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of America, 4 INRA, Unité Interactions Plantes-Microorganismes et Santé Végétale, Antibes, France, 5 Agri-Food and Biosciences Institute, Belfast, United Kingdom,

6 Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America

Abstract

While RNA interference (RNAi) has been deployed to facilitate gene function studies in diverse helminths, parasitic
nematodes appear variably susceptible. To test if this is due to inter-species differences in RNAi effector complements, we
performed a primary sequence similarity survey for orthologs of 77 Caenorhabditis elegans RNAi pathway proteins in 13
nematode species for which genomic or transcriptomic datasets were available, with all outputs subjected to domain-
structure verification. Our dataset spanned transcriptomes of Ancylostoma caninum and Oesophagostomum dentatum, and
genomes of Trichinella spiralis, Ascaris suum, Brugia malayi, Haemonchus contortus, Meloidogyne hapla, Meloidogyne
incognita and Pristionchus pacificus, as well as the Caenorhabditis species C. brenneri, C. briggsae, C. japonica and C. remanei,
and revealed that: (i) Most of the C. elegans proteins responsible for uptake and spread of exogenously applied double
stranded (ds)RNA are absent from parasitic species, including RNAi-competent plant-nematodes; (ii) The Argonautes (AGOs)
responsible for gene expression regulation in C. elegans are broadly conserved, unlike those recruited during the induction
of RNAi by exogenous dsRNA; (iii) Secondary Argonautes (SAGOs) are poorly conserved, and the nuclear AGO NRDE-3 was
not identified in any parasite; (iv) All five Caenorhabditis spp. possess an expanded RNAi effector repertoire relative to the
parasitic nematodes, consistent with the propensity for gene loss in nematode parasites; (v) In spite of the quantitative
differences in RNAi effector complements across nematode species, all displayed qualitatively similar coverage of functional
protein groups. In summary, we could not identify RNAi effector deficiencies that associate with reduced susceptibility in
parasitic nematodes. Indeed, similarities in the RNAi effector complements of RNAi refractory and competent nematode
parasites support the broad applicability of this research genetic tool in nematodes.
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Introduction

RNA interference (RNAi) is a reverse genetics technique which

permits the ablation of mRNA by introduction of complementary

double-stranded RNA (dsRNA), through cellular mechanisms

common to most eukaryotes (for review, see [1]) and provides a

functional genomics platform in a range of organisms, including

those intractable to traditional genetic manipulations. One such

group of organisms are the parasitic nematodes for which there

have been recent expansions in transcriptomic and genomic

datasets [2–5].

Several groups have attempted to apply the RNAi protocols

pioneered in Caenorhabditis elegans to parasitic nematodes. Signifi-

cant progress has been made in plant-parasitic nematodes (PPNs)

in which RNAi is an established experimental technique [6–8],

and may have utility for parasite control in plants genetically

engineered to express PPN-transcript-specific dsRNA [9,10]. In

contrast, RNAi experiments in animal- and human-parasitic

nematodes have had variable levels of success (for reviews, see

[11–13]). Of note are experiments reporting inefficient or

inconsistent transcript knockdown, highlighted by successful

silencing of only 3 of 8 Ostertagia ostertagi genes [14] and 2 of 11

Haemonchus contortus genes [15]. In H. contortus, one feature of

successful RNAi appears to be the location of target gene

expression, since genes predicted to be expressed in environmen-

tally-exposed tissues are more readily silenced [16]. RNAi

difficulties have also been seen in Heligmosomoides polygyrus [17]

and the non-parasitic species Pristionchus pacificus and Oscheius sp1

CEW1 [18–20]. Notably, inter-species differences are apparent

even within the genus Caenorhabditis, where C. briggsae (unlike C.

elegans) is unable to take up dsRNA from the environment, due to a

SID-2 which displays aberrant RNAi functionality [21].

Hypotheses to explain RNAi difficulties in parasitic nematodes

have been reported, and include: (i) the lack of appropriate in vitro

culture systems for parasitic nematodes [15]; (ii) inappropriate

methods of dsRNA delivery, i.e. delivered externally, where

microinjection directly into the worm is more effective in C. elegans

[13]; (iii) differences in RNAi effector protein functionality [13,15];

and (iv) differences in the complement of RNAi effectors between

nematodes [12,13,15,17]. The latter hypothesis has been
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confirmed for the apicomplexan Plasmodium spp. (the causative

agents of malaria), which are refractory to RNAi due to

deficiencies in key pathway components [22–24]. Here, we test

this hypothesis in nematodes by investigating the complement of

RNAi pathway proteins in selected nematode datasets. Using 77 C.

elegans RNAi pathway proteins as query sequences, we performed

BLAST trawls of nematode-derived genomic and transcriptomic

resources. Our searches focused on high-quality sequence datasets,

including the draft genomes of Trichinella spiralis (Clade I/clade 2;

here and throughout, we utilize clade delineations of both Blaxter

et al. (denoted clades I–V [25]) and Holterman et al. (denoted

clades 1–12 [26]), Ascaris suum (Clade III/clade 8), Brugia malayi

(Clade III/clade 8), Meloidogyne incognita (Clade IV/clade 12),

Meloidogyne hapla (Clade IV/clade 12), Caenorhabditis brenneri,

Caenorhabditis briggsae, Caenorhabditis japonica, Caenorhabditis remanei

(Clade V/clade 9), Haemonchus contortus (Clade V/clade 9), and

Pristionchus pacificus (Clade V/clade 9) as well as the transcriptomes

of Oesophagostomum dentatum (Clade V/clade 9) and Ancylostoma

caninum (Clade V/clade 9). We find that the RNAi effector

complements of these species, whilst quantitatively different are

qualitatively similar with regard to the presence of functional

groupings, yielding no major inter-species differences except that

all were notably less diverse than in Caenorhabditis spp. These data

suggest that variable susceptibilities to RNAi amongst parasitic

nematodes cannot be adequately explained by differences in RNAi

effector complement between such species.

Materials and Methods

Reciprocal BLAST Methodology
Seventy-seven C. elegans proteins known to be involved in core

aspects of RNAi were identified from literature (Figure 1). These

proteins were separated into five core functional groups; namely,

small RNA biosynthesis, dsRNA uptake and spreading, AGOs and

RISC, RNAi inhibitors, and nuclear effectors. Protein sequences

were retrieved from WormBase (www.wormbase.org; release

WS206) and used as search strings in a series of primary translated

nucleotide (tBLASTn) and protein BLASTs (BLASTp) [27]

against genome and transcriptome databases described below.

All primary BLAST hits returning with a bitscore $40 and an

expect value #0.01 were manually translated to amino acid

sequence in six reading frames (www.expasy.ch/tools/dna.html),

and analysed for identity and domain structure by BLASTp

(through NCBI’s Conserved Domain Database service) and

InterProScan (www.ebi.ac.uk/Tools/InterProScan). The appro-

priate reading frame in each case (usually that with the largest

uninterrupted open reading frame [ORF], however this was

determined empirically on a case by case basis) was then subjected

to reciprocal tBLASTn and BLASTp against the C. elegans non-

redundant nucleotide and protein databases on the NCBI BLAST

server (http://www.ncbi.nlm.nih.gov/BLAST), using default set-

tings. The identity of the top-scoring reciprocal BLAST hit was

accepted as identity of the relevant primary hit, as long as that

identity was also supported by domain structure analysis (see

Datasets S1, S2, S3, S4, S5). In the case of H. contortus, primary

tBLASTn searches were performed and the separate high scoring

return sequences were concatenated into a single sequence (to

facilitate reciprocation) and used as reciprocal tBLASTn and

BLASTp searches against C. elegans, as before.

Databases
The M. incognita (http://www.inra.fr/meloidogyne_incognita/

genomic_resources) and B. malayi (http://blast.jcvi.org/er-blast/

index.cgi?project = bma1) genomes were searched using BLASTp

to predicted protein sets, in addition to tBLASTn against available

contig assembly, unplaced reads and associated ESTs [3,5]. The

M. hapla genome was searched using BLASTp against public

release 4 (HapPep4: www.hapla.org) of the hand annotated and

experimentally-validated M. hapla protein set [28], in addition to

tBLASTn against the 106 contig assembly [4]. The H. contortus

genome was searched using tBLASTn against the supercontig 26/

08/09 database (http://www.sanger.ac.uk/cgi-bin/blast/submit-

blast/h_contortus). A. suum, A. caninum, T. spiralis and O. dentatum

primary BLASTp and tBLASTn searches were performed using

the datasets generated at Washington University, St Louis

(available at www.nematode.net, [29]), as above; reciprocal

BLAST searches against C. elegans datasets were then performed

as before. Using the core eukaryotic genes as a reference [30], we

estimated that 93% of the A. caninum [31]; and 87% of the O.

dentatum transcriptome is identified, making these two dataset

comparable to the full proteomes predicted from the genomes of

the other species included in this study. C. brenneri, C. briggsae, C.

japonica and C. remanei datasets were accessed through WormBase.

Searches were also performed against publically-available nema-

tode expressed sequence tags (ESTs) available through GenBank

(www.ncbi.nlm.nih.gov), using methods as described above.

Results and Discussion

In the absence of tractable methods for transgenesis or genetic

manipulation, RNAi represents one of the few molecular genetics

tools that can currently be applied to parasitic nematodes.

However, reports documenting difficulties in the application of

RNAi to some nematodes [11–13,16,17] suggest diminished

potential for RNAi-based gene function and target validation

studies in some species. We have employed primary sequence

similarity-based methodology to identify putative orthologs of C.

elegans RNAi pathway (Figure 1) proteins in a dataset of 13

nematode genomes/transcriptomes, as a means of investigating

the inter-species conservation of RNAi effectors which might

inform the wider utility of RNAi in parasitic nematodes. We

Author Summary

Many organisms regulate gene expression through an RNA
interference (RNAi) pathway, first characterized in the
nematode Caenorhabditis elegans. This pathway can be
triggered experimentally using double-stranded (ds)RNA
to selected gene targets, thereby allowing researchers to
‘silence’ individual genes and so investigate their function.
It is hoped that this technology will facilitate gene
silencing in important parasitic nematodes that impose a
considerable health and economic burden on mankind.
Unfortunately, differences in RNAi susceptibility have been
observed between species. Here we investigated the
possibility that differences in the complement of effector
proteins involved in the RNAi pathway are responsible for
these differences in susceptibility. Our data revealed that
most facets of the RNAi pathway are well represented
across parasitic nematodes, although there were fewer
pathway proteins in other nematodes compared to C.
elegans. In contrast, the proteins responsible for uptake
and spread of dsRNA are not well represented in parasitic
nematodes. However, the importance of these differences
is undermined by our observation that the protein
complements in all the parasites were qualitatively similar,
regardless of RNAi-susceptibility. Clearly, differences in the
RNAi pathway of parasitic nematodes do not explain the
variations in susceptibility to experimental RNAi.
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selected these datasets in the first instance as those represented by

predicted protein sets, which were most consistent with our

primary protein similarity-based search methodology. Latterly, we

extended our searches to include the publically-available genome

construct of H. contortus (which at the time of searching lacked

adequate gene predictions), due to the central importance of this

species to the question of RNAi’s applicability to animal-parasitic

nematodes. While we recognise that we have omitted several other

publically-available nematode genome datasets from our analyses,

we considered that they did not meet our criteria for inclusion, as

described above. Whilst several authors refer to the apparent

presence/absence of a few RNAi effector proteins in single

nematode species, one small scale study examined the occurrence

of 18 such proteins across H. contortus, B. malayi and the flatworm

parasite Schistosoma mansoni [17]. The putative orthologs that we

identified are summarised in Tables 1–5, with corresponding

protein sequences described in Datasets S1, S2, S3, S4, S5. While

we addressed publically-available nematode ESTs in our searches,

these contributed little to our analyses due to the fragmentary

nature of their coverage of RNAi effector proteins (see Table S1).

C. elegans displays an expanded repertoire of RNAi
effectors relative to other nematodes

Perhaps the most striking observation is that each of the parasite

species considered here possessed only a fraction of our original

search set of 77 C. elegans RNAi proteins (Table 6), with all

displaying a greatly contracted suite of RNAi effector proteins; of

the original 77 C. elegans search strings, H. contortus returned 46, A.

suum 44, A. caninum 40, O. dentatum 38, P. pacificus 36, B. malayi 35,

M. hapla 28, M. incognita 27, and T. spiralis 22. This reduction in

diversity (which could suggest either that: (i) orthologs of the C.

elegans proteins are absent from the species in question; (ii) they

have diverged to a degree that is unrecognisable on a primary

sequence level, or (iii) our datasets possess significant areas of

inadequate coverage such that additional RNAi effector genes

await discovery in these species) was observed across all of the

functional groupings in our dataset, but was most pronounced

within the proteins responsible for uptake/spread of dsRNA. In

contrast, the other Caenorhabditid species possessed an RNAi

effector complement much closer to that of C. elegans; C. briggsae 65,

C. remanei 65, C. brenneri 63, and C. japonica 60 (Table 6). However,

Table 1. Small RNA biosynthetic proteins.

C. elegans orthologs

Clade Species drh-3 drsh-1 xpo-1 xpo-2 dcr-1 drh-1 pash-1 rde-4 xpo-3

I/2 Trichinella spiralis X X X X X X

III/8 Ascaris suum X X X X X X X

III/8 Brugia malayi X X X X X X X X X

IV/12 Meloidogyne hapla X X X X X X

IV/12 Meloidogyne incognita X X X X X X X

V/9 Ancylostoma caninum X X X X X X X

V/9 Caenorhabditis brenneri X X X X X X X X X

V/9 Caenorhabditis briggsae X X X X X X X X X

V/9 Caenorhabditis japonica X X X X X X X X X

V/9 Caenorhabditis remanei X X X X X X X X X

V/9 Haemonchus contortus X X X X X X X

V/9 Oesophagostomum dentatum X X X X X X

V/9 Pristionchus pacificus X X X X X X

Species represented solely by expressed sequence tag (EST) datasets are not included, refer to Table S1. ‘X’ indicates presence of ortholog. Note that drh-2 is not
included due to its sole presence as a pseudogene in Caenorhabditis elegans. See Dataset S1 for corresponding protein sequences.
doi:10.1371/journal.pntd.0001176.t001

Figure 1. Core components of the Caenorhabditis elegans RNA interference (RNAi) pathway. (1) Exogenously applied double-stranded RNA
(dsRNA) and small interfering RNA (exo-siRNA) are thought to enter cells via SID (Systemic RNA Interference Defective) proteins SID-1/RSD-8 and SID-
2. (2) Endogenous RNAi-based pathways begin in the nucleus; micro-interfering RNA (miRNA) synthesis begins with transcription of hairpin-looped
primary miRNA (pri-miRNA) transcripts from intergenic, intronic or antisense regions. pri-miRNAs are processed by the DRSH-1/PASH-1 complex to
pre-miRNA, which are exported from the nucleus by exportin proteins XPO-1, -2 and -3. Endogenous siRNAs (endo-siRNAs) are also produced from
genomic regions, and exported by XPO-1, 2, and -3. (3) Both pre-miRNAs and exogenously applied dsRNA molecules are bound and cleaved by the
dicer complex, which consists of the RNAse III-like nuclease DCR-1, the dsRNA-binding proteins RDE-1 and -4, the helicases DRH-1 and DRH-3/EKL-3,
the RNA-dependent RNA-polymerase (RdRP) RRF-1, and the uncharacterized protein, AIN-1. Dicer cleaves dsRNA to produce siRNA molecules, and
pre-miRNA to mature miRNA, both of which are substrates for the RNA-induced silencing complex (RISC). (4) Both siRNAs and miRNAs are the focus of
a battery of inhibitors, which allow down-regulation of the RNAi response. (5) The RISC complex incorporates a single strand of miRNA or siRNA
(termed the guide strand), and binds a complementary mRNA strand, eliciting gene silencing by either mRNA destruction or translational repression
(6). The central catalytic component of RISC is an argonaute (AGO) protein, allied with the nuclease TSN-1, the RNA-binding protein VIG-1, and AIN-1.
(7) The RNAi response may be amplified by the action of the RdRPs RRF-1 and -2, SMG-5, RDE-2/MUT-8 and MUT-7, which produce a population of
single-stranded RNAs bearing N-terminal tri-phosphates from a target mRNA template. (8) These secondary siRNAs interact with Secondary-siRNA-
specific AGOs (SAGO-1 and -2), terminating in down-regulation of target transcript. Secondary siRNAs can also spread between cells through RSD-2,
-3 and -6, resulting in intercellular spread of the RNAi effect (9), and can be imported into the nucleus by NRDE-3, which elicits transcriptional silencing of
nascent RNA transcripts as part of nuclear RISC (nucRISC) (10). siRNAs may also control aspects of nuclear RNAi, including histone methylation, chromatin
formation and chromosome segregation (11). Dashed lines indicate miRNA-based pathways, solid lines indicate siRNA-based pathways.
doi:10.1371/journal.pntd.0001176.g001
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both parasitic and free-living species returned only a subset of

putative AGO orthologs relative to C. elegans. AGO analysis

presented a significant challenge within our sequence similarity

searches, due in part to significant areas of sequence similarity

between functionally disparate C. elegans proteins. In many cases

our BLAST analysis presented a clustering of multiple distinct

AGOs around an individual C. elegans ortholog. Additionally, in

some examples we could identify putative AGO orthologs

which reciprocated to non-cleavage competent C. elegans

proteins, but which encoded catalytic residues consistent with

cleavage-competency themselves [32]. Clearly, using gross

sequence similarity as an identification tool for AGOs

underestimates functional diversity (data not shown), and as a

result, we considered that an in depth analysis of AGO family

diversity was beyond the scope of this study. This did not

represent an issue for the analysis of other RNAi pathway

protein families.

Small RNA biosynthesis
Small RNA-based genetic regulatory pathways are ubiquitous in

eukaryotes, and represent a set of proteins with conserved function

and structure in evolutionarily distant organisms. As such, our

analysis of proteins that perform nuclear biosynthesis, nuclear

export and cytoplasmic processing of small RNAs such as miRNAs

(Figure 1; for recent review, see [1]) should provide a positive

control measure for both our approach, and sequence data quality.

These core proteins were well conserved within our dataset

(Table 1; Dataset S1) - transcripts encoding many of the proteins

required for siRNA and miRNA processing, including RNase III

enzymes (drosha, DRSH-1; pasha, PASH-1; dicer, DCR-1), RNA

helicases (dicer-related helicases DRH-1 and -3), and exportins

(XPO-1 and -3) are highly conserved across the genomic and

transcriptomic datasets considered here, although orthologs of the

dsRNA-binding protein and dicer-complex cofactor, RDE-4, were

notably absent from all of the parasites except B. malayi and A.

caninum.

dsRNA uptake and spreading
Our dataset recognizes five C. elegans genes putatively respon-

sible for dsRNA uptake and spread, identified from mutant screens

for defects in systemic RNAi (the RNAi spreading defective

mutants rsd-2, -3 and -6, and the systemic RNAi defective mutants

sid-1 and -2). Much interest has centered on SIDs as core

determinants of dsRNA uptake/spreading mechanisms. These

transmembrane proteins were first described in C. elegans as

mediators of systemic and environmental RNAi due to their role

in transmembrane transport of dsRNA [21,33]. Putative SID

orthologs have since been described in disparate organisms

including mammalian cells [34], trematode flatworms [35],

crustaceans [36] and insects [37,38] (although Drosophila melanoga-

ster does not possess known SID orthologs, heterologous expression

of C. elegans SID-1 sensitizes Drosophila cells to RNAi by soaking

[39]). Similarly, expression of SID-1 in C. elegans neurons reverses

the neuronal intractability of this species [40]. The role of SID-2 in

environmental RNAi has been demonstrated by functional

expression of C. elegans SID-2 in C. briggsae, a transformation

which confers susceptibility to environmental RNAi in this species

[21]. Given the importance of SID-1 and -2 to functional RNAi in

C. elegans, it is surprising that these proteins are so poorly conserved

in other nematodes, where putative SID-1 orthologs were

identified in H. contortus and O. dentatum only (Table 2) and sid-2

was not identified outside the Caenorhabditis genus. Similarly poor

conservation was observed with RSD-2 (not identified) and RSD-6

(seen only in P. pacificus). RSD-3 is the sole perfectly conserved

spreading protein in our dataset, occurring in all 13 species (see

Table 2; Dataset S2). Evidence from C. elegans implicates RSD-3 in

intercellular spread since rsd-3 null mutants are able to take up

dsRNA from the gut lumen, but are unable to distribute this

dsRNA into the germline [41]. Despite lacking identifiable

orthologs of SID-1, and -2, as well as RSD-2 and -6, plant-

parasitic Meloidogyne and Globodera spp. display systemic RNAi

following soaking in dsRNA/siRNA [7,8,42,43], suggesting that

alternative uptake proteins (e.g. fed mutants; see [44]), or

mechanisms are involved, perhaps similar to the receptor-

Table 2. dsRNA uptake and spreading, and siRNA amplification effectors.

C. elegans orthologs

Amplification Proteins Spreading Proteins

Clade Species smg-2 smg-6 ego-1 rrf-3 rrf-1 smg-5 rsd-2 rsd-3 sid-1 rsd-6 sid-2

I/2 Trichinella spiralis X X X X

III/8 Ascaris suum X X X X X X

III/8 Brugia malayi X X X X X

IV/12 Meloidogyne hapla X X X X

IV/12 Meloidogyne incognita X X X X

V/9 Ancylostoma caninum X X X X

V/9 Caenorhabditis brenneri X X X X X X X X X X

V/9 Caenorhabditis briggsae X X X X X X X X X X X

V/9 Caenorhabditis japonica X X X X X X X X X X

V/9 Caenorhabditis remanei X X X X X X X X X X

V/9 Haemonchus contortus X X X X X X

V/9 Oesophagostomum dentatum X X X X X

V/9 Pristionchus pacificus X X X X X X

Species represented solely by expressed sequence tag (EST) datasets are not included, refer to Table S1. ‘X’ indicates presence of ortholog. Note that rrf-2 is not shown,
as it may represent a pseudogene found only in Caenorhabditis elegans. See Dataset S2 for corresponding protein sequences.
doi:10.1371/journal.pntd.0001176.t002
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mediated endocytotic dsRNA uptake process seen in insect gut

cells [45]. Intriguingly, our own unpublished data demonstrate a

phenomenon of well conserved miRNA target transcript up-

regulation in response to dsRNA/siRNA soaking of M. incognita, G.

pallida and A. suum, possibly in response to a ubiquitous saturation

of RNAi pathway effectors shared between exogenous (dsRNA/

siRNA) and endogenous (miRNA) small RNA pathways, which

could indicate that uptake is not limiting for these nematodes ([46];

unpublished observations). Additionally, we cannot discount the

possibility that poorly-characterised morphological differences,

such as cuticle permeability, better enable dsRNA uptake or

propagation in PPNs relative to other parasite species.

Secondary siRNA amplification
In C. elegans, plants [47], and Neurospora [48], the RNAi effect is

greatly amplified by the action of RNA-dependent RNA

polymerases (RdRPs), which produce a population of secondary

siRNAs from the target mRNA template [41,49–52]. Further

examples of RdRP-catalyzed amplification mechanisms have

recently been reported in Paramecium tetraurelia, where multiple

RdRPs appear to exist [53], and in Drosophila, where a non-

canonical RdRP has been identified [54]. The most well-

conserved RdRP in our dataset is EGO-1 (Enhancer of Glp-One

[glp-1]), which appears in seven species (Table 2). RRF-3 (RNA-

dependent RNA polymerase family member 3), which coordinates

Table 4. RNAi inhibitors.

C. elegans orthologs

Clade Species eri-1 xrn-2 adr-2 xrn-1 adr-1 lin-15b eri-5 eri-6/7 eri-3

I/2 Trichinella spiralis X X X

III/8 Ascaris suum X X X X X

III/8 Brugia malayi X X X X

IV/12 Meloidogyne hapla X X X

IV/12 Meloidogyne incognita X X

V/9 Caenorhabditis brenneri X X X X X X X X

V/9 Caenorhabditis briggsae X X X X X X X X X

V/9 Caenorhabditis remanei X X X X X X X X X

V/9 Caenorhabditis japonica X X X X X X X X

V/9 Ancylostoma caninum X X X X

V/9 Haemonchus contortus X X X X X

V/9 Oesophagostomum dentatum X X X X X

V/9 Pristionchus pacificus X X X X

Species represented solely by expressed sequence tag (EST) datasets are not included, refer to Table S1. ‘X’ indicates presence of ortholog. See Dataset S4 for
corresponding protein sequences.
doi:10.1371/journal.pntd.0001176.t004

Table 5. Nuclear RNAi effectors.

C. elegans orthologs

Clade Species mut-7 cid-1 ekl-1 gfl-1 mes-2 ekl-4 mes-6 rha-1 ekl-6 zfp-1 mut-2 ekl-5 mes-3 mut-16 rde-2

I/2 Trichinella spiralis X X X X

III/8 Ascaris suum X X X X X X X X

III/8 Brugia malayi X X X X X X X X X X

IV/12 Meloidogyne hapla X X X X X X X

IV/12 Meloidogyne incognita X X X X X X

V/9 Ancylostoma caninum X X X X X X X

V/9 Caenorhabditis brenneri X X X X X X X X X X X X X X X

V/9 Caenorhabditis briggsae X X X X X X X X X X X X X X X

V/9 Caenorhabditis japonica X X X X X X X X X X X X X X X

V/9 Caenorhabditis remanei X X X X X X X X X X X X X X X

V/9 Haemonchus contortus X X X X X X X X X X X

V/9 Oesophagostomum dentatum X X X X X X

V/9 Pristionchus pacificus X X X X X

Species represented solely by expressed sequence tag (EST) datasets are not included, refer to Table S1 for these data. ‘X’ indicates presence of ortholog. See Dataset S5
for corresponding protein sequences.
doi:10.1371/journal.pntd.0001176.t005
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complex and ill-understood interactions between RNAi inhibition

and amplification of the secondary siRNA response is reasonably

well conserved, with RRF-1 less so. EGO-1 is an RdRP with core

functions in transcription of ‘‘WAGO’’ (worm-specific AGO [55])-

interacting 22G-RNAs responsible for silencing events involved in

genome surveillance [56,57] and with additional roles in germline

development [58], heterochromatin assembly [59,60], holocentric

chromosome segregation [61], and P-granule function [62]. In

light of these core roles, the inter-species conservation of EGO-1 is

unsurprising. RRF-3, which is also reasonably well-conserved, was

traditionally referred to as an inhibitory RdRP [63], although

through recent work has been implicated in the production of

secondary 26G-RNAs which seed a two-step process of secondary

amplification against endogenous targets (endo-siRNAs) [57,

64,65]. It is also believed that nonsense-mediated decay (NMD)

proteins SMG-2 (Suppressor with Morphological effects on

Genitalia 2), -5 and -6 may play a role in the induction and

maintenance of secondary amplification [66], a hypothesis

supported by analysis of smg null mutants which are defective for

RNAi initiation [67]. SMG-2 and -6 are perfectly conserved across

the genomes and transcriptomes considered here, while SMG-5 is

not well conserved (see Table 2; Dataset S2). Conservation of

EGO-1 suggests that all of the nematode species examined here

are capable of some degree of secondary RNAi amplification,

consistent with previous observations of the potency of RNAi in

PPNs, where soaking in as little as 0.1 mg/ml dsRNA was capable

of eliciting significant and consistent knockdown of transcripts in

Globodera pallida and M. incognita second stage juveniles (J2s) [8].

AGOs and RISC
C. elegans possesses at least 27 distinct AGOs (including

pseudogenes C06A1.4 and C14B1.7) [32], which constitute the

central effectors of the RNA-induced silencing complex (RISC),

conferring both function and specificity to RISC. All of the

nematodes in our dataset possessed multiple distinct AGOs

(Table 3). A subset of well-conserved AGOs (defined according

to closest C. elegans BLAST match) included the miRNA-

interacting AGO, ALG-1 (Argonaute [Plant]-Like Gene), as well

as several endo-siRNA-interacting AGOs including the 26G-

RNA-interacting ALG-4 [68], and the 22G-RNA-interacting

WAGOs, R06C7.1 and F58G1.1 [55]. Some members of the

PIWI-clade of AGOs, such as PRG-1 (Piwi-Related Gene 1),

PRG-2, ERGO-1 (Endogenous Rnai deficient arGOnaute 1) and

the AGO/PIWI-clade secondary AGOs SAGO-1 and SAGO-2,

are not well conserved. Surprisingly, RDE-1, which is believed to

be the main AGO involved in silencing events triggered by

exogenous dsRNA in C. elegans, was only identified in the animal

parasitic nematodes A. suum, H. contortus and A. caninum. Thus the

AGOs known in C. elegans to be responsible for endogenous

regulation of gene expression are well conserved, while the AGOs

responsible for executing RNAi triggered by exogenous dsRNA

are not. However, as previously stated, our identification strategy

does not account for the possibility that other uncharacterized

AGOs exist in each nematode species, performing roles compa-

rable to those AGOs which we could not identify. A further four C.

elegans AGOs (M03D4.7; T23D8.7; ZK218.8, NRDE-3) did not

appear to be present within our parasite dataset. The AGO

NRDE-3, is responsible for nuclear translocation of RNAi triggers

in C. elegans, and is involved in processes which lead to heritability

of gene silencing events. As NRDE-3 is completely absent from the

parasite datasets considered here, this may indicate that silencing

events cannot be passed between generations of parasitic

nematodes. Our data suggest that most nematodes have smaller

AGO complements than C. elegans, although the impact this has on

functional diversity is unknown. The contracted complement of

AGOs identified in the parasite species relative to C. elegans is

consistent with their propensity for gene loss [69]. This could

indicate redundancy in the function of individual AGOs within C.

elegans, or conversely a reduced functionality within the parasites

considered here. Interestingly, ERGO-1 is involved in the function

of endogenous siRNA populations within C. elegans [57,65] but is

poorly conserved perhaps indicating a differential small RNA

population dynamic between species. Again, the poor conservation

of such proteins in RNAi-competent plant-parasitic species would

seem to suggest that such deficiencies need not undermine RNAi

functionality.

In addition to the catalytic AGO protein, RISCs also comprise

several protein co-factors, including multiple dsRNA-binding

proteins and exonucleases which are thought to pass from

elements of the biosynthetic machinery (Figure 1), although these

co-factors are in fact quite poorly characterized, even in C. elegans.

Our analysis reveals that TSN-1 (Tudor Staphylococcal Nuclease

1), which is a common component of RISC in C. elegans, Drosophila

and mammalian cells [70], is well conserved across the species

considered here (Table 3; Dataset S3). The ALG interacting

protein AIN-1, responsible for targeting miRNA-bound ALGs to

P-bodies [71,72], is also reasonably well-conserved, being present

in seven species. VIG-1, the C. elegans ortholog of Drosophila VASA

intronic gene which regulates transition between larval and adult

cellular fates though interaction with the let-7 miRNA [73], was

identified in five of our eight species.

RNAi inhibitors
Proteins with RNAi-inhibiting function were first characterized

in C. elegans, leading to the identification of RNAi-hypersensitive

null mutant strains of RRF-3 [63] and ERI-1 [74]. Only two

RNAi inhibitor orthologs, the DEDDh-like 39-59 siRNA exonu-

clease ERI-1 and the miRNA 59-39 exonuclease XRN-2 (XRN

RiboNuclease related 2), are fully conserved across our genomic

and transcriptomic datasets (Table 4; Dataset S4). Sporadically-

conserved inhibitors included the adenosine deaminases ADR-1

Table 6. Nematode RNAi effector protein complements.

Clade Species
Number of RNAi effector
proteins

V/9 Caenorhabditis elegans 77

V/9 Caenorhabditis briggsae 65

V/9 Caenorhabditis remanei 65

V/9 Caenorhabditis brenneri 63

V/9 Caenorhabditis japonica 60

V/9 Haemonchus contortus 46

III/8 Ascaris suum 44

V/9 Ancylostoma caninum 40

V/9 Oesophagostomum dentatum 38

V/9 Pristionchus pacificus 36

III/8 Brugia malayi 35

IV/12 Meloidogyne hapla 28

IV/12 Meloidogyne incognita 27

I/2 Trichinella spiralis 22

Total number of RNAi effector proteins identified for each species.
doi:10.1371/journal.pntd.0001176.t006
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and -2 [75], and LIN-15b, while orthologs of ERI-3, -5 and -6/7

[76] were not identified outside Caenorhabditis spp.

Nuclear effectors
The RNAi pathway affects a number of poorly understood

nuclear silencing mechanisms. We found that an uncharacterized

nuclear effector, EKL-1 (Enhancer of KSR-1 Lethality 1 [KSR-1

is a Ras-ERK signaling scaffold protein] [77]) was the most highly

conserved between species (Table 5; Dataset S5). Other chroma-

tin-associated proteins, helicases and methylation factors are

conserved to varying degrees, however MES-3 (Maternal Effect

Sterile 3), RDE-2 (RNAi Defective 2), EKL-5 and MUT-16 were

only found in Caenorhabditis spp.

Conclusions
In spite of the contrasting experimental evidence from published

studies, our data indicate that diverse nematode species possess the

machinery required to facilitate an RNAi response. Our inability

to culture many animal parasitic nematodes under in vitro

conditions may represent one of the main reasons why RNAi is

difficult to perform in these species. Certainly, where RNAi has

been most successful in nematodes it has been in species/life-stages

amenable to laboratory culture, e.g. free living species such as C.

elegans or free-living stages of parasites such as PPN J2 larvae, and

more recently in vivo in mosquito-stage Brugia [78], although some

readily-cultured species seem refractory to RNAi [12]. Addition-

ally, given that small non-coding RNAs are heavily involved in

various cellular stress responses [79], it may be that adverse culture

conditions lead to their increased expression, resulting in

saturation of available RISC proteins, which would interfere with

the organism’s ability to direct an RNAi response to an exogenous

trigger. If such saturation events varied between cells and/or

tissues, then this could account for differing knockdown suscep-

tibilities between some genes. Further, we have little information

on differences in RNAi effector protein expression level or

localization between species and/or life-stages, which might

account for the observed variability. Other possible explanations

for RNAi disparities include factors for which we have limited

information, such as uncharacterized morphological differences

between species (e.g. permeability of the cuticle to nucleic acids),

or allelic diversity in discrete worm populations which may affect

RNAi susceptibility in a similar fashion to drug susceptibility/

resistance. In summary, our data do not support inter-species

disparities in RNAi effector protein complements as an explana-

tion for differences in RNAi competencies. Whilst the Caenor-

habditid spp. encode significantly more RNAi pathway effectors

than the other nematodes considered here, qualitative similarities

in functional groupings across species with variable RNAi

susceptibilities validate our conclusion.
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