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Extreme environmental conditions, such as heat, salinity, and de-
creased water availability, can have a devastating impact on plant
growth and productivity, potentially resulting in the collapse of entire
ecosystems. Stress-induced systemic signaling and systemic acquired
acclimation play canonical roles in plant survival during episodes of
environmental stress. Recent studies revealed that in response to a
single abiotic stress, applied to a single leaf, plants mount a compre-
hensive stress-specific systemic response that includes the accumula-
tion of many different stress-specific transcripts and metabolites, as
well as a coordinated stress-specific whole-plant stomatal response.
However, in nature plants are routinely subjected to a combination of
two or more different abiotic stresses, each potentially triggering its
own stress-specific systemic response, highlighting a new fundamen-
tal question in plant biology: are plants capable of integrating two
different systemic signals simultaneously generated during conditions
of stress combination? Here we show that plants can integrate two
different systemic signals simultaneously generated during stress
combination, and that the manner in which plants sense the different
stresses that trigger these signals (i.e., at the same or different parts
of the plant) makes a significant difference in how fast and efficient
they induce systemic reactive oxygen species (ROS) signals; transcrip-
tomic, hormonal, and stomatal responses; as well as plant acclimation.
Our results shed light on how plants acclimate to their environment
and survive a combination of different abiotic stresses. In addition,
they highlight a key role for systemic ROS signals in coordinating the
response of different leaves to stress.
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Abiotic stress conditions, such as heat, salinity, and decreased
water availability, can have a devastating impact on plant

growth and productivity, potentially resulting in extensive yield
losses to agriculture, as well as the collapse of entire ecosystems
(1, 2). To withstand harsh environmental conditions, plants evolved
sophisticated perception, signaling, and acclimation mechanisms
that allow them to survive different stress conditions, even at the
cost of reduced growth and yield (2). However, successful accli-
mation of plants to stress conditions requires an efficient, timely,
and coordinated response that spans most, if not all, parts and tis-
sues of the plant (3). To achieve such as a coordinated response,
plants evolved multiple systemic signaling pathways that allow them
to communicate different stress signals from a particular part of the
plant, that initially sensed the stress (i.e., local tissue), to the entire
plant (i.e., systemic tissue), within minutes (3–15). Once these sys-
temic signals are perceived in the systemic tissues of plants, they
induce an acclimation process, termed “systemic acquired accli-
mation” (SAA) (16), that enables these tissues to withstand the
stress even if they did not sense or experience it yet (5, 6, 15).
Among the different systemic signals found to propagate from

a stressed local tissue to the entire plant within minutes are
electric, calcium, reactive oxygen species (ROS), and hydraulic
waves (3–15, 17), as well as changes in the levels of the plant

hormones jasmonic acid (JA), abscisic acid, ethylene, and dif-
ferent metabolites (18). Rapid and systemic whole-plant trans-
mission of electric, calcium, and ROS waves was recently shown
to be required for plant acclimation to heat or light stresses, as
well as for systemic wound responses (4–7, 15). Although these
systemic signals were demonstrated to function in response to a
single stress stimuli affecting a particular leaf or a root tip of the
plant (4–7, 15), in nature plants frequently encounter more than
one environmental stress condition at a time, resulting in a
condition termed “stress combination” (19–22). Acclimation to a
state of stress combination (e.g., a combination of drought and
heat) has been shown to involve integrating responses to each of
the individual stresses that simultaneously impact the plant (e.g.,
drought or heat), as well as the induction of a new type of re-
sponse, sometimes involving thousands of transcripts, that is
unique to the state of stress combination (19–22).
The different abiotic stresses that simultaneously impact a plant

during stress combination may be sensed by the same or different
parts (or tissues) of the plant (3). In addition, it was found that
each different abiotic stress sensed by the plant (e.g., wounding,
high light or heat stress) will trigger its own abiotic stress-specific
systemic signaling and acclimation responses that include the ac-
cumulation of many different stress-specific transcripts andmetabolites,
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as well as a coordinated stress-specific canopy-wide stomatal re-
sponse (5, 23). The possible coactivation of different systemic
signals in the same plant during stress combination raises a new
fundamental question in plant biology: are plants capable of
integrating different systemic signals that simultaneously orig-
inate at the same or different parts of the plant during stress
combination?
To address this question, we studied the local and systemic

response of the flowering plant Arabidopsis thaliana to a com-
bination heat and light stress applied to the same or two different
leaves of the same plant.

Results
Systemic Response of Plants to a Combination of High Light and Heat
Stress Applied to a Single Leaf. To study systemic signal integration
during stress combination, we subjected a single leaf of Arabi-
dopsis to a local treatment of high light (HL), heat stress (HS), or
a combination of light and heat stresses (applied to the same

leaf), and studied local and systemic responses (Fig. 1, Table 1,
SI Appendix, Fig. S1, and Datasets S1–S9). A combination of HL
and HS is common to field-grown plants during midday at tem-
perate and tropical regions worldwide and was shown to have an
adverse impact on photosynthesis, plant growth, and plant survival
compared with each of its different components (HL or HS) ap-
plied individually (19–22). Applying a combination of the two
components to the same leaf (HL+HS) resulted in a local re-
sponse that included transcripts specific to light or heat stress, as
well as transcripts unique to the stress combination (Fig. 1A). This
state of stress combination generated a systemic signal(s) that
resulted in a systemic response to stress combination in systemic
leaves (Fig. 1A). Although the systemic response of plants to a local
state of stress combination (HL+HS) included transcripts unique
to each individual stress, as well as to the stress combination, its
composition was nonetheless different from that of local leaves,
representing an overall overlap of ∼25 to 30% with just 51 tran-
scripts common between the stress combination-unique transcripts
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Fig. 1. Plants can integrate two different systemic signals generated simultaneously at the same leaf during stress combination. (A) Overlap between the
transcriptomic response of plants to a local treatment of HL, HS, or a combination of heat and light stresses applied to the same leaf (HL+HS). Venn diagrams
for the overlap between the different responses are shown at the bottom for local leaves and at the top for systemic leaves. Black arrows in HL+HS plants
represent the number of HL-specific (solid) or HS-specific (dashed) transcripts common between local and systemic leaves. (B) Venn diagram showing the
overlap between stress combination-specific transcripts in local and systemic leaves. (C) Bar graph showing the percent overlap between the systemic HL+HS
response and local HL, HS, or HL+HS responses. Local leaves were subjected to HL, HS, or a combination of HL+HS, and local and systemic leaves were sampled
at 2 and 8 min following stress application. All experiments were repeated at least three times with 40 plants per biological repeat. All transcripts shown were
significantly different from controls at P < 0.05 (negative binomial Wald test followed by Benjamini–Hochberg correction).
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of local and systemic leaves (Fig. 1 B and C). Furthermore, although
the response of local and systemic leaves of plants individually
and locally subjected to HL or HS included many hydrogen per-
oxide (H2O2)-, HL-, HS-, and salicylic acid (SA)-response tran-
scripts, these transcripts were not highly represented in the
systemic response of plants simultaneously subjected to HL+HS
(Table 1). These results demonstrate that plants are capable of
integrating two different systemic signals (one for heat and one
for high light), that the response of plants to stress combination
in systemic leaves differs from that of local leaves, and that
compared with the systemic response of plants to HL or HS
individually applied to a single leaf, the systemic response of
plants to the two stresses applied simultaneously to the same
leaf (HL+HS) is less comprehensive, at least when it comes
to HL-, HS-, SA-, or H2O2-response transcripts (Fig. 1 and
Table 1).

Systemic Response of Plants to a Combination of High Light and Heat
Stress Applied to Two Different Leaves of the Same Plant. We next
examined the systemic response of plants to a combination of
heat and light stress applied to two different leaves (Fig. 2, Ta-
ble 1, and Datasets S1–S9). Applying a combination of light and
heat stress to two different leaves of the same plant (HL&HS)
resulted in local responses in the two different leaves that in-
cluded transcripts specific to light or heat stress, as well as tran-
scripts unique to the stress combination (Fig. 2A). This state of
stress combination generated at least two different systemic signals
that resulted in a systemic response to stress combination in sys-
temic leaves (Fig. 2A). Although the systemic response of plants to
a local state of stress combination (HL&HS) included transcripts
unique to each individual stress, as well as to the stress combi-
nation, its composition also differed from that of local leaves,
representing an overall overlap of ∼30 to 35%, with only 47 or 69
transcripts common between the stress combination-unique tran-
scripts of local and systemic leaves (Figs. 1 and 2B). Interestingly,
compared with the systemic response of plants to two different
stresses applied to the same leaf (HL+HS), the response of sys-
temic leaves of plants subjected to two different stresses, each
applied to a different leaf (HL&HS), included a higher proportion

of H2O2-, HL-, HS-, and SA-response transcripts (Table 1). These
results demonstrate that plants are capable of integrating two
different systemic signals (one for heat and one for high light),
generated at two different leaves, that the response of plants to
stress combination in systemic leaves is different from that of local
leaves, and that the systemic response of plants to two different
stresses simultaneously applied to two different local leaves
(HL&HS) could potentially be different and more comprehensive
compared with the systemic response of plants to two different
stresses simultaneously applied to the same leaf (HL+HS) (Figs. 1
and 2 and Table 1).

Comparing the Systemic Response of Plants to Stress Combination
Applied to the Same or Two Different Leaves. The results pre-
sented in Figs. 1 and 2 and Table 1 suggest that the systemic re-
sponse of plants to abiotic stress combination applied to the same
(HL+HS) or two different (HL&HS) leaves could be different.
Therefore, we conducted a more extensive analysis of the differ-
ences between these two systemic responses. As shown in Fig. 3A,
the systemic response of plants to two different stresses applied
simultaneously to two different leaves (HL&HS) was different and
more extensive than the response to two different stresses applied
to the same leaf (HL+HS). Although both systemic responses
included transcripts unique to light or heat stress, as well as unique
to the stress combination, the systemic response to two different
stresses applied to two different leaves (HL&HS) was more
comprehensive, with ∼1,200 additional transcripts (Fig. 3A). In
addition, although an overlap of 2,477 transcripts was found be-
tween the two systemic responses (HL&HS and HL+HS) (Fig. 3),
there were many more systemic transcripts unique to the state of
two different stresses applied to two different leaves (HL&HS
stress combination: 1,692 [Fig. 3A], as well as 540 transcripts
unique to the stress combination [Fig. 2A]), compared with that of
two different stresses applied to the same leaf (HL+HS stress
combination: 487 [Fig. 3A], with only 276 transcripts unique to
stress combination [Fig. 1A]), with a higher percent overlap be-
tween local and systemic responses under conditions of HL&HS
(Figs. 1C and 2C).

Table 1. Presence of hormone-, ROS-, HL-, and HS-response transcripts in the different groups of transcripts significantly up-regulated
in local and systemic leaves of plants subjected to HL and/or HS simultaneously applied to the same or two different leaves of the
same plant

ABA, abscisic acid; ACC, 1‐aminocyclopropane‐1‐carboxylic acid; BL, brassinolide; CK, cytokinin; GA, gibberellin; IAA, auxin. All transcripts included were
significantly different from controls at P < 0.05 (negative binomial Wald test followed by a Benjamini–Hochberg correction). Shading intensity is proportional
to percent representation level of each hormone-, ROS-, or treatment-specific transcripts in the different tissues.
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In addition, compared with the systemic response of plants to
two different stresses simultaneously applied to the same leaf
(HL+HS), the representation of many hormone-, HL-, HS-, and
ROS-response transcripts was higher in the systemic response of
plants to two different stresses simultaneously applied to two
different leaves (HL&HS) (Table 1). Analysis of different groups
of transcription factors (TFs) involved in the integration of dif-
ferent abiotic stress-specific signals during stress combination
(24) further revealed that, in contrast to systemic leaves of plants
subjected to a local treatment of HL, HS, or HL and HS si-
multaneously applied to two different leaves (HL&HS), many of
these TFs were not expressed in systemic leaves of plants sub-
jected to a local treatment of two different stresses simulta-
neously applied to the same leaf (HL+HS) (Fig. 3B). These
included, for example, Rap2.12, CBF1, ERF1, EREBF11,
MYB16, and MYB77. Therefore, the systemic response of plants
to two different stresses simultaneously applied to two different
leaves is different and more extensive than the response to two

different stresses simultaneously applied to the same leaf (Figs.
1–3 and Table 1).

Leaf-To-Leaf Communication in Plants Subjected to Stress Combination
Applied to Two Different Leaves. The differences observed between
the response of plants to two different stresses applied to the same
or two different leaves (Figs. 1–3 and Table 1) could result from
the two different local leaves subjected to the two different
stresses exchanging signals with each other (3, 15, 23). Indeed,
heat-specific transcripts could be found in local leaves subjected to
light stress- and light-specific transcripts could be found in local
leaves subjected to heat stress in plants simultaneously subjected
to light and heat stress on two different leaves (HL&HS; Fig. 4A).
In addition, as shown in Fig. 4B, comparing the expression pattern
of TFs involved in the integration of different abiotic stress-
specific signals during stress combination (24) between local
leaves subjected to HL, HS, HL(HL&HS), and HS(HL&HS)
reveals that several HL-response TFs are expressed in local
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Fig. 2. Plants can integrate two different systemic signals generated simultaneously at two different leaves of the same plant during stress combination. (A)
Overlap between the systemic transcriptomic response of plants to a local application of HL, HS, or a combination of heat and light stress simultaneously
applied to two different leaves (HL&HS). Venn diagrams for the overlap between the different responses are shown at the bottom for local leaves and at the
top for systemic leaves. Black arrows in HL&HS plants represent the number of HL-specific (solid), or HS-specific (dashed) transcripts common between local
and systemic leaves. (B) Venn diagrams showing the overlap between stress combination-specific transcripts from local (HL or HS) and systemic leaves. (C) Bar
graph showing the percent overlap between the systemic HL&HS response and local HL, HS, HL(HL&HS), or HS(HL&HS) responses. All experiments were
repeated at least three times with 40 plants per biological repeat. All transcripts included in the figure were significantly different from controls at P < 0.05
(negative binomial Wald test followed by Benjamini–Hochberg correction). HL(HL&HS) and HS(HL&HS) denote a local HL- or HS- treated leaf of a plant
subjected to HS or HL on another local leaf, respectively.

Zandalinas et al. PNAS | June 16, 2020 | vol. 117 | no. 24 | 13813

PL
A
N
T
BI
O
LO

G
Y



HS(HL&HS) leaves (e.g., SNZ, MYB4), and several-HS response
TFs are expressed in local HL(HL&HS) leaves (e.g., At1g21910,
At4g28140, MYB29). These findings, as well as the overlap in
overall heat and light stress responses of the two different local

leaves (Fig. 2) and the similarity in hormone- and ROS-response
transcript representation between the two different local leaves
[HL(HL&HS) and HS(HL&HS); Table 1], demonstrate that in
addition to generating two different systemic signals that integrate
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Fig. 3. The systemic response of plants to two different stresses simultaneously applied to two different local leaves is more extensive than the response to
two different stresses simultaneously applied to the same local leaf. (A) Overlap between the systemic transcriptomic responses of plants to a combination of
heat and light stress applied to the same (HL+HS) or different (HL&HS) local leaves. Venn diagrams for the overlap between the different responses are shown
at the bottom for local leaves and at the top for systemic leaves. Black arrows represent the number of HL-specific (solid) or HS-specific (dashed) transcripts
common between local and systemic leaves. (B) Heat maps showing the expression pattern of TFs belonging to the ethylene response (AP2-EREBPs), MYB, and
heat shock factor (HSF) families (24) in systemic tissues of plants subjected to a local treatment of HL, HS, HL+HS, or HL&HS. All transcriptomics experiments
were repeated at least three times with 40 plants per biological repeat (P < 0.05, negative binomial Wald test followed by Benjamini–Hochberg correction).
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7.163 n.s. n.s. n.s. n.s. MYB31 AT1G74650
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2.009 3.148 1.865 1.760 1.985 HSFA7A AT4G18880
n.s. 1.218 n.s. n.s. n.s. HSFA4C AT5G45710
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n.s. n.s. 2.006 n.s. 1.995 HSFA3 AT5G03720
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0                     15<

A B

Fig. 4. Overlap between the local transcriptomic responses of two different leaves of the same plant, one subjected to HL and the other to HS simultaneously. (A)
Venn diagrams for the overlap between the different local responses of plants subjected to HL, HS, or HL&HS. Yellow arrows represent the number of HL-specific
(solid) or HS-specific (dashed) transcripts common between the two different local leaves. (B) Heat maps showing the expression pattern of TFs belonging to the
AP2-EREBP, MYB, and HSF families (24) in local tissues of plants subjected to HL, HS, HL+HS, or HL&HS. All transcriptomics experiments were repeated at least
three times with 40 plants per biological repeat (P < 0.05, negative binomial Wald test followed by Benjamini–Hochberg correction).
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and travel to remote systemic tissues (Fig. 3), the two local leaves
subjected to two different stresses can communicate with each
other using stress-specific systemic signals (Fig. 4), affecting gene
expression patterns in each other.

SAA to Light or Heat Stress in Plants Subjected to Abiotic Stress
Combination Applied to the Same or Two Different Leaves. En-
hanced expression of stress-response transcripts in systemic leaves
could lead to enhanced plant acclimation (i.e., SAA) (5–7, 15).
The differences in transcript expression observed between sys-
temic tissues of plants integrating two different systemic signals
originating from the same or different leaves (Figs. 1–4 and Ta-
ble 1) prompted us to compare their SAA to light or heat stress.
For this purpose, we subjected local leaves to a short pretreatment
of HL, HS, HL+HS, or HL&HS; allowed plants to acclimate; and
challenged the systemic leaves with damaging levels of HL or HS
(5, 6, 15). Strikingly, although acclimation of systemic tissues to
light (evident by a decrease in ion leakage upon acclimation) or
heat (evidenced by the maintenance of high chlorophyll content
upon acclimation) was observed when the different stresses were
applied to local leaves individually (HL or HS) or simultaneously
to two different leaves (HL&HS), when the two different stresses
were simultaneously applied to the same leaf (HL+HS), no SAA
to light or heat stress was observed (Fig. 5A). This finding dem-
onstrates that the outcome of integrating two different systemic
signals generated at the same or different leaves is different not
only in transcript expression (Figs. 1–4 and Table 1), but also in
plant acclimation (Fig. 5A).

Regulation of Stomatal Aperture during Stress Combination. Be-
cause transcript expression and plant acclimation are associated
with stomatal responses that could also be coordinated between

different leaves and required for plant acclimation (3, 15, 23, 25),
and because stomatal responses to light or heat stress are op-
posing (opening during heat stress and closing during intense
light stress) (20), we measured changes in stomatal aperture in
local and systemic leaves of plants subjected to the two different
stress combinations: HL&HS and HL+HS. As expected, local
leaves subjected to light stress displayed stomatal closure, while
local leaves subjected to heat stress displayed stomatal opening
(Fig. 5B) (15, 22, 23). Interestingly, stomata of local leaves
subjected to light stress while the other leaf was subjected to heat
[HL(HL&HS)] closed, while stomata of local leaves subjected
to heat stress while the other leaf was subjected to light stress
[HS(HL&HS)] closed and then opened (Fig. 5B). A similar closing
and opening response was observed in systemic leaves of plants
subjected to the two different stresses applied to two different
leaves (systemic HL&HS). The closing and then opening response
of stomata in systemic (HL&HL) or local leaves of plants subjected
to a combination of HL&HS [HS(HL&HS)] suggest that the sys-
temic response to HL (closing) could be faster than the systemic
response to HS (opening), but the systemic response to HS over-
comes the systemic response to HL (Fig. 5B). In contrast, stomatal
responses were dampened, with no significant opening or closing
responses in local and systemic leaves of plants subjected to the
two different stresses applied simultaneously to the same leaf (local
or systemic leaves of HL+HS) (Fig. 5B).

Activation of the ROS Wave during Stress Combination. One of the
central systemic signaling pathways required for SAA to occur in
plants is the ROS wave, an autopropagating cell-to-cell process
of ROS production that accompanies the systemic signal (3, 5–8,
13–15). Comparing the pattern of ROS wave-associated tran-
scripts (6) between local and systemic tissues of plants subjected
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Fig. 5. Acclimation of systemic leaves and stomatal aperture responses to stress combination. (A, Top) Schematic representation of how experiments were
conducted. Local leaves were subjected to a short (15 min) pretreatment of HL, HS, HL+HS, or HL&HS, and plants were allowed to acclimate for 45 min.
Following acclimation, systemic leaves were challenged with damaging levels of HL or HS, sampled, photographed and subjected to tissue injury assays (ion
leakage for HL and chlorophyll content for HS). (A, Middle) Representative systemic leaf images. (A, Bottom) Measurements of systemic leaf injury: increase in
ion leakage for HL (Left) and decrease in chlorophyll content for HS (Right). All acclimation experiments were repeated at least three times with 10 plants per
biological repeat. Data are mean ± SD. *P < 0.05, two-way ANOVA followed by Tukey’s post hoc test. CT, control; HL or HS, control plants subjected to a
systemic HL or HS stress treatment without pretreatment, respectively; Pretreated, plants in which a local leaf was subjected to HL, HS, HL+HS, or HL&HS
treatment before the systemic HL or HS treatment; EL, electrolyte leakage. (B) Stomatal aperture in local and systemic leaves of plants subjected to a local HL,
HS, HL+HS, or HL&HS treatment. All experiments were repeated at least three times with 500 stomata per plant and 10 plants per biological repeat. Data are
presented as mean ± SD. Different letters denote significance at P < 0.05 (ANOVA followed by a Tukey’s post hoc test).
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to two different stresses applied to the same or two different
leaves revealed that although many ROS wave-associated tran-
scripts were up-regulated in the local tissues of plants subjected
to two different stresses applied to the same or different leaves
(i.e., local HL of HL&HS, local HS of HL&HS, and local
HL+HS), as well as in systemic tissues of plants subjected to two
different stresses applied simultaneously to two different leaves
(i.e., systemic HL&HS), few ROS wave-associated transcripts
were up-regulated in systemic tissues of plants simultaneously
subjected to light and heat stress applied to the same leaf (systemic
HL+HS) (Fig. 6A and SI Appendix, Fig. S2). This observation was
supported by the abundance of H2O2- and 1O2-response tran-
scripts in systemic tissues of HL&HS plants compared with sys-
temic tissues of HL+HS plants (Table 1), as well as by in vivo
measurements of ROS accumulation (8) in systemic tissues of
similar size and age plants containing an inflorescence stem sub-
jected to heat, light, and heat and light combinations applied to
the same or different leaves (Fig. 6B). Although heat and/or light
stresses applied individually or in combination to the same or to
two different local leaves of plants (at the two different develop-
mental stages) triggered the ROS wave, compared with all other
treatments, the rate of ROS wave propagation was significantly
faster when the two different stresses were simultaneously applied
to two different leaves (HL&HS) (Fig. 6B, Table 1, and SI Ap-
pendix, Fig. S2).

Accumulation of JA and SA in Local and Systemic Leaves during Stress
Combination and Altered Systemic ROS Signaling during Stress
Combination in the Allene Oxide Synthase (aos) Mutant. Because
SA-regulated transcripts accumulated in local leaves subjected to
HL or HS, but not in local leaves of HL+HS plants (Table 1),
and because JA was found to play a key role in the protection of
plants subjected to a combination of HL and HS (22), we
quantified the levels of SA and JA in local and systemic leaves of
plants subjected to HL, HS, HL+HS, and HL&HS (Fig. 7A). In
agreement with the hormone-response transcript expression re-
sults shown in Table 1, JA and SA accumulated in local leaves of
plants subjected to HL or HS. The accumulation of JA was
nevertheless delayed, while the accumulation of SA was com-
pletely suppressed in local leaves of HL+HS plants, which dis-
play a suppressed ROS wave initiation phenotype (Fig. 6),
suggesting that rapid accumulation of these two hormones is
needed to trigger the ROS wave in local leaves and induce SAA
(Figs. 5A and 6). In contrast to plants subjected to HL+HS, local
leaves of plants subjected to HL&HS accumulated JA at normal
rates (Fig. 7A), and this accumulation could be involved in ini-
tiating the ROS wave in these plants (Fig. 6).
In contrast to JA, the accumulation of SA was completely

blocked in local or systemic leaves in both HL+HS and HL&HS
(Fig. 7A), suggesting that SA accumulation is suppressed in sys-
temic leaves during stress combination. Interestingly, the sup-
pression of local ROS wave initiation during HL+HS did not
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Fig. 6. Systemic accumulation of ROS in mature bolting plants simultaneously subjected to two different stresses. (A) Heat maps showing the expression of
transcripts associated with systemic ROS accumulation (6) in local leaves of plants subjected to light or heat stress while the other leaf is simultaneously
subjected to the other stress [HL(HL&HS) or HS(HL&HS), respectively] or HL and HS applied to the same leaf (HL+HS), and in systemic leaves of plants subjected
to a local treatment of HL and HS applied to the same (HL+HS) or two different (HL&HS) leaves (SI Appendix, Fig. S2). Transcripts included in A and in SI
Appendix, Fig. S2 are significantly different from controls (P < 0.05; negative binomial Wald test followed by Benjamini–Hochberg correction). (B) Repre-
sentative images (Left), line graphs showing continuous in vivo ROS measurements (Top Right), and bar graphs showing measurements of ROS at 15 min after
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peated at least three times with five plants per biological repeat. Data are presented as mean ± SD, **P < 0.01, two-way ANOVA followed by Tukey’s post hoc
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occur in the aos mutant, which is suppressed in JA accumulation
(22), supporting a role for JA in suppressing the initiation of the
ROS wave in local leaves of HL+HS plants (Fig. 6). The findings
presented in Fig. 7 point to important roles for JA and SA in
systemic signal integration during stress combination in plants.

Systemic ROS Accumulation and Acclimation of Nonbolting Plants
during Stress Combination. Because the inability of local leaves
of HL+HS plants to rapidly induce the ROS wave (Fig. 6) could
also result from their metabolic and hormonal state at the repro-
ductive stage, we tested whether a similar integration of systemic
ROS signals (Fig. 6) and plant acclimation (Fig. 5A) occurs in
young vegetative-stage plants. As shown in Fig. 8A, the systemic
ROS wave response of young, nonbolting plants to two different
stresses simultaneously applied to the same leaf (HL+HS) was
stronger than that of reproductive-stage bolting plants (HL+HS)
(Fig. 6), compared in each developmental stage with the two dif-
ferent stresses individually applied to a single leaf (HL or HS). This
finding supports the possibility that differences in metabolic state,
physiological activity, and/or hormone levels are affecting the in-
tegration of systemic signals and the triggering of the ROS wave by
local leaves subjected to a combination of HL and HS (HL+HS).
Nevertheless, even in young vegetative-stage plants, the sys-
temic ROS wave response to two different stresses simultaneously

applied to two different leaves (HL&HS) was stronger than that
to two different stresses simultaneously applied to the same leaf
(HL+HS) (Figs. 6 and 8A). Similarly, plant acclimation to stress
combination also primarily occurred when the two different
stresses were applied to two different leaves of young vegetative-
stage or bolting plants (HL&HS) (Figs. 5A and 8B).

Discussion
To be effective in inducing plant acclimation (i.e., SAA; Figs. 5A
and 8B), the systemic signal(s) generated at the local leaf
(leaves) must trigger several different responses in systemic tis-
sues. These include changes in transcript abundance (e.g., pho-
tosynthetic- and other light- or heat-specific transcripts; Fig. 9,
Table 1, and SI Appendix, Fig. S3) (8–10), metabolite levels (5,
18), ROS accumulation (Figs. 6–8) (5, 8), and stomatal responses
(Fig. 5B) (15, 22, 23). Moreover, changes in these parameters
must be rapid and coordinated between the different parts of the
plant (3, 15, 18, 23). Surprisingly, while different systemic signals
generated individually (HL or HS) or simultaneously at two dif-
ferent leaves (HL&HS) induced acclimation to light or heat stress,
two different stresses applied simultaneously to the same leaf
(HL+HS) did not (Figs. 5A and 8B). This finding was supported
by the lower representation of HL-, HS-, and many ROS- and
hormone-response transcripts in systemic leaves of plants subjected
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to HL and HS simultaneously applied to the same leaf (HL+HS;
Fig. 3B and Table 1); the lower representation of transcripts
unique to the stress combination in the systemic leaves of plants
subjected to HL and HS simultaneously applied to the same leaf
(HL+HS; Figs. 1–3); and the suppressed stomatal and hormonal
responses of local and systemic leaves of plants subjected to HL
and HS simultaneously applied to the same leaf (HL+HS; Figs. 5B
and 7), all compared with that of systemic leaves of plants sub-
jected to the two different stresses simultaneously applied to two
individual leaves (HL&HS; Figs. 1–3 and Table 1) (5–8).
One plausible mechanistic explanation for this observation is

that the two different stresses applied to the same leaf (HL+HS)
suppressed the initiation or reduced the intensity of the ROS
wave (Figs. 6–9, Table 1, and SI Appendix, Fig. S2) that is ab-
solutely required for SAA to these stresses (5, 6, 15). Another
plausible explanation could be the opposing effects of the stress
combination applied to the same leaf (HL+HS) on stomatal
responses (Fig. 5B), which could also affect overall plant accli-
mation (10, 15, 23, 25). It is also possible that an interplay be-
tween JA and SA levels (Table 1 and Fig. 7A) is responsible (18).
In support of this explanation is the finding that the suppression
of ROS wave initiation during HL+HS is removed in a mutant
deficient in JA accumulation (aos; Fig. 7B). Therefore, the rate
at which JA accumulates at the local leaves of HL+HS plants
(compared to HL&HS) and its potential effects on SA accu-
mulation (Fig. 7A; also reflected in transcript accumulation in
Table 1) could play an important role in how fast and efficient
the single leaf subjected to HL+HS can initiate systemic sig-
naling and SAA. Thus, when JA accumulation is suppressed in
the aos mutant, this inhibition is removed, and systemic ROS
responses can occur.
Further studies are needed to address the many intriguing

questions related to this new and emerging field of systemic

signal integration during abiotic stress in plants. As revealed by
this work, plants can integrate different systemic signals, and they
do so best when the two different signals originate from two
different leaves (Fig. 9). Like more complex multicellular or-
ganisms (e.g., animals), plants can therefore integrate different
systemic signals and improve their chances of survival within the
complex and rapidly changing environment that occurs in nature.

Materials and Methods
Plant Material and Stress Treatments. A. thaliana Col-0 (cv. Columbia-0) plants
were grown in peat pellets (Jiffy-7; https://www.jiffygroup.com/) at 23 °C under
long-day growth conditions (16-h light/8-h dark; 50 μmol m−2 s−1) for 40 to 55 d
until the inflorescence stem measured 11 to 13 cm. Local leaves were exposed to
HL, HS, HL+HS, or HL&HS (SI Appendix, Fig. S1 A and B). HL was applied by sub-
jecting a single leaf to a light intensity of 1,700 μmol m−2 s−1 for 2 and 8min using
a ColdVision fiber optic LED light source (Schott; A20980). HS was induced by
placing a heat block 2 cm underneath the treated leaf for 2 and 8 min, increasing
the leaf temperature to 31 to 33 °C (SI Appendix, Fig. S1C) as described previously
(23). The temperature of the treated and systemic leaves was continuously mea-
sured using an infrared camera (C2; FLIR Systems) (SI Appendix, Fig. S1C).

RNA Sequencing. Treated and untreated local and systemic tissues (SI Appendix,
Fig. S1) were sampled at 0, 2, and 8min following stress application; immediately
frozen in liquid nitrogen; and used for RNA-seq analysis. Local and systemic
tissues from 40 different plants were pooled for each biological repeat per time
point and stress treatment, and the experiment was repeated in three different
biological replicates. All experiments were conducted at the same time of day (9
AM to 12 PM), and all plants used for the experiments were of the same age and
developmental stage. Total RNA was isolated and subjected to RNA sequencing
and analysis as described previously (6). RNA library construction and sequencing
were performed by the DNA Core Facility at the University of Missouri.

Acclimation Assays, Stomatal Aperture, and In Vivo Measurements of ROS
Accumulation. SAA assays were performed as described previously (5, 6)
with some modifications. One rosette leaf of each bolting plant was exposed
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to the different stresses as shown in SI Appendix, Fig. S1 for 15 min. Following
the local stress treatments, plants were incubated for 45 min under controlled
conditions. Following the recovery period, one cauline leaf located 7 to 11 cm
above the rosette leaves in each plant was exposed to 1,700 μmol m−2 s−1 light
using a fiber optic light source (Schott A20980) for 45min for HL acclimation or
dipped into a 42 °C (or 23 °C as a control) water bath for 60 min. The cauline
leaves were then photographed and sampled for electrolyte leakage assay (HL
acclimation) or for chlorophyll measurement (HS acclimation) immediately
after HL or ay 6 d after HS (5, 6). Electrolyte leakage assays were performed as
described previously (6). Chlorophyll measurements were performed as de-
scribed previously (5). Acclimation assays were repeated at least three times
with 10 plants per repeat. In vivo measurements of ROS accumulation were
performed as described previously (8). Stomatal aperture measurements were
performed as described previously (15, 23).

Quantification of Hormone Levels. Quantification of plant hormones was
conducted using reverse-phase ultra-high-performance liquid chromatog-
raphy (UHPLC) coupled with electrospray ionization tandem triple quadru-
pole mass spectrometry (ESI/TQ MSMS) using multiple reaction monitoring
as described previously (26). In brief, A. thaliana leaves were flash-frozen in
liquid nitrogen and ground to powder. Samples (70 mg) were shaken vig-
orously in isopropanol:H2O:HCl (2:1:0.002) for 1 h at 4 °C. Following ex-
traction, dichloromethane was added, and samples were again shaken
vigorously for an additional 30 min at 4 °C. Following centrifugation (3500 ×
g at 4 °C), the bottom layer was removed using a glass syringe. Samples were
then dried under nitrogen, redissolved in 0.10 mL of MeOH and 1 mL of 1%

acetic acid, purified over Oasis HLB columns (Waters), washed with 1% acetic
acid, and eluted with 80% MeOH and 1% acetic acid. The eluted samples
were then dried again under nitrogen and redissolved in 25 μL of MeOH and
25 μL of 1% acetic acid. A 10-μL volume of each sample was separated on a
Waters Acquity UPLC BEH C18 column (2.1 × 150 mm; 1.7 μm) at 60 °C, using
a Waters Acquity UHPLC system. A Waters Xevo TQ MSMS system was used
to identify the different hormones, and absolute quantification was
obtained using stable isotope label internal standards for JA and SA (26).

Statistical Analysis. Differentially expressed transcripts were defined as those
that had a fold change with an adjusted P < 0.05 (negative binomial Wald
test followed by Benjamini–Hochberg correction). Venn diagram overlaps
were subjected to hypergeometric testing using the R package phyper. Ac-
climation and stomatal aperture measurement data are presented as mean
± SD. Statistical analysis was performed by two-way ANOVA followed by
Tukey’s post hoc test (*P < 0.05; **P < 0.01). Different letters in stomatal
measurements denote statistical significance at P < 0.05.

Data Availability.Data supportingthe findingsof thisworkareprovided in themain
paper and SI Appendix. Raw and processed RNA-seq data files were deposited in
the GEO database (https:// www.ncbi.nlm.nih.gov/geo/) (accession no. GSE138196).
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