v/v) as fulfilling
the requirements of stability and easy preparation procedure. This system presented macroscopic
and microscopic stability under storage at room temperature for six months, besides presenting the
lower droplet size for 12 HPH cycles. The emulsions added with the cinnamon extract showed that the
incorporation of the extract contributed to the observed changes in the droplet size, microstructure as
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well as in decreased stability. The CLSM analyses confirmed the water-in-oil morphology besides
evidencing the microstructure change as a function of the cinnamon extract increase, namely by
providing indications of the increased amount of extract in the external oil phase as the extract
concentration in the formulation increased. The antimicrobial and antioxidant analysis evidenced the
extract activity, once only the emulsions added with extract presented this functionality. In addition,
when compared with the action of the free extract (i.e., without being protected in the emulsion),
the emulsions proved to have a prolonged effect compatible with a sustained released along the time.
However, the presence of extract led to a weaker stability to centrifugation, once sedimentation was
perceived right after the first centrifugation cycle, a fact not observed for the base emulsion that
remained stable. Regarding thermal stability, all the emulsions remained stable up to 60 ◦C, which can
be considered an important achievement for several applications (e.g., cosmetics and pharmaceuticals).
Only at higher temperatures, and for the formulations added with high extract content (3.75% and 5%),
instability was observed. Overall, the results obtained herein pointed out the successful development of
a stable W/O base emulsion, which might be used as a suitable delivering vehicle for hydrophilic extracts
with potential use in cosmetic and pharmaceutical applications. Moreover, this study contributes for
the valorization of W/O systems, by providing functional W/O emulsions based on natural compounds.

Supplementary Materials: The following are available online, Figure S1. Optical microscopy of the produced 40/60
W/O base emulsions. After 21 HPH cycles: (a) S80/T80 54/46; (b) S80/T80 80/20; (c) S85/T80 80/20. After 24 HPH
cycles: (d) S80/T80 54/46; (e) S80/T80 80/20; (f) S85/T80 80/20. Bar = 10 µm, 200×magnification., Figure S2. Optical
microscopy of the produced 40/60 W/O emulsions added with cinnamon extract. Primary emulsions: (a) 1.25%; (b)
2.5%; (c) 3.75%; (d) 5%. After 12 HPH cycles: (e) 1.25%; (f) 2.5%; (g) 3.75%; (h) 5%. Bar = 10 µm, 200×magnification.
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