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Background: Ovarian cancer is highly malignant and has a poor prognosis in the
advanced stage. Studies have shown that infiltration of tumor microenvironment cells,
immune cells and stromal cells has an important impact on the prognosis of cancers.
However, the relationship between tumor microenvironment genes and the prognosis of
ovarian cancer has not been studied.

Methods: Gene expression profiles and SNP data of ovarian cancer were downloaded
from the TCGA database. Cluster analysis, WGCNA analysis and univariate survival
analysis were used to identify immune microenvironment genes as prognostic signatures
for predicting the survival of ovarian cancer patients. External data were used to evaluate
the signature. Moreover, the top five significantly correlated genes were evaluated by
immunohistochemical staining of ovarian cancer tissues.

Results: We systematically analyzed the relationship between ovarian cancer and
immune metagenes. Immune metagenes expression were associated with prognosis.
In total, we identified 10 genes related to both immunity and prognosis in ovarian
cancer according to the expression of immune metagenes. These data reveal that high
expression of ETV7 (OS, HR = 1.540, 95% CI 1.023–2.390, p = 0.041), GBP4 (OS,
HR = 1.834, 95% CI 1.242–3.055, p = 0.004), CXCL9 (OS, HR = 1.613, 95% CI 1.080 –
2.471, p = 0.021), CD3E (OS, HR = 1.590, 95% CI 1.049 –2.459, p = 0.031), and TAP1
(OS, HR = 1.766, 95% CI 1.163 –2.723, p = 0.009) are associated with better prognosis
in patients with ovarian cancer.

Conclusion: Our study identified 10 immune microenvironment genes related to the
prognosis of ovarian cancer. The list of tumor microenvironment-related genes provides
new insights into the underlying biological mechanisms driving the tumorigenesis
of ovarian cancer.
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INTRODUCTION

Cancer seriously endangers human health, and in recent years,
the incidence of malignant tumors has increased annually.
The World Health Organization reported 18.1 million new
cancer cases and 9.6 million cancer-related deaths worldwide
in 2018. Ovarian cancer is a common gynecologic malignancy
and the fifth leading cause of cancer-related deaths in women
(Siegel et al., 2018). The lifetime risk of ovarian cancer in
women is 1.3%. The 5-year survival rate ranged from 29 to
93%, depending on the initial diagnosis (Torre et al., 2018).
Despite advances in treatment strategies and techniques, the
mortality rate of ovarian cancer remains high. The main reason
is the lack of obvious symptoms and effective screening for
ovarian cancer. Sixty percent of patients were diagnosed with
advanced ovarian cancer (Dinh et al., 2008). Standard treatment
for advanced ovarian cancer includes tumor cell destruction
and standard chemotherapy. However, most patients relapse
within 2–3 years after first-line chemotherapy and die as a
consequence of chemotherapy resistance (Odunsi, 2017). Thus,
new treatment strategies and paradigms are greatly needed
for these patients.

Malignant solid tumor tissue is heterogeneous and includes
not only tumor cells but also tumor-associated normal epithelial
and stromal cells, immune cells and vascular cells. The
process of tumor development depends on a variety of
complex signaling pathways between tumor cells and the
tumor microenvironment (Kreuzinger et al., 2017). With
the improvement of understanding the molecular basis of
immune recognition and immune regulation in tumor cells,
immunotherapy has aroused great interest (Nelson, 2015).
Tumor microenvironment cells and the degree of infiltration
of immune and stromal cells in tumors have been reported
to significantly contribute to the prognosis. In the tumor
microenvironment, immune and stromal cells are two main
types of non-tumor components and have been proposed
to be valuable for the diagnosis and prognosis evaluations
of tumors (Senbabaoglu et al., 2016; Winslow et al., 2016;
Ovarian Tumor Tissue Analysis (Otta) Consortium, Goode
et al., 2017). Many algorithms have been developed to
calculate tumor purity using gene expression and DNA
methylation data (Carter et al., 2012; Yoshihara et al.,
2013; Zheng et al., 2017). The immune and stromal scores
calculated based on the ESTIMATE algorithm (Yoshihara et al.,
2013) promote the quantitative determination of immune
and stromal components in tumors. In this algorithm, the
authors calculated immune and stromal scores by analyzing
specific gene expression characteristics of immune and stromal
cells to predict non-tumor cell infiltration. This algorithm
has been applied to prostate cancer (Shah et al., 2017) and
breast cancer (Jia et al., 2018), and the results show the
effectiveness of this algorithm, but there are no detailed studies
on ovarian cancer.

The Cancer Genome Atlas (TCGA) has been established
to improve cancer prevention, diagnosis and treatment by
applying high-throughput genome analysis techniques to
provide a better understanding of cancer (Cancer Genome

Atlas Research Network, 2008). To better understand the
effect of immune microenvironment-related genes on the
prognosis of ovarian cancer, we systematically analyzed the
expression profile data in the TCGA database and mined
the genes related to the microenvironment of ovarian
cancer and poor prognosis. Finally, we obtained a set of
microenvironment genes associated with poor prognosis in
ovarian cancer patients and validated them with the online
tool KMplot1.

MATERIALS AND METHODS

Data Source and Data Pre-processing
TCGA Data
We used the GDC API to download level 3 data for OC
patients from the TCGA database2 (December 26, 2018). The
data included the following: (1) RNA-seq data (n = 379).
The Fragment Per Kilobase of transcript per Million mapped
reads (FPKM) data of RNA-Seq were downloaded from the
TCGA and further converted into Transcript Per Million
(TPM) expression profiles and RNA-Seq Count data; (2) Single
nucleotide polymorphism (SNP) data (n = 436); and (3) Clinical
follow-up information (n = 587) including survival and outcome.

Immune Metagenes Scores
Thirteen kinds of immune metagenes, which correspond to
various types of immune cells and reflect various immune
functions, were identified from previous reports (Safonov et al.,
2017). For each sample, according to the gene expression levels
of immune metagenes, we selected the median expression level of
each type of immune metagenes and designated these levels as the
immune metagenes score for these samples.

Immune Cell Scores
We downloaded the scores of six types of immune cells
corresponding to each sample of ovarian cancer from the Tumor
Immune Estimation Resource (TIMER)3 database. The six types
of immune cells were B cells, CD4+ T cells, CD8+ T cells,
neutrophils, macrophages and dendritic cells.

Immune Scores and Stromal Scores
Stromal and immune scores were estimated from transcriptomic
profiles of the ovarian cancer cohort from TCGA using
the ESTIMATE algorithm. We used the R software package
estimate to calculate the immune and stromal scores of each
sample. ESTIMATE (Estimation of STromal and Immune
cells in MAlignant Tumor tissues using Expression data) is
a tool for predicting tumor purity, and the presence of
infiltrating stromal/immune cells in tumor tissues using gene
expression data. ESTIMATE algorithm is based on single
sample Gene Set Enrichment Analysis and generates three
scores: stromal score (that captures the presence of stroma in

1http://kmplot.com
2http://cancergenome.nih.gov
3https://cistrome.shinyapps.io/timer/
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tumor tissue), immune score (that represents the infiltration
of immune cells in tumor tissue), and estimate score (that
infers tumor purity).

Overall Survival Curve and Differential
Expression Analysis
The data were processed: (1) KM plots were generated to
illustrate the relationship between patients’ overall survival and
gene expression levels of immune metagenes. The relationship
was tested by log-rank test. (2) Weighted gene co-expression
network analysis (WGCNA), an R software package (Langfelder
and Horvath, 2008; Wang et al., 2019), was used to construct
a weighted co-expression network. A soft threshold of 8 was
selected to screen the co-expression modules. The protein-
protein interaction (PPI) network was retrieved from STRING
database (Szklarczyk et al., 2015) and reconstructed via Cytoscape
software (Shannon et al., 2003; Wang et al., 2020). (3)
The R software package clusterProfiler for KEGG enrichment
analysis was used, and a significance of false discover rate
(FDR) < 0.05 was selected. (4) Data analysis was performed
using the package DESeq2. The log2 (Foldchange)| > 1 and
FDR < 0.05 were set as the cutoff values to screen for differentially
expressed genes.

Immunohistochemical Staining (IHC)
We collected a total of 168 human ovarian cancer tissue
samples, which had accompanying follow-up information,
from archives of paraffin-embedded tissues between January
2010 and January 2015 at the Department of Pathology of
Beijing Chao-Yang Hospital. The follow-up was performed
until December 31, 2020. The pathological diagnoses were
reconfirmed by a pathologist. The patients included in present
study were all (1) Epithelial ovarian cancer, (2) Underwent
cytoreductive surgery and subsequent chemotherapy, (3)
With follow-up information. The exclusion criteria were (1)
Ovarian germ cell tumor, ovarian sex cord stromal tumor
or metastatic cancer, (2) Unstandardized treatment, (3) No
informed consent, (4) Lost to follow-up, and (5) No enough
pathological samples.

The project was approved by the Ethical Committee (Beijing
Chao-Yang Hospital), and informed consent was acquired from
patients. IHC was performed as previously described (Li et al.,
2010). Antibodies against the following were used: ETV7 1:200
abcam ab229832, GBP4 1:50 abcam ab232693, CXCL9 1:100
abcam ab137792, CD3E 1:500 abcam ab237721, TAP1 1:200
abcam ab137013. The scoring details have been described
previously (Zhang et al., 2015). The intensity of immunostaining
was graded as follows: 1+, weak; 2+, moderate; 3+, strong
or 4+, very strong. The area of positive cancer cells in each
microscopic field was categorized as follows: 1+, 0–25%; 2+,
25–50%; 3+, 50–75%, or 4+, 75–100%. The sum between 5
and 80 was obtained by multiplying the two scores by 5.
A sum from 0 to 42 was assigned as “low expression” and
that from 43 to 80 as “high expression.” All pathological
diagnoses were confirmed in a blinded manner by three
expert pathologists.

RESULTS

Correlation Analysis of Immune
Metagenes With Immunological
Components in the Tumor
Microenvironment
To observe the relationship between 13 types of immune
metagenes scores, we calculated the correlation between them, as
shown in Supplementary Figure 1A. The average correlations of
natural killer cells (NK), regulatory T cells (Tregs), interferon-
inducible genes (IF_I) and major histocompatibility complex
class II antigen (MHC2) with other metagenes were the
smallest and were 0.08157227, 0.23253018, 0.3120958, and
0.398014, respectively. The other classes of metagenes were highly
correlated, which indicates that there is a certain consistency
in the expression of metagenes in ovarian cancer. Furthermore,
we analyzed the immune metagenes scores and six kinds of
immune cells in the tumor microenvironment, as shown in
Supplementary Figure 1B. We found that in addition to NK,
Tregs and IF_I have smaller correlations with the content of six
kinds of immune cells, and the scores for other metagenes were
>0.4, suggesting that the immune metagenes and immune cells
in the immune microenvironment have a significant correlation.
Finally, we calculated the correlation between immune metagenes
and immune and stromal scores, as shown in Supplementary
Figure 1C. The correlation of the other 10 types of immune
metagenes, except for NK, IF_I and Tregs, was very high, with
an average higher than 0.4. In conclusion, the expression of
these immune metagenes was closely related to the immune
components in the tumor microenvironment.

Relationship Between Immune
Metagenes and Clinical Stage
According to the expression levels and stages of immune
metagenes in each sample, we calculated the expression level
distribution of immune metagenes in different stages, as shown
in Supplementary Figures 2A–M (the number of Stage I samples
was too small to be counted, so we counted only Stages II-IV).
Immune metagenes showed a trend of successively declining
expression of Stages II-IV, and ImmuneScore, follicular helper T
cells (Tfh) and signal transducer and activator of transcription
1 (STAT1) had significant differences in various stages. The
prognostic differences in the four stages were further analyzed
as shown in Supplementary Figure 2N, and different stages had
significant prognostic differences. This result suggests that the
expression of immune metagenes may be closely related to the
prognosis of ovarian cancer.

Prognostic Difference Analysis of
Immune Metagenes
To observe the expression and prognosis of the relationship
between immune metagenes, we classified as high- and low-
expression samples according to the median expression of
metagenes. KM plots was used for prognostic difference analysis,
as shown in Figures 1A–M. In all immune metagenes, the
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FIGURE 1 | (A–M) KM curve of the expression and prognosis of immune metagenes; group H represents high-expression genes, and group L represents
low-expression genes. (N) The expression distribution of immune metagenes.

low-expression group had a worse prognosis than the high-
expression group, in which ImmuneScore, Tfh, MHC1, STAT1
and Co_inhibition showed significant differences in prognosis,
suggesting that the high expression of metagenes was a good
prognostic factor. Next, we analyzed the expression distribution
of immune metagenes as shown in Figure 1N. Except for the
low expression of Tregs, the median expression of other types
of metagenes was generally high. This result suggests that these
immune metagenes are commonly expressed genes in ovarian
cancer, indicating the potential of these metagenes as a new
prognostic marker.

Relationship Between Immune
Metagenes and BRCA Mutations
BRCA genes are tumor suppressor genes that play important
roles in cell replication regulation, DNA damage repair and
normal cell growth. If BRCA genes are mutated, they will lose
their ability to inhibit tumorigenesis. There are hundreds of
BRCA mutation types, which are related to the occurrence of
many cancers in the human body; among these cancers, breast
cancer is the most closely related to BRCA mutations, followed by
ovarian cancer. Therefore, we analyzed the relationship between
these immune metagenes and BRCA1 and BRCA2 mutations.
First, MuTect (Cibulskis et al., 2013) was used to process SNP

data downloaded from the TCGA and to extract mutation
data of BRCA1 and BRCA2. The expression relationship of
immune metagenes in the BRCA1 mutation group and wild-
type group samples was analyzed as shown in Supplementary
Figures 3A–M. There were eight immune metagenes with
significant expression differences, and the expression of the wild-
type group was significantly higher than the mutant group. In
addition, Macrophages, MHC1 and STAT1 had no significant
differences, but the P-value was on the edge of significance.
Second, we analyzed the differences in expression for immune
metagenes between the BRCA2 mutation group and the wild-
type group, as shown in Supplementary Figures 3N–Z. There
were no significant differences in metagene expression among
immune metagenes. This finding is consistent with previous
studies and shows that BRCA2 mutations in ovarian cancer have
no prognostic significance (Goode et al., 2017).

WGCNA Analysis Mining Immune
Metagenes Related Modules
To further excavate the prognosis of ovarian cancer immune
microenvironment-related markers, we obtained the expression
data for a total of 379 samples. A total of 15,268 transcripts
with more than 75% TPM > 1 and median absolute
deviation > median was selected from these samples. First,
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hierarchical clustering was used for cluster analysis of the
samples, as shown in Figure 2A. There were some outlier
samples. We screened the samples with a distance of more
than 47,000 as outlier samples and finally obtained a total of
328 samples. Second, Pearson correlation coefficient was used
to calculate the distance between each transcript. WGCNA was
used to construct a weighted co-expression network. A soft
threshold of 8 was selected to screen the co-expression modules.
The research showed that the co-expression network conforms
to the scale-free network; that is, the log(k) of the node with
connectivity k was negatively correlated with the log(P(k) of
the probability of the node, and the correlation coefficient was
>0.8. To ensure that the network was scale-free, we select β = 8
(Figures 2B,C). Third, the expression matrix was transformed
into an adjacency matrix, and then the adjacency matrix was
transformed into a topological matrix. Based on the topology
overlap matrix (TOM), we used the average-linkage hierarchical
clustering method to cluster the genes. According to the standard
of the hybrid dynamic shear tree, the minimum number of
genes in each gene network module was set to 30. After
determining the gene module by using the dynamic shearing
method, we successively calculated the characteristic vector value
(eigengenes) of each module and then performed cluster analysis
on the module to merge the modules that were close to each
other into new modules. Height = 0.25, deepSplit = 2, and
minModuleSize = 30 were the set values. A total of 62 modules
were obtained (Figure 2D). The gray module is the gene set that
cannot be aggregated into other modules. The transcript statistics
of each module are shown in Supplementary Table 4, from which
8,047 transcripts were assigned to 62 co-expression modules. We
calculated the correlation between the feature vectors of the 62
modules and the immune metagenes, as shown in Figure 2E.
The sienna3, yellow, antiquewhite4 and ivory modules have
the highest correlations with the immune metagenes, with an
average correlation >0.39. The number of transcripts in the
four modules was 69, 378, 33, and 54, respectively, containing a
total of 534 genes.

We further analyzed the function of genes in the four modules
most related to immune metagenes. Among the four modules,
the sienna3 module was enriched into 13 pathways. The yellow
module was enriched into 54 pathways. The antiquewhite4
module was enriched into 23 pathways. The ivory module was
enriched in 20 pathways. The relationship between the pathways
enriched by these four modules was analyzed (Figure 3); There
are 70 pathways enriched by the four modules, of which 31
are enriched by two or more modules, respectively. This result
indicates that there are many intersections between the enriched
pathways, of which eight are enriched by three modules at the
same time (allograft rejection, autoimmune thyroid disease, cell
adhesion molecules, Epstein-Barr virus infection, graft-vs.-host
disease, herpes simplex infection, human T-cell leukemia virus
1 infection NK cell-mediated cytotoxicity, and type I diabetes
mellitus). These pathways are closely related to immunity
and cell adhesion.

To select genes associated with immune metagenes, we
calculated the correlation between the gene and module and
analyzed the correlation distribution of these genes as shown

in Supplementary Figure 5. These correlation coefficients
presented a bimodal distribution. With 0.72 as the critical
point, we selected 248 genes with the maximum correlation
coefficient >0.72.

Differential Gene Analysis of Immune
Differential Samples
Most of the immune metagenes are related to the prognosis,
and the most significant type of immune metagenes such as
ImmuneScore and STAT1 were selected. First, samples were
divided into two groups, high ImmuneScore group and low
ImmuneScore group, based on the average according to the
ImmuneScore level. Then, the R software package DESeq2 was
used to analyze the differentially expressed genes between the
two groups of samples. In total, 219 differentially expressed genes
were obtained, as shown in Supplementary Figure 6A, indicating
that the up-regulated genes were significantly larger than the
down-regulated genes and that up-regulated multiple genes was
larger than the down-regulated multiple genes, in general. The
expression profiles of these 219 genes are further visualized
in Supplementary Figure 6B; there were obvious differences
in the expression of differentially expressed genes in the high
ImmuneScore group and low ImmuneScore group. Similarly, the
samples were divided into two groups, the high STAT1 group
and the low STAT1 group, based on the average according to
the level of STAT1. Differentially expressed genes were screened
by DESeq2, as shown in Supplementary Figures 6C,D. The
differences in the STAT1 distribution results are similar to those
in the ImmuneScore, and the expression levels were significantly
higher for high-expression genes than in low-expression genes.

Screening of Immune Microenvironment
Genes With Prognostic Value
To further analyze the co-expression relationship between genes
with different immune scores and immune metagenes, we
integrated 248 genes associated with the four most relevant
metagenes modules, 219 genes with differential expression from
ImmuneScore and 211 genes with differential expression from
STAT1. We selected a total of 70 genes from all three, excluding
24 genes in 13 immune metagenes and resulting in 46 genes,
as shown in Figure 4A. Next, we used the R software package
clusterProfiler for KEGG enrichment analysis of these genes,
and the selection threshold FDR < 0.05 is shown in Figure 4B.
A total of 19 genes were enriched into 12 pathways, and most of
these genes are related to immune diseases. The protein network
interaction of these 46 genes were analyzed by using the R
package STRINGdb. First, the 46 genes were mapped into the
STRING database, and the network relationships among these
genes were obtained as shown in Figure 4C. A total of 104 edges
and 40 nodes were obtained. We analyzed the degree distribution
of nodes in these networks as shown in Figure 4D. From this
result, the degree of each node is higher, with an average degree
of 5.7, indicating that these genes are closely related.

To screen genes with prognostic value in the immune
microenvironment, we first analyzed the relationship between
the expression of these 46 genes and prognosis using univariate
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FIGURE 2 | (A) The sample clustering analysis. (B,C) Analysis of network topology for various soft-thresholding powers. (D) The figure shows gene dendrogram and
module colors. (E) The correlation between each module and the expression of immune metagenes.

FIGURE 3 | (A) The enrichment results of the sienna3module. The larger the circle is, the more module genes are containedin the pathway. The redder the color is,
the more significant the gene was. (B) The pathways enriched by the yellow module.(C) The pathways enriched by the antiquewhite4 module. (D) The pathways
enriched by the ivory module. (D) An interactive network of pathways enriched by the four modules. (E) An interactive network of pathways enriched by the four
modules.
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FIGURE 4 | (A) Venn diagram. (B) Analysis results of KEGG enrichment. (C) Protein-protein interaction network. (D) Degree distribution of protein-protein interaction
network.

TABLE 1 | Genes with prognostic value.

Genes p-value HR Low 95%CI High 95%CI

ENSG00000225492 0.00023 0.9584 0.936978 0.980312

ENSG00000168394 0.001941 0.995765 0.993095 0.998441

ENSG00000138755 0.002792 0.994868 0.991517 0.998229

ENSG00000240065 0.00507 0.995758 0.992802 0.998723

ENSG00000211753 0.007477 0.975419 0.957792 0.993371

ENSG00000162654 0.008348 0.991075 0.984494 0.997699

ENSG00000211772 0.010813 0.986706 0.976604 0.996913

ENSG00000256262 0.013449 0.951503 0.914724 0.989761

ENSG00000010030 0.019584 0.978497 0.9608 0.996521

ENSG00000198851 0.02893 0.982099 0.966311 0.998146

ENSG00000277734 0.030677 0.990207 0.98141 0.999084

ENSG00000154451 0.031368 0.974711 0.95224 0.997713

ENSG00000152766 0.037442 0.961857 0.927262 0.997742

ENSG00000206337 0.048843 0.994756 0.989566 0.999973

survival analysis based on the prognostic information of the
samples. A total of 14 genes were obtained by selecting p < 0.05
as the threshold, as shown in Table 1. The hazard ratio (HR) of
these 14 genes was less than 1, and their high expression was
related to good prognosis. Furthermore, we used clinical stages
as a covariant to analyze the relationship between these genes and
prognosis to exclude the influence of clinical stages and ultimately
obtained 10 independent prognostic factors, as shown in Table 2.

According to the expression levels of these 10 prognostic genes
(CXCL9, ETV7, GBP4, TRBC2, GBP1P1, CD3E, USP30-AS1,

TRBV28, TAP1, and PSMB9), we divided the samples into two
groups according to the median expression levels. The prognostic
differences between the high-expression group and the low-
expression group were analyzed. As shown in Supplementary
Figures 7, 9 of the 10 genes with a high-expression prognosis
were significantly better than the low-expression prognosis.
There was a significant trend in the TRBV28 gene, but it was
not obvious. This may be because the 5-year survival rate is
inseparable, but the prognosis is obviously different after 5 years.

To verify the relationship between these 10 genes and
prognosis, we used the online tool KMplot to analyze the
relationship between these 10 genes and overall survival in
ovarian cancer. We retrieved 6 genes from the KMplot platform.
The KM curves of these 6 genes (two of which have two probes)
are shown in Figure 5, and six genes were characterized by a high
expression of prognosis as being good. Five of these genes (ETV7,
GBP4, CXCL9, CD3E, and TAP1) are significantly correlated with
prognosis, which is consistent with our analysis.

Evaluation of the Prognosis of Ovarian
Cancer and Hub Genes by IHC
From January 2010 and January 2015, 168 human ovarian
tissue samples which had accompanying follow-up information.
Supplementary Table 8 summarizes the characteristics of all
patients, including age, disease stage, and tumor grade. We
selected the five hub genes to evaluate gene expression values
by IHC. The expression of ETV7 (33.13 ± 1.65), GBP4
(28.48± 1.48), CXCL9 (23.30± 1.30), CD3E (36.52± 1.59), and
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TABLE 2 | Stages were introduced as covariates to obtain significant prognostic genes.

Genes p-value HR Low 95%CI High 95%CI Entrezid Symbol

ENSG00000138755 0.00849 0.995426 0.992033 0.99883 4,283 CXCL9

ENSG00000010030 0.04061 0.981223 0.963579 0.99919 51,513 ETV7

ENSG00000162654 0.022077 0.992104 0.985392 0.998861 115,361 GBP4

ENSG00000211772 0.02085 0.987918 0.977784 0.998157 28638 TRBC2

ENSG00000225492 0.00091 0.962018 0.940256 0.984283 400,759 GBP1P1

ENSG00000198851 0.048451 0.983727 0.967827 0.999888 916 CD3E

ENSG00000256262 0.026533 0.956429 0.919515 0.994825 100,131,733 USP30-AS1

ENSG00000211753 0.013667 0.977354 0.959721 0.995311 28,559 TRBV28

ENSG00000168394 0.005226 0.996155 0.993465 0.998852 6,890 TAP1

ENSG00000240065 0.009633 0.996091 0.993141 0.999049 5,698 PSMB9

FIGURE 5 | The prognostic KM curve of the seven genes in the KMplot platform.

TAP1 (29.94± 1.37) are shown in Figures 6A–K. The correlation
between expression of these genes and ovarian cancer prognosis
is shown in Figures 6L–P. These data reveal that high expression
of ETV7 (OS, HR = 1.540, 95% CI 1.023–2.390, p = 0.041),
GBP4 (OS, HR = 1.834, 95% CI 1.242–3.055, p = 0.004), CXCL9
(OS, HR = 1.613, 95% CI 1.080 –2.471, p = 0.021), CD3E (OS,
HR = 1.590, 95% CI 1.049 –2.459, p = 0.031), and TAP1 (OS,
HR = 1.766, 95% CI 1.163 –2.723, p = 0.009) are associated with
better prognosis in patients with ovarian cancer.

DISCUSSION

Ovarian cancer is the most common cause of death from
gynecologic malignancy (Torre et al., 2015). Epithelial ovarian
cancer (EOC) is the most common ovarian tumor with a
lack of specific clinical symptoms at early stage, 75% of
patients were diagnosed with advanced tumors (FIGO III/IV),

and the standard of treatment was complete resection of
all visible tumor lesions and platinum-based chemotherapy
(Ferlay et al., 2015). Although most patients with advanced
ovarian cancer respond to standard ovarian cancer therapeutic
approaches, 70% of patients will eventually relapse and develop
chemotherapy resistance (Hennessy et al., 2009). Therefore,
more effective prognostic and therapeutic strategies to reduce
the mortality rate of ovarian cancer are being actively
explored. Stromal cells, extracellular matrix and exosomes
comprise the tumor microenvironment. Intrinsic genes of
tumor cells, especially master transcription factors, determine
the occurrence, development and evolution of ovarian cancer,
but the surrounding microenvironment interacts with tumor
cells through secretory interactions, providing an impetus
for the invasion and metastasis of tumor cells (Pietras and
Ostman, 2010). In recent years, the tumor microenvironment
has gradually been considered to play an important role
in ovarian cancer metastasis and may become a potential
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FIGURE 6 | Immunohistochemistry for ETV7, GBP4, CXCL9, CD3E, and TAP1. Samples of ovarian cancer (N = 168). Ovarian cancer sample of weak and strong
immunostaining score for ETV7 (A,B), GBP4 (C,D), CXCL9 (E,F), CD3E (G,H), and TAP1 (I,J), respectively. Expression of each gene is depicted in (K) slides. (X
100). Overall survival (OS) curves for ovarian cancer (N = 168) according to ETV7 (L), GBP4 (M), CXCL9 (N), CD3E (O), and TAP1 (P) gene expression status (low or
high). Geneexpression status was divided according to their median values.
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biomarker for the diagnosis and treatment of ovarian cancer
patients (Luo et al., 2016). To fully understand the biological
behavior of ovarian cancer, it is necessary to consider the
environment in which ovarian cancer cells exist and how
they are manipulated by their surroundings to promote
malignant phenotypes.

In recent years, with the development of sequencing
technology, as well as public databases such as TCGA and
Gene Expression Omnibus (GEO) database, a large number
of studies have been conducted on human cancer gene
expression. In ovarian cancer, Men et al. (2018) performed
a genome-wide analysis of gene expression profiling in the
TCGA and developed an 11 gene expression signature-
based risk score that can predict a patient’s survival. In
another study that used robust Bayesian network modeling,
13 hub genes including ARID1A, C19orf53, CSKN2A1, and
COL5A2 signature with a prognostic function in ovarian
cancer was established (Zhang et al., 2014; Guo et al.,
2020). However, most studies focused on oncogene panels
of ovarian cancer.

In present study, we performed a multistep bioinformatics
analysis using data from the TCGA database and identified
a list of tumor microenvironment-related genes that may
contribute to ovarian cancer overall survival. We first
used RNA-Seq data of ovarian cancer in the TCGA (379
samples) to systematically analyze the relationship between
ovarian cancer and immune metagenes; we found that the
expression of immune metagenes was closely related to
the immune components in the tumor microenvironment.
Next, the expression levels of immune metagenes in different
stages were analyzed, and different stages had significant
prognostic differences (Figure 2). Third, by analyzing
the relationship between these immune metagenes and
BRCA1 and BRCA2 mutations, the expression of immune
metagenes was found to be related to only BRCA1 mutations.
Finally, we screened 10 genes related to immunity and
prognosis in ovarian cancer according to the expression of
immune metagenes. By cross validation with KMplot, an
independent cohort of 1,816 ovarian patients, we identified
5 tumor microenvironment-related genes that showed
a significant correlation between gene expression and
prognosis. Our results may provide new insights into the
underlying biological mechanisms driving the tumorigenesis
of ovarian cancer.

This study identified tumor microenvironment-related
genes, including monokine induced by gamma interferon
(MIG or CXCL9), E26 transformation-specific variant 7
(ETV7), guanylate binding protein 4 (GBP4), and CD3
epsilon chain (CD3E). In agreement with a previous study,
we found that these genes were differentially expressed in a
variety of human tumors and correlated with survival time.
For example, CXCL9 is located on human chromosome
4 and is induced by IFN-γ but not by IFN-α/β. CXCL9
predominantly mediates lymphocytic infiltration to the focal
sites and suppresses tumor growth (Gorbachev et al., 2007).
CXCL9 can predict survival and is regulated by cyclooxygenase
inhibition in advanced serous ovarian cancer (Bronger et al.,

2016). Wu et al. used the KM method as well as Cox’s
univariate and multivariate hazard regression models and
found that the higher the CXCL9 expression is, the higher
the overall survival rate for colorectal carcinoma patients
(Wu et al., 2016). In addition, plasma CXCL9 has been found
to predict the survival of patients with advanced pancreatic
ductal adenocarcinoma receiving chemotherapy, potentially
improving treatment outcomes (Qian et al., 2019). In cervical
carcinoma, low expression of CD3E was correlated with
poor disease-specific and disease-free survival, and high
CD3E expression was correlated with improved disease-
specific survival (Punt et al., 2015). Moreover, this gene was
also considered as a hub gene in head and neck squamous
cell carcinoma (Upreti et al., 2016). A high expression of
GBP4 was correlated with favorable overall survival in skin
(cutaneous) melanoma patients followed for over 30 years
(Wang et al., 2018). Therefore, these gene-associated tumor
microenvironments may serve as important roles in the
pathogenesis of ovarian cancer.

However, our study may have some disadvantages. First,
there is a lack of experimental research that can explain
the biological significance and molecular mechanism
of immune microenvironment genes in ovarian cancer.
Second, a small portion of the results are not statistically
significant, but there is a trend difference, which may
be due to the limited sample size. Third, the prognostic
value of these immune microenvironment genes needs
to be validated from a large independent cohort before
they can be applied to clinical practice. Moreover, the
microenvironment gene also significantly associated with
the prognosis of other histology types ovarian cancer
has been rarely studied in present research. According to
histological and pathological morphological differences,
ovarian cancer can be divided into various types: serous
carcinoma, mucinous carcinoma, endometrioid carcinoma,
clear cell carcinoma and other types of tumors. Different
types of ovarian cancer have obvious clinical pathological
differences and molecular differences (Tone et al., 2008).
However, since more than 70% of ovarian epithelial cancer
are serous types, there are no enough samples of other
types in the dataset from TCGA for effective analysis. In
further study, we will pay more attention to the prognosis
between the microenvironment genes and other types
of ovarian cancer.

CONCLUSION

In conclusion, through a comprehensive analysis of the data
of ovarian cancer patients, we found a group of immune
microenvironment genes that can be used as potential biomarkers
to predict the prognosis of ovarian cancer patients. This study
provides a new understanding of the potential relationship
between the tumor microenvironment and ovarian cancer
prognosis and provides a new molecular target for the
development of more effective treatment methods for ovarian
cancer. This study will help refine and personalize treatment.
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