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Abstract
Purpose: Radical surgery is the most important treatment modality in gastric cancer. Preoperative or postoperative radiation therapy
(RT) and perioperative chemotherapy are the treatment options that should be added to surgery. This study aimed to evaluate the overall
survival (OS) and recurrence patterns by machine learning in gastric cancer cases undergoing RT.
Methods and Materials: Between 2012 and 2019, the OS and recurrence patterns of 75 gastric cancer cases receiving RT �
chemotherapy at the Department of Radiation Oncology were evaluated by machine learning. Logistic regression, multilayer perceptron,
XGBoost, support vector classification, random forest, and Gaussian Naive Bayes (GNB) algorithms were used to predict OS, he-
matogenous distant metastases, and peritoneal metastases. After the correlation analysis, the backward feature selection was performed
as the variable selection method, and the variables with P values less than .005 were selected.
Results: Over the median 23-month follow-up, recurrence was seen in 33 cases, and 36 patients died. The median OS was 23 (min: 7;
max: 82) months, and the disease-free survival was 18 (min: 5, max: 80) months. The most common recurrence pattern was
hematogenous distant metastasis, followed by peritoneal metastasis. In this study, the most successful algorithms in the prediction of
OS, distant metastases, and peritoneal metastases were found to be GNB with an accuracy of 81% (95% confidence interval [CI], 0.65-
0.97, area under the curve [AUC]: 0.89), XGBoost with 86% accuracy (95% CI, 0.74-0.97, AUC: 0.86), and random forest with 97%
accuracy (95% CI, 0.92-1.00, AUC: 0.97), respectively.
Conclusions: In gastric cancer, GNB, XGBoost, and random forest algorithms were determined to be the most successful algorithms for
predicting OS, distant metastases, and peritoneal metastases, respectively. To determine the most accurate algorithm and perhaps make
personalized treatments applicable, more precise machine learning studies are needed with an increased number of cases in the coming
years.
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Introduction

Gastric cancer is the fifth most common malignant
cancer worldwide and the third leading cause of cancer-
related deaths.1 Radical surgery with lymph node
dissection is considered to be the most important treat-
ment strategy for gastric carcinoma. However, even after
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radical resection, locoregional recurrence, peritoneal
spread, or distant metastasis (DM) may be observed,
leading to an unfavorable prognosis.2 The available
treatment options are postoperative or preoperative radi-
ation therapy (RT) plus chemotherapy (CT) and periop-
erative CT.3

In the literature, recurrence rates in gastric cancer vary
between 14% and 60%.4,5 The most important prognostic
factor is the size and spread of tumor. Lymph node
metastasis is another important prognostic factor. Other
factors include tumor grade and histopathology, surgical
margin, tumor location, and patient performance.6

In radiation oncology, the most common questions are,
“Which patients have the highest risk of toxicity?” and
“What are the rates of local control and overall survival
(OS)?” Although clinical trials are accepted as the gold
standard to answer these questions, such studies are
expensive and progress slowly. Creating models with
important parameters using the available data will be
useful in better planning future clinical studies.7

Evidence-based medicine relies on randomized
controlled trials designed for a large patient population.
However, increasing the number of clinical and biological
parameters that need to be investigated makes it difficult
to design specific studies. To achieve accurate results, it is
important to integrate such a large and heterogeneous
amount of data and produce the right models.8

Recently, there has been an increasing interest in the
use of machine learning (ML) algorithms to predict RT
results such as toxicity, survival, and recurrence patterns.
The review of the literature shows that there is still no
consensus on an optimal classification algorithm. Re-
searchers select algorithms for various reasons, such as
experience, frequency of use in the literature, data char-
acteristics, and usability of applications.9

The current study aimed to predict the OS and recur-
rence patterns by ML in 75 patients who received di-
agnoses of gastric cancer undergoing RT � CT and to
determine the optimum algorithm for this purpose.

Methods and Materials

Patient characteristics

Between 2012 and 2019, 75 cases of patients with
gastric cancer undergoing RT � CT at the Department of
Radiation Oncology of Eskisehir Osmangazi University
Faculty of Medicine were retrospectively evaluated. Pa-
tients who received a histopathological diagnosis of a
gastric adenocarcinoma without DM, who had regular
follow-up, and who had a Karnofsky Performance Scale
(KPS) score of �70 were included in the study. TNM
staging was performed according to the eighth edition of
the American Joint Committee on Cancer staging system.
T1-2N0M0 cases were not included in the study. After the
diagnosis process, all patients were evaluated by the
oncology council at the university, and treatment de-
cisions were made in a multidisciplinary manner. The
diagnosis of recurrence and planning of postrecurrence
treatment were also undertaken in a multidisciplinary way
by the same council.

Treatment characteristics

The patients’ lymph node dissection status and resec-
tion type were determined from the surgical notes and
pathology reports. RT was applied to all cases as an
adjuvant after surgery. Considering the patients’ KPS
score, age, and comorbidities, a concurrent CT evaluation
was performed, and the CT chart was obtained. As con-
current CT, FUFA (fluorouracil 400 mg/m2 þ leucovorin
20 mg/m2 on days 1-4) or capecitabine (825 mg/m2

throughout RT 7 days a week for 5 weeks) was used.
During the treatment, at least once a week in the outpa-
tient clinic, the cases were evaluated based on complete
blood count and blood biochemistry tests and examina-
tion findings. They were also closely monitored in terms
of toxicity and weight, and their nutrition was supported
orally or intravenously.

All RT patients were immobilized with a T-bar/wing-
board in the supine position with the arms up, and plan-
ning computed tomography was taken with a 5-mm cross
section. The lung, heart, liver kidneys, esophagus, me-
dulla spinalis, and small intestines were contoured as
organs at risk. The target volume was determined ac-
cording to the location of the tumor in preoperative ex-
aminations and planned to cover the whole stomach,
anastomoses, regional lymph nodes (right and left gastric,
right and left gastroepiploic, celiac, porta hepatis, sub-
pyloric, paraortic, gastroduodenal, and subpancreatic) and
tumor bed postoperatively. Splenic hilus lymphatics (in
proximal tumors) and retropancreaticodoudenal lym-
phatics (in distal tumors) were included in the target
volume according to location. The clinical target volume
was created by applying a 1-cm margin to these regions.
According to the RT technique, planning target volume
margin was determined as 0.5 to 1 cm. The RT dose was
determined according to the resection status, being
applied as 45 Gy in cases with R0 resection and 50.4 to 54
Gy in those with R1 and R2 resections considering the
doses indicated for organs at risk. RT was applied to the
patients at a daily dose of 1.8 Gy.

Posttreatment follow-up

After the adjuvant treatments were completed, the
initial follow-up of the cases was undertaken in the first
month. Then, the follow-up visits were arranged every 3
months for 2 years, followed by every 6 months up to 5
years, and annually from there on. At each follow-up
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session, anamnesis was obtained and a physical exami-
nation was performed. The abdominal tomographies were
obtained within 4 to 12 weeks after RT, followed by
annual tomography follow-up. The endoscopic examina-
tion of the upper gastrointestinal tract was carried out
annually for up to 5 years, and biopsies were taken from
areas suspected of recurrence. A positron emission to-
mography scan was requested in cases with suspected
recurrence according to computed tomography.
Machine learning

In this study, the ML methods of logistic regression,
multilayer perceptron (MLP), XGBoost, support vector
classification, random forest, and Gaussian Naive Bayes
(GNB) were used in the assessment of the OS, DM, and
peritoneal recurrence (PR) prediction. Logistic regression
predicts the probability that a result will have only 2
values. Logistic regression produces a logistic curve
limited to values between 0 and 1. Logistic regression is
produced using the natural logarithm of the probabilities
of the target variable.10 Artificial neural networks-MLP
are developed based on the biological neural networks
of the human brain and an information processing system
designed to perform the functions of these networks.
Artificial neural networks collect their knowledge by
detecting patterns and relationships in the data and learn
by experience.11 XGBoost is an application of gradient-
supported decision trees designed for speed and perfor-
mance and structured on classification and regression
predictive modeling problems or dominates data sets in
tabular form.12 Support vector machine (SVM) predicts
and generalizes new data by learning on data with un-
known distribution. Support vector classification is an
SVM-based classifier which is capable of performing bi-
nary and multiclass classification on a data set.13 In the
random forest classification method, owing to the
different data and variables in each tree, there is no
overcompliance problem. It can be used easily in cases
where there is missing data and in very large data sets,
and high success rates can be obtained.14 GNB is a
common technique used to process continuous values and
can significantly improve the accuracy of the classifier.15

Age, sex, KPS score, tumor location, resection type,
lymph node dissection type (D0/D1/D2), total number of
lymph nodes removed, number of metastatic lymph
nodes, lymph node ratio, T stage, N stage, TNM stage,
tumor grade and size, lymphatic invasion, vascular inva-
sion, perineural invasion, surgical margin (R0/R1/R2),
neoadjuvant CT history, concurrent CT history, weight,
body mass index, and pretreatment albumin, hemoglobin,
neutrophil, lymphocyte, platelet, neutrophil/lymphocyte,
and platelet/lymphocyte values were evaluated. The data
set was divided into 2 parts: 70% for algorithm training
and 30% for prediction. The models were constructed
using the training set and validated using the prediction
set. The optimal model was identified according to the
receiver operating characteristic (ROC) curves.

In the data set, there was an imbalance concerning the
number of cases for the prediction of the OS (mortality:
36, survival: 39), DM (present: 16, absent: 59), and PR
(present: 13, absent: 62). In unbalanced data sets, the
model performs predictions in favor of the group with a
higher amount of data, leading to the problem of over-
fitting. In statistics, “overfitting” refers to a generated
analysis being extremely adaptable to a certain data set
(memorization), which causes an inability to adapt to new
data that were not originally included in the data set. To
overcome this situation, a balanced data set should be
used.16 To create a balanced data set for the prediction of
OS, stratified sampling was used. For the prediction of
DM and PR, synthetic minority oversampling technique
(SMOTE) was used.

Stratified sampling is the method of separating a
population (data set) into homogeneous layers. It is used
in cases where there are substrates or subunit groups in a
data set with determined boundaries.17

In SMOTE, the type of class with unbalanced data
distribution is replicated artificially to achieve a balance.
In the prediction of DM and PR, the samples of the mi-
nority class type were replicated by SMOTE.18
Statistics and application

The confusion matrix contains information about real
and predicted classifications performed by a classification
system. The performance of such systems is generally
evaluated using the data in the matrix.19

In the current study, the accuracy rate method was
used. The accuracy method involves the calculation of the
ratio of a system’s correctly classified instances (true
positive and true negative) to the total number of in-
stances. The error rate refers to the ratio of the number of
incorrectly calculated instances (false positive and false
negative) to the total number of instances.20 The success
rates calculated using the confusion matrix are presented
in Appendix E1.

An ROC curve is a graph showing the performance of
a classification model at all classification thresholds. The
area under the curve (AUC) represents the classification
performance of the constructed model and takes a value
between 0 and 1. An AUC value close to 1 means that the
classification performance of the model is high.21

Statistical analyses and ML algorithms were carried
out using Python software (Python Software Foundation.
Python Language Reference, version 3.5. Available at
http://www.python.org) and Scikit-Learn library.22 After
correlation analysis in the variable selection process, the
c2 test was conducted for categorical variables and the
backward test for noncategorical variables, and those with

http://www.python.org


Table 1 Patient and tumor characteristics

Variable Number of patients
(%)/(min-max)

Age Median: 60 (22-78)
Sex
Female 16 (21.3)
Male 59 (78.7)

Karnofsky Performance
Scale score

Median: 90 (70-100)

Tumor location
Proximal 17 (22.7)
Middle 25 (33.3)
Distal 33 (44)

T stage
Ia 2 (2.7)
Ib 1 (1.3)
II 4 (5.3)
III 43 (57.3)
IVa 24 (32)
IVb 1 (1.3)

N stage
N0 11 (14.7)
N1 17 (22)
N2 21 (28)
N3a 16 (21.3)
N3b 10 (13.3)

TNM stage
IB 1 (1.3)
IIA 10 (13.3)
IIB 17 (22.7)
IIIA 20 (26.7)
IIIB 14 (18.7)
IIIC 13 (17.3)

Tumor grade
I (well-differentiated) 6 (8)
II (moderately differentiated) 31 (41.3)
III (poorly differentiated) 38 (50.7)

Lymphatic invasion
Positive 47 (62.7)
Negative 28 (37.7)

Vascular invasion
Positive 44 (58.7)
Negative 31 (41.3)

Perineural invasion
Positive 46 (61.3)
Negative 29 (38.7)

Tumor size, mm Median: 55 (10-150)

Table 2 Treatment characteristics

Clinical characteristics Number of patients
(%)/(min-max)

Radiation therapy dose, Gy Median: 45 (45-54)
Resection type
Total gastrectomy 56 (74.4)
Subtotal gastrectomy 19 (25.3)

Lymph node dissection
D1 37 (49.3)
D2 38 (50.7)

Number of dissected
lymph nodes

Median: 25 (6-82)

Number of metastatic
lymph nodes

Median: 4 (0-52)

Number of metastatic
lymph nodes/number
of dissected lymph nodes

Median: 3 (0-5)

Surgical margin
R0 57 (76)
R1 14 (18.7)
R2 4 (5.3)

Neoadjuvant chemotherapy
Yes 12 (16)
No 63 (84)

Concurrent chemotherapy
Yes 63 (84)
No 12 (16)

Concurrent chemotherapy regime
FUFA 38 (50.7)
Capecitabine 25 (33.3)
None 12 (16)
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P values less than .05 were considered statistically sig-
nificant. Wrapping methods evaluate the importance of
each feature. The most notable wrapping methods are
forward, backward, and stepwise selection. The backward
selection starts with all the features in the data set. It then
runs a model and calculates a P value associated with the
model’s t test or F-test for each feature. The feature with
the larger trivial P value is removed from the model and
the process starts again. This continues until all features
with insignificant P values are removed from the model.23

OS was also evaluated by traditional statistical
methods. KaplaneMeier test and Cox regression analyses
were performed. P < .05 was considered statistically
significant.

Results

Patient, tumor, and treatment characteristics

The median age was 60 years. The patient and tumor
characteristics are summarized in Table 1. Concerning the
surgical margin, the resection rates were 76%, 18.7%, and
5.3% for R0, R1, and R2, respectively. The median RT
dose was 45 Gy. The treatment characteristics are sum-
marized in Table 2.

Recurrence patterns

Over the median 23 months of follow-up, recurrence
was seen in 33 cases, and 36 patients died. The median
OS time was 23 (min: 7, max: 82) months, and the median



Figure 1 Recurrence patterns.
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disease-free survival time was 18 (min: 5 max 80)
months. The most common recurrence pattern was he-
matogenous DM, followed by peritoneal metastasis. DM
occurred in 16 cases and PR in 13 cases. The recurrence
patterns are given in Figure 1.

Machine learning algorithms

The ML workflow for OS prediction is presented in
Appendix E2. Significant variables were determined as
KPS score, resection type, and pretreatment platelet
values for OS; age, sex, KPS score, tumor grade, tumor
Table 3 Machine learning algorithms

Algorithm Accuracy rate Sen

(CI)

OS DM PR OS

Logistic regression 0.63 0.83 0.94 0.7
(0.43-0.93) (0.71-0.95) (0.87-1)

MLP 0.45 0.91 0.92 0.4
(0.24-0.66) (0.82-1) (0.83-1)

XGBoost 0.63 0.86 0.94 0.7
(0.43-0.83) (0.74-0.97) (0.87-1)

SVC 0.50 0.72 0.60 0.5
(0.29-0.70) (0.57-0.86) (0.45-0.76)

Random forest 0.59 0.89 0.97 0.6
(0.38-0.79) (0.78-0.99) (0.92-1)

GNB 0.81 0.69 0.80 0.8
(0.65-0.97) (0.54-0.84) (0.79-0.99)

Abbreviations: AUC Z area under the curve; CI Z confidence interval; D
multilayer perceptron; OS Z overall survival; PR Z peritoneal recurrence;
location, T stage, and N stage for DM; and KPS score,
lymph node dissection type, tumor size, lymphatic inva-
sion, pretreatment albumin and lymphocyte, tumor loca-
tion, T stage, N stage, resection type, and concurrent CT
for PR.

To create a balanced data set in the modeling of the
OS, considering that 36 cases died, the data of 36 sur-
viving cases were selected from the data set. Seventy
percent of the cases (n Z 51; 25 surviving, 26 deceased)
were allocated to the training set and 30% (n Z 21 cases;
11 surviving and 10 deceased) were used in the test. The
best result for the prediction of OS was obtained from the
GNB algorithm with an accuracy of 81.8% (95% CI,
0.65-0.97). The algorithm correctly predicted 9 out of 11
surviving cases and 9 out of 10 deceased cases (sensi-
tivity: 81%, specificity: 81%, AUC: 0.89). The results of
the evaluated algorithms in terms of the prediction of OS
are given in Table 3, their confusion matrix in Table 4,
and the ROC curve graph in Figure 2a.

Owing to the presence of DM in 16 cases, the data
were replicated with the SMOTE method. The data of a
total of 118 cases (16 DM, 59 non-DM, and 43 SMOTE-
replicated DM) were used. Eighty-two cases (41 DM and
41 non-DM) were allocated to the training set, and 36 (18
DM and 18 non-DM) were used in the test. The best result
was obtained from the XGBoost algorithm with an ac-
curacy rate of 86% (95% CI, 0.74-0.97). The algorithm
correctly predicted 17 of 18 DM cases and 14 of 18 pa-
tients without DM (sensitivity: 93%, specificity: 80%,
AUC: 0.86). The results of the evaluated algorithms are
presented in Table 3, the confusion matrix in Table 5, and
the ROC curve graph in Figure 2b.

Because there were 13 cases with PR, the data were
replicated with the SMOTE method. The data belonging
to a total of 124 cases (13 PR, 62 non-PR, and 49
sitivity Specificity AUC

DM PR OS DM PR OS DM PR

1 0.80 0.94 0.60 0.87 0.94 0.64 0.83 0.95

6 0.89 0.94 0.42 0.94 0.90 0.45 0.92 0.92

1 0.93 1 0.60 0.80 0.90 0.64 0.86 0.95

0 0.83 0.55 0.60 0.66 1 0.50 0.72 0.61

2 0.89 1 0.57 0.89 0.95 0.59 0.89 0.97

1 0.81 0.94 0.81 0.64 0.85 0.82 0.69 0.89

M Z distant metastasis; GNB Z Gaussian Naive Bayes; MLP Z
SVC Z support vector classification.



Table 4 Confusion matrix for overall survival

Outcome Gaussian Naive Bayes

Surviving Deceased Accuracy, %

Surviving 9 2 81.8
Deceased 1 9 81.8
Accuracy, % 81.8

1184 M. Akcay et al Advances in Radiation Oncology: NovembereDecember 2020
SMOTE-replicated PR) were used. Eighty-six cases (43
PR and 43 non-PR) were used in training and 38 (19 PR
and 19 non-PR) in the test. For the prediction of PR, the
highest accuracy rate (97%) was seen in the random forest
algorithm (95% CI, 0.92-1.00), which correctly predicted
18 of 19 PR cases and all 19 non-PR cases (sensitivity:
100%, specificity: 95%, AUC: 0.97). The results of the
evaluated algorithms are shown in Table 3, the confusion
matrix in Table 6, and the ROC curve chart in Figure 2c.
Statistical analysis results

In terms of OS, univariate analysis showed that KPS,
surgical margin, and neoadjuvant CT history were asso-
ciated with OS. In turn, the multivariate analysis showed
that KPS, total number of lymph nodes removed, number
of metastatic lymph nodes, lymph node ratio, and neo-
adjuvant CT history were associated with OS. The P
Figure 2 Receiver operating characteristic curve graphs of (a) over
value of the pretreatment platelet variable remained at
0.072 (Table 7).
Discussion

Despite multimodal treatments, recurrence rates in
gastric cancer vary between 14% and 60%.4,5 The results
of these treatments are difficult to compare due to
different inclusion criteria, variations in treatment regi-
mens, and imbalance in patient populations. Our results
confirm those of previous studies showing that DM was
the most common recurrence in gastric cancer cases after
curative treatment (multimodal therapy).5,24 Spolverato
et al reported that DM was seen in at least 3 of every 4
cases with recurrence.5

In cases with DM, survival is worse than in those with
locoregional recurrence.25 If hematogenous or trans-
peritoneal spread is present, oncological outcomes are
poor despite treatment. Progressive tumor spread within
or distant from gastric wall decreases survival rates.26 The
size and spread of the tumor and the number of lymph
nodes involved have also been associated with OS.27,28 In
the current study, T stage and N stage were determined as
important variables for hematogenous DM and PR.
Recently, the relationship between inflammation and
malignant tumors has been extensively investigated in
many studies.29,30 Numerous researchers have shown that
the inflammatory response, including neutrophil/
all survival, (b) distant metastasis, and (c) peritoneal recurrence.



Table 5 Confusion matrix for distant metastasis

Distant metastasis XGBoost

Absent Present Accuracy, %

Absent 17 1 94
Present 2 16 89
Accuracy, % 91
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lymphocyte ratio and platelet/lymphocyte ratio, is asso-
ciated with poor prognosis in cancer.31,32 In addition, the
number of platelets has been examined in terms of its
prognostic role. It has been reported that increased platelet
count or pretreatment thrombocytosis may be associated
with poor prognosis in cancer.33-35 Similarly, in the cur-
rent study, the number of platelets before treatment was
among the important variables for the prediction of OS.
KPS score is another important variable in predicting OS,
DM, and PR. In previous studies on gastric cancer, KPS
score was found to be associated with prognosis.36 Some
studies suggested that gastric cardia tumors might have
different epidemiologic factors and exhibited a different
tumor biology than distal gastric cancers. In these studies,
prognosis was found to be worse in cardiac lesions.37,38 In
the current study, tumor location was found to be asso-
ciated with DM, which is consistent with the literature.

In gastric cancer, postoperative RT and CT have a
potential effect on locoregional control. Yang et al
investigated the survival and recurrence patterns in cases
undergoing adjuvant chemoradiotherapy after D2 dissec-
tion and reported that the most common recurrence
pattern was PR in this patient group.39 In the current
study, the type of lymph node dissection (D0/D1/D2) was
also identified as an important variable in predicting PR.
In a study conducted with 699 cases diagnosed with
gastric cancer, Lee et al found lymphovascular invasion as
a poor prognostic factor for recurrence-free survival,40

which is in agreement with our results.
To the best of our knowledge, there is no other study

predicting OS prognosis and recurrence patterns in gastric
cancer by ML. In the literature, ML algorithms are
becoming more popular for the predicting of patients’
response to RT.41,42 However, there is currently no
consensus on an optimal algorithm to predict RT results (eg,
survival, treatment failure, and toxicity) by ML. Therefore,
researchers select algorithms based on previous use in the
Table 6 Confusion matrix for peritoneal recurrence

Peritoneal recurrence Random forest

Absent Present Accuracy, %

Absent 18 1 94
Present 0 19 100
Accuracy, % 97
literature, data characteristics and quality, usability of ap-
plications, and interpretability of models.9 As available
studies on this subject increase, optimum algorithms can be
determined. In the current study, the best algorithms with
the highest accuracy for the prediction of OS, DM and PR
were found to be GNB, XGBoost, and random forest,
respectively. Significant variables were determined as KPS
score, resection type, and pretreatment platelet values for
OS; age, sex, KPS score, tumor grade, tumor location, T
stage, and N stage for DM; and KPS score, lymph node
dissection type, tumor size, lymphatic invasion, pretreat-
ment albumin and lymphocyte, tumor location, T stage, N
stage, surgical margin, and concurrent CT for PR.

There are studies in the literature that perform recurrence
predictions byML in cancer types other than gastric cancer.
In their study with 86 oral cavity cancer cases, Exarchos
et al used clinical, radiologic, tissue, and blood genomics.
In the follow-up, recurrence was seen in 13 cases, and the
most successful prediction with 100% accuracy was ob-
tained from the Bayesian networks algorithm.43 In another
recurrence prediction study conducted with 679 cases with
a diagnosis of breast cancer, Kim et al reported that the
SVM algorithm was the best algorithm with an accuracy
rate of 89%.44 In other recurrence prediction studies on
cervical and breast cancer, the SVM algorithm was identi-
fied as the best algorithm with an accuracy rate of 68% and
95%, respectively.45,46 The current study has a disadvan-
tage of low number of patients. In future work, it is planned
to evaluate the accuracy rates of ML algorithms by
increasing the number of cases.

With each passing day, the parameters that need to be
evaluated in clinical studies are increasing. The growth
and sharing of data, increased computing power, and
developments in ML have initiated a transformation in
health care. Advances in radiation oncology have gener-
ated substantial data that must be integrated with the data
obtained from computed tomography imaging, dosimetry,
and other modalities performed before each fraction.
Integrating such large and heterogeneous data results in a
problem that needs to be overcome to produce the right
models. Using ML, the right models can be created with
appropriate algorithms that can guide treatment and in-
crease the workflow efficiency based on existing big data.

The use of ML techniques for the prediction of response
and survival in RT patients offers an important opportunity
to further improve decision support systems and provide an
objective assessment of the relative benefits of various
treatment options for each case. By determining certain
factors by ML and using related algorithms, the concept
personalized treatment can finally be implemented.
Conclusions

According to the results, 82% success rate in OS
estimation was achieved with GNB algorithm, 92%



Table 7 Cox regression analysis: overall survival

Variables Univariate Multivariate

P OR 95% CI P OR 95% CI

KPS score .031 0.965 0.935-0.997 .004 0.944 0.908-1.000
Total number of lymph nodes removed .650 1.005 0.983-1.028 .003 1.071 1.024-1.120
Number of metastatic lymph nodes .412 1.010 0.986-1.034 .004 0.893 0.827-0.965
Lymph node ratio .105 2.257 0.843-6.042 .002 54.151 4.500-651.567
Surgical margin .046 0.496 0.249-0.988 .282 0.626 0.267-1.469
Neoadjuvant CT history .001 0.266 0.119-0.596 .001 0.223 0.088-0.561
Pretreatment platelet .271 0.998 0.995-1.002 .072 0.996 0.993-1.000

Bold indicates statistical significance.
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success rate in DM estimation was achieved with MLP
algorithm, and 97% success rate in peritoneal recurrence
estimation with random forest algorithm. Algorithm per-
formances vary according to the data structures. To
improve long-term prognosis, it is important to predict the
overall survival and recurrence patterns of patients
receiving multimodal treatment with a diagnosis of gastric
cancer. With the evaluation of clinical, radiologic, ge-
netic, dosimetric, and epidemiologic factors using ML, it
is possible to perform accurate predictions to achieve
personalized treatment. Further ML studies with a larger
number of patients are needed to determine the optimum
algorithm and support the decision-making process for
personalized treatment.
Supplementary Data

Supplementary material for this article can be found at
https://doi.org/10.1016/j.adro.2020.07.007.
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