
RESEARCH ARTICLE

Chromosome-wide co-fluctuation of

stochastic gene expression in mammalian

cells

Mengyi Sun, Jianzhi ZhangID*

Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States of

America

* jianzhi@umich.edu

Abstract

Gene expression is subject to stochastic noise, but to what extent and by which means such

stochastic variations are coordinated among different genes are unclear. We hypothesize

that neighboring genes on the same chromosome co-fluctuate in expression because of

their common chromatin dynamics, and verify it at the genomic scale using allele-specific

single-cell RNA-sequencing data of mouse cells. Unexpectedly, the co-fluctuation extends

to genes that are over 60 million bases apart. We provide evidence that this long-range

effect arises in part from chromatin co-accessibilities of linked loci attributable to three-

dimensional proximity, which is much closer intra-chromosomally than inter-chromosomally.

We further show that genes encoding components of the same protein complex tend to be

chromosomally linked, likely resulting from natural selection for intracellular among-compo-

nent dosage balance. These findings have implications for both the evolution of genome

organization and optimal design of synthetic genomes in the face of gene expression noise.

Author summary

Gene expression is subject to substantial stochastic noise or fluctuation. We hypothesize

that expressions of neighboring genes on the same chromosome co-fluctuate because of

their common chromatin dynamics. To test this hypothesis, we make use of the fact that

each diploid cell contains a maternal and a paternal copy of the same chromosome that

are differentiable by their DNA sequences. Hence, allele-specific single-cell RNA-sequenc-

ing can quantify the expression level of each allele in individual diploid cells, allowing

measuring the expression co-fluctuation of linked alleles as well as that of unlinked alleles

of the same genes. Using such data from mouse cells, we discover chromosome-wide gene

expression co-fluctuation and provide evidence that this long-range effect arises in part

from chromatin co-accessibilities of linked loci attributable to three-dimensional proxim-

ity. We show that genes encoding protein complex subunits tend to be chromosomally

linked, likely resulting from natural selection for intracellular among-component dosage

balance. Thus, minimization of the deleterious effect of gene expression noise has proba-

bly produced a nonrandom distribution of genes in the genome. These findings have
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implications for the evolution of genome organization and optimal design of synthetic

genomes.

Introduction

Gene expression is subject to considerable stochasticity that is known as expression noise, for-

mally defined as the expression variation of a given gene among isogenic cells in the same envi-

ronment [1–3]. Gene expression noise is a double-edged sword. On the one hand, it can be

deleterious because it leads to imprecise controls of cellular behavior, including, for example,

destroying the stoichiometric relationship among functionally related proteins and disrupting

homeostasis [4–8]. On the other hand, gene expression noise can be beneficial. For instance,

unicellular organisms may exploit gene expression noise to employ bet-hedging strategies in

fluctuating environments [9, 10], whereas multicellular organisms can make use of expression

noise to initiate developmental processes [11–13].

By quantifying protein concentrations in individual isogenic cells cultured in a common

environment, researchers have measured the expression noise for thousands of genes in the

bacterium Escherichia coli [14] and unicellular eukaryote Saccharomyces cerevisiae [15].

Nevertheless, because genes are not in isolation, one wonders whether and to what extent

expression levels co-vary among genes at a steady state, which unfortunately cannot be stud-

ied by the above data. By simultaneously tagging two genes with different florescent mark-

ers, Stewart-Ornstein et al. discovered strong co-fluctuation of the concentrations of some

functionally related proteins in yeast such as those involved in the Msn2/4 stress response

pathway, amino acid synthesis, and mitochondrial maintenance, respectively [16], and the

expression co-fluctuation of these genes is facilitated by their sharing of transcriptional reg-

ulators [17].

Here we explore yet another mechanism for expression co-fluctuation. We hypothesize

that, due to the sharing of chromatin dynamics [18], a key contributor to gene expression

noise [18–20], genes that are closely linked on the same chromosome should exhibit a stron-

ger expression co-fluctuation when compared with genes that are not closely linked or

unlinked (Fig 1). We refer to this potential influence of chromosomal linkage of two genes

on their expression co-fluctuation as the linkage effect. The linkage-effect hypothesis is sup-

ported by two pioneering studies demonstrating that the correlation in expression level

between two reporter genes across isogeneic cells in the same environment is much higher

when they are placed next to each other on the same chromosome than when they are

placed on separate chromosomes [21, 22]. However, neither the generality of the linkage

effect nor the chromosomal proximity required for this effect are known. Furthermore, the

biological significance of the linkage effect and its potential impact on genome organization

and evolution have not been investigated. In this study, we address these questions by ana-

lyzing allele-specific single-cell RNA-sequencing (RNA-seq) data from mouse cells [23]. We

demonstrate that the linkage effect is not only general but also long-range, extending to

genes that are tens of millions of bases apart. We provide evidence that three-dimensional

(3D) chromatin proximities are responsible for the long-range expression co-fluctuation

through mediating chromatin accessibility covariations. Finally, we show theoretically and

empirically that the linkage effect has likely impacted the evolution of the chromosomal

locations of genes encoding members of the same protein complex.
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Results

Linkage effect on gene expression co-fluctuation is general and long-range

Let us consider two genes A and B each with two alleles respectively named 1 and 2 in a diploid

cell. When A and B are chromosomally linked, without loss of generality, we assume that A1

and B1 are on the same chromosome whereas A2 and B2 are on its homologous chromosome

(Fig 2A). Expression co-fluctuation between one allele of A and one allele of B (e.g., A1 and B2)

is measured by Pearson’s correlation (re, where the subscript "e" stands for expression) between

the expression levels of the two alleles across isogenic cells under the same environment.

Among the four possible pairs of an A and a B allele, A1-B1, A2-B2, A1-B2, and A2-B1, the for-

mer two pairs are physically linked whereas the latter two pairs are unlinked. The linkage-

Fig 1. The hypothesized linkage effect on gene expression co-fluctuation. The cellular mRNA concentrations of two genes should be better correlated among isogenic

cells in a population under a constant environment (A) when the two genes are chromosomally linked than (B) when they are unlinked. In the dot plot, each dot

represents a cell.

https://doi.org/10.1371/journal.pgen.1008389.g001
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effect hypothesis asserts that, at a steady state, expression correlations between linked alleles

(cis-correlations) are greater than those between unlinked alleles (trans-correlations). That is,

Fig 2. Chromosome-wide linkage effects on gene expression co-fluctuation in mouse fibroblast cells. (A) The logic of the method for testing the linkage effect. When

gene A and gene B are linked, the correlations between the mRNA concentrations of the alleles of A and B that are physically linked (cis-correlations) should exceed the

corresponding correlations of the alleles that are physically unlinked (trans-correlations). That is, δe = (sum of cis-correlations − sum of trans-correlations)/2 should be

positive. This relationship should disappear if gene A and gene B are unlinked. For each gene, the paternal and maternal alleles are labeled by 1 and 2, respectively. (B)

Fraction of gene pairs with positive δe. The red line represents the null expectation under no linkage effect. The 95% confidence intervals estimated from all gene pairs

are presented. P-values from binomial tests on independent gene pairs are presented. (C) Fraction of gene pairs with positive δe in each chromosome. The 95%

confidence intervals estimated from all gene pairs are presented. Binomial P-values estimated from independent gene pairs are indicated as follows. NS, not significant;
�, 0.01< P< 0.05; ��, 0.001< P< 0.01; ���, 0.0001< P< 0.001; and ����, P< 0.0001. The red line represents the null expectation under no linkage effect. The control

(Ctl) shows the fraction of unlinked gene pairs with positive δe. (D) Median δe in a bin decreases with the median genomic distance of linked genes in the bin. All bins

have the same genomic distance interval. TSS, transcription start site. The red line shows median δe = 0. The blue line shows the linear regression of the binned data, and

the 95% confidence interval of the regression is presented. Spearman’s ρ from unbinned data and associated P-value determined by a shuffling test are presented. (E)

Fraction of linked gene pairs showing positive δe increases with the minimal number of reads per allele required (P< 10−300). (F) Median δe for all linked gene pairs

(red) and median δe in the left-most bin of panel D (blue) increase with the minimal read number per allele required (both P< 10−300).

https://doi.org/10.1371/journal.pgen.1008389.g002
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δe = [re(A1,B1)+re(A2,B2)−re(A1,B2)−re(A2,B1)]/2>0. Note that this formulation is valid regard-

less of whether the two alleles of the same gene have equal mean expression levels. While each

of the four correlations could be positive or negative, in the large data analyzed below, they are

mostly positive and show approximately normal distributions across gene pairs examined (S1

Fig).

To verify the above prediction about δe, we analyzed a single-cell RNA-seq dataset of fibro-

blast cells derived from a hybrid between two mouse strains (CAST/EiJ × C57BL/6J) [23].

Single-cell RNA-seq profiles the transcriptomes of individual cells, allowing quantifying sto-

chastic gene expression variations among isogenic cells in the same environment [24–26].

DNA polymorphisms in the hybrid allow estimation of the expression level of each allele for

thousands of genes per cell. The dataset includes data from seven fibroblast clones and some

non-clonal fibroblast cells of the same genotype. We focused our analysis on clone 7 (derived

from the hybrid of CAST/EiJ male × C57BL/6J female) in the dataset, because the number of

cells sequenced in this clone is the largest (n = 60) among all clones. We excluded from our

analysis all genes on Chromosomes 3 and 4 due to aneuploidy in this clone and X-linked genes

due to X inactivation. To increase the sensitivity of our analysis and remove imprinted genes,

we focused on the 3405 genes that have at least 10 RNA-seq reads averaged across cells mapped

to each of the two alleles. Note that this gene set constitute >30% of all expressed genes in the

cells concerned. While most of the 3405 genes tend to be highly expressed, 16% of them have

lower expressions than the median expression of all expressed genes. The 3405 genes form

3404×3405/2 = 5,795,310 gene pairs, among which 377,584 pairs are chromosomally linked.

For each pair of chromosomally linked genes, we computed their δe by treating the allele

from CAST/EiJ as allele 1 and that from C57BL/6J as allele 2 at each locus. The fraction of gene

pairs with δe > 0 is 0.61 (Fig 2B). This fraction has a rather narrow 95% confidence interval

(Fig 2B), demonstrating that the fraction is significantly higher than the null expectation of

0.5. Because a gene can appear in multiple gene pairs, which are not mutually independent, we

applied a binomial test in a subset of gene pairs where each gene appears only once. Specifi-

cally, we randomly shuffled the relative positions of all genes on each chromosome and consid-

ered from one end of the chromosome to the other end non-overlapping consecutive windows

of two genes. The observed fraction of gene pairs with positive δe still significantly exceeds the

null expectation of 0.5 (P< 2.4×10−16, binomial test). That most gene pairs exhibit δe > 0

holds in each of the 17 chromosomes examined, with the trend being statistically significant in

six chromosomes even by the above conservative test (nominal P< 0.05; Fig 2C). As a negative

control, we analyzed gene pairs located on different chromosomes, treating alleles the same

way as described above. As expected, this time the fraction of gene pairs with δe > 0 is not sig-

nificantly different from 0.5 (P = 0.25; Fig 2B). The fraction of gene pairs with δe > 0 appears

to vary among chromosomes (Fig 2C). To assess the significance of this variation, we com-

pared the fraction of independent gene pairs with δe > 0 between every two chromosomes by

Fisher’s exact test. After correcting for multiple testing, we found no significant difference

between any two chromosomes.

To examine the generality of the findings from clone 7, we also analyzed clone 6 (derived

from the hybrid of CAST/EiJ male × C57BL/6J female), which has 38 cells with RNA-seq data.

Because 10 of these cells are aneuploidy for different chromosomes (see the supplementary

materials in [23]), we analyzed the remaining 28 cells. Similar results were obtained (S2A and

S2B Fig). Because clone 6 was from a male whereas clone 7 was from a female, our results

apparently apply to both sexes. We also analyzed 47 non-clonal fibroblast cells with the same

genetic background (cell IDs from 124 to 170, derived from the hybrid of CAST/EiJ

male × C57BL/6J female), and obtained similar results (S2C and S2D Fig). These findings

establish that the linkage effect on expression co-fluctuation is neither limited to a few genes in
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a specific clone nor an epigenetic artifact of clonal cells, but is general. The linkage effect on

co-fluctuation (and the decrease of the effect with genomic distance shown below) is robust to

the definition of δe, because similar results are obtained when correlation coefficients are

replaced with squares of correlation coefficients in the definition of δe.

We next investigated how close two genes need to be on the same chromosome for them to

co-fluctuate in expression. We divided all pairs of chromosomally linked genes into 100 equal-

interval bins based on the genomic distance between genes, defined by the number of nucleo-

tides between their transcription start sites (TSSs). The median δe in a bin is found to decrease

with the genomic distance represented by the bin (Fig 2D). Furthermore, even for the

unbinned data, δe for a pair of linked genes correlates negatively with their genomic distance

(Spearman’s ρ = -0.029). To assess the statistical significance of this negative correlation, we

randomly shuffled the genomic coordinates of genes within chromosomes and recomputed

the correlation. This was repeated 1000 times and none of the 1000 ρ values were equal to or

more negative than the observed ρ. Hence, the linkage effect on expression co-fluctuation of

two linked genes weakens significantly with their genomic distance (P< 0.001).

Surprisingly, however, median δe exceeds 0 for every bin except when the genomic distance

exceeds 150 Mb (Fig 2D). Hence, the linkage effect is long-range. To statistically verify the

potentially chromosome-wide linkage effect, we focused on linked gene pairs that are at least

63 Mb apart, which is one half the median size of mouse chromosomes. The median δe for

these gene pairs is 0.017, or 68% of the median δe for the left-most bin in Fig 2D. We randomly

shuffled the genomic positions of all genes and repeated the above analysis 1000 times. In

none of the 1000 shuffled genomes did we observe the median δe greater than 0.017 for linked

genes of distances >63 Mb, validating the long-range expression co-fluctuation in the actual

genome. The same can be said even for linked genes of distances >90 Mb (P< 0.001, shuffling

test). The above observations are not clone-specific, because the same trend is observed for

cells of clone 6 (S2B Fig).

Notably, a previous experiment in mammalian cells [21] detected a linkage effect for chro-

mosomally adjacent reporter genes (δe = 0.834) orders of magnitude stronger than what is

observed here. This is primarily because expression levels estimated using single-cell RNA

fluorescence in situ hybridization in the early study [21] are much more precise than those

estimated using allele-specific single-cell RNA-seq [27] here. We thus predict that the linkage

effect detected will be more pronounced as the expression level estimates become more pre-

cise. As a proof of principle, we gradually raised the required minimal number of reads per

allele in our analysis, which should increase the precision of expression level estimation but

decrease the number of genes that can be analyzed. Indeed, as the minimal read number rises,

the fraction of chromosomally linked gene pairs with a positive δe (Fig 2E), median δe for all

chromosomally linked gene pairs (Fig 2F), and median δe for the left-most bin (Fig 2F) all

increase significantly. Furthermore, the low capturing efficiency of single-cell RNA-seq sub-

stantially reduces the observed size of the linkage effect, and our lower-bound estimate of the

median true δe is 0.15 (see Materials and Methods).

Because what matters to a cell is the total number of transcripts produced from the two

alleles of a gene instead of the number produced from each allele, we also calculated the pair-

wise correlation in expression level between genes using either the total number of reads

mapped to both alleles of a gene or normalized expression level of the gene. We similarly

found a long-range linkage effect (S3 Fig), with trends and effect sizes close to the observations

based on allele-specific expressions.

Previous studies reported that the relative transcriptional orientations of neighboring genes

influence their expression co-fluctuation [28]. This impact, however, is unobserved in our
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study (S4 Fig), which may be due to the limited precision of the expression estimates and the

fact that only 422 pairs of neighboring genes satisfy the minimal read number requirement.

Shared chemical environment for transcription results in the long-range

linkage effect

What has caused the chromosome-wide expression co-fluctuation of linked genes? One simple

explanation is the asynchronous DNA replication in dividing cells, where closely linked genes

tend to be replicated at the same time so show positively correlated gene copy numbers and

hence expression levels. But a simple calculation demonstrates that this explanation is not ten-

able. There are 104 to 105 replication origins per mammalian cell [29]. Given the size of the

mammalian genome (~3×109 bases), DNA segments within 0.03–0.3 Mb share a replication

origin. The asynchronous DNA replication could result in the expression co-fluctuation of

genes in the range of 0.03 to 0.3 Mb, which cannot explain our observation of expression co-

fluctuation at the scale of>60 Mb.

Individual chromosomes in mammalian cells are organized into territories with a diameter

of 1~2 μm [30], whereas the diameter of the nucleus is ~8 μm [30]. Thus, the physical distance

between chromosomally linked genes is below 1~2 μm, whereas that between unlinked genes

is usually > 1~2 μm and can be as large as ~8 μm. Because it takes time for macromolecules to

diffuse in the nucleus, linked genes tend to have similar chemical environments and hence

similar transcriptional dynamics (i.e., promoter co-accessibility and/or co-transcription) when

compared with unlinked genes. We thus hypothesize that the linkage effect is fundamentally

explained by the 3D proximity of linked genes compared with unlinked genes (Fig 3A). Below

we provide evidence for this model. Note, while our computational analyses cannot prove cau-

sation, they examine correlations among various quantities that are predicted by our hypothe-

sis and hence can provide strong evidence for or against the hypothesis when performed

rigorously and interpreted appropriately.

We started by comparing the 3D distances between linked alleles with those between

unlinked alleles. The 3D distance between two genomic regions can be approximately mea-

sured by Hi-C, a high-throughput chromosome conformation capture method for quantifying

the number of interactions between genomic loci that are nearby in 3D space [31]. The smaller

the 3D distance between two genomic regions, the higher the interaction frequency between

them [32]. It is predicted that the interaction frequency between the physically linked alleles of

two genes (cis-interaction) is greater than that between the unlinked alleles of the same gene

pair (trans-interaction). To verify this prediction, we analyzed the recently published allele-

specific 500kb-resolution Hi-C interaction matrix [33] of mouse neural progenitor cells

(NPC). For any two linked loci A and B as depicted in the left diagram of Fig 2A, we computed

δi = [F(A1,B1)+F(A2,B2)−F(A1,B2)−F(A2,B1)]/2, where F is the interaction frequency between

the two alleles in the parentheses and the subscript "i" refers to interaction. We found that 99%

of pairs of linked loci have a positive δi (P< 2.2×10−16, binomial test on independent locus

pairs; Fig 3B). By contrast, among unlinked gene pairs, the fraction with a positive δi is not sig-

nificantly different from that with a negative δi (P = 0.90, binomial test on independent locus

pairs; Fig 3B). In the analysis of unlinked loci, we treated all alleles from one parental strain of

the hybrid as alleles 1 and all alleles from the other parental strain of the hybrid as alleles 2 in

the above formula of δi. These results clearly demonstrate the 3D proximity of genes on the

same chromosome when compared with those on two homologous chromosomes.

To examine if the above phenomenon is long-range, we plotted δi as a function of the dis-

tance (in Mb) between two linked loci considered. Indeed, even when the distance exceeds 63

Mb, one half the median size of mouse chromosomes, almost all locus pairs still show positive

Expression co-fluctuation of linked genes
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Fig 3. Mechanistic basis of the linkage effect on expression co-fluctuation. (A) A model on how chromosomal linkage causes expression co-fluctuation. (B) Fractions

of linked or unlinked genomic region pairs with positive, 0, and negative δi values, respectively. δi = (sum of cis-interactions − sum of trans-interactions)/2, where

chromatin interactions are based on Hi-C data. All fractions are shown, but the blue and red bars for linked regions are too low to be visible. (C) δi decreases with the

genomic distance between the linked regions considered. Each dot represents one pair of linked genomic regions. Shown here is log10(δi + 5) because δi is occasionally

negative and it decreases with genomic distance very quickly. The horizontal red line indicates δi = 0. The blue line is a cubic spline regression of log10(δi + 5) on the

genomic distance. Spearman’s ρ from unbinned data and associated P-value determined by a shuffling test are presented. (D) Fraction of linked or unlinked pairs of

ATAC peaks with positive δa. δa = (sum of cis-correlations in accessibility − sum of trans-correlations in accessibility)/2. The 95% confidence interval is presented. P-

values from binomial tests on independent peak pairs are presented. The red line shows the fraction of 0.5. (E) δa decreases with the distance between linked ATAC

peaks. Each dot represents a bin. All bins have the same distance interval. The red line shows δa = 0. The blue line shows the linear regression of the binned data and the

shade shows the 95% confidence interval of the regression. For better viewing, one bin (X = 156, Y = -0.02) is omitted in the figure; the extreme δa of the bin is probably

due to the small sample size of the bin (n = 13). Spearman’s ρ computed from unbinned data and associated P-value determined from a shuffling test are presented. (F)

Expression co-fluctuation of linked genes
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δi (Fig 3C). Similar to the phenomenon of the linkage effect on gene expression co-fluctuation,

we observed a negative correlation between the genomic distance between two linked loci and

δi (ρ = -0.81 for unbinned data). This correlation is statistically significant (P< 0.001), because

it is stronger than the corresponding correlation in each of the 1000 negative controls where

the genomic positions of all genes are randomly shuffled within chromosomes.

As mentioned, 3D proximity should synchronize the transcriptional dynamics of linked

alleles. Based on the bursty model of gene expression [34], transcription involves two primary

steps. In the first step, the promoter region switches from the inactive state to the active state

such that it becomes accessible to the transcriptional machinery. In the second step, RNA poly-

merase binds to the activated promoter to initiate transcription. In principle, the synchroniza-

tion of either step can result in co-fluctuation of mRNA concentrations. Because the

accessibility of promoters can be detected using transposase-accessible chromatin using

sequencing (ATAC-seq) [35] in a high-throughput manner, we focused our empirical analysis

on promoter co-accessibility. Note that although the bursty model does not consider certain

details of transcription such as polymerase pausing and productive elongation, there is mount-

ing evidence that the bursty model provides a good approximation of stochastic gene expres-

sion [21, 36–38], which is what matters to our study.

To verify the potential long-range linkage effect on chromatin co-accessibility, we should

ideally use single-cell allele-specific measures of chromatin accessibility. However, such data

are unavailable. We reason that, the accessibility covariation of genomic regions among cells

may be quantified by the corresponding covariation among populations of cells of the same

type cultured under the same environment. In fact, it can be shown mathematically that,

under certain conditions, chromatin co-accessibility of two genomic regions among cells

equals the corresponding chromatin co-accessibility across cell populations (see Materials and

Methods). Based on this result, we analyzed a dataset collected from allele-specific ATAC-seq

in 16 NPC cell populations [39]. We first removed sex chromosomes and then required the

number of reads mapped to each allele of a peak to exceed 50 for the peak to be considered.

This latter step removed imprinted loci and ensured that the considered peaks are relatively

reliable. About 3500 peaks remained after the filtering. This sample size is comparable to the

number of genes used in the analysis of expression co-fluctuation. For each pair of ATAC

peaks, we computed δa = [ra(A1,B1)+ra(A2,B2)−ra(A1,B2)−ra(A2,B1)]/2, where ra is the correla-

tion in ATAC-seq read number between the alleles specified in the parentheses (following the

left diagram in Fig 2A) across the 16 cell populations and the subscript "a" refers to chromatin

accessibility. The fraction of peak pairs with a positive δa is significantly greater than 0.5 for

linked peak pairs but not significantly different from 0.5 for unlinked peak pairs (binomial test

on independent peak pairs; Fig 3D). Furthermore, after grouping ATAC peak pairs into 100

equal-interval bins according to the genomic distance between peaks, we observed a clear

trend that δa decreases with the genomic distance between peaks (ρ = -0.05 for unbinned data,

Co-accessibility (trans-ra) is greater for 3D contacted (trans-F> 0) than uncontacted (trans-F = 0) non-allelic genomic regions located on homologous chromosomes.

The lower and upper edges of a box represent the first (qu1) and third (qu3) quartiles, respectively, the horizontal line inside the box indicates the median (md), the

whiskers extend to the most extreme values inside inner fences, md±1.5(qu3-qu1), and the dots represent values outside the inner fences (outliers). P-value is determined

by a Mantel test. (G) Expression co-fluctuation (trans-re) improves with the co-accessibility (trans-ra) of non-allelic ATAC peaks located on homologous chromosomes.

Each dot represents a bin. All bins have the same co-accessibility interval. The blue line shows the linear regression of the binned data. Spearman’s ρ computed from

unbinned data and associated P-value determined by a Mantel test are presented. (H) δe is positively correlated with δi. All gene pairs are separated into 100 equal-size

bins, and the blue line shows a LOESS regression with the 95% confidence interval of the regression shown. Spearman’s ρ computed from unbinned data and the

associated P-value are presented. (I) Diffusion rates for molecules responsible for the chromosome-wide linkage effect should be neither too high nor too low. If the

diffusion is too fast, the concentration of the molecule will be similar across the nucleus (top); if the diffusion is too slow, the concentration cannot even be similar for

loci loosely linked on the same chromosome (bottom). Only when the diffusion rate is intermediate could the local chemical environment be homogeneous for genes on

the same chromosome but heterogeneous for genes on different chromosomes (middle). The large oval represents the nucleus and each black "S" curve represents a

chromosome. Blue zig-zags show molecular diffusions, while the blue area depicts a chemically homogenous environment.

https://doi.org/10.1371/journal.pgen.1008389.g003
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P< 0.001, within-chromosome shuffling test; Fig 3E). In addition, even for linked peak pairs

with a distance greater than 63 Mb, their median δa is significantly greater than that of

unlinked peak pairs (P< 0.001, among-chromosome shuffling test). Together, these results

demonstrate a long-range linkage effect on chromatin co-accessibility. Similar to δe, the

observed δa is small. This is again at least in part a result of low capturing efficiencies in high-

throughput sequencing. We estimated that the median true δa is at least 0.03 (see Materials

and Methods), an order of magnitude larger than the observed value.

Because we hypothesize that the linkage effect on expression co-fluctuation is via 3D chro-

matin proximity that leads to chromatin co-accessibility (Fig 3A), we should verify the rela-

tionship between 3D proximity and chromatin co-accessibility for unlinked genomic regions

to avoid the confounding factor of linkage. To this end, we converted ATAC-seq read counts

to a 500kb resolution by summing up read counts for all allele-specific chromatin accessibility

peaks that fall within the corresponding Hi-C bin, because the resolution of the Hi-C data is

500kb. Because alleles from different parents are unlinked in the hybrid used for ATAC-seq,

for each pair of bins, we computed the mean correlation in chromatin accessibility between

the alleles derived from different parents among the 16 cell populations, or trans-ra = ra(A1,

B2)/2 + ra(A2, B1)/2. For the same reason, we computed the sum of Hi-C contact frequency

between the alleles derived from different parents, trans-F = F(A1, B2)/2+F(A2, B1)/2. Because

interaction frequencies in Hi-C data are generally low for unlinked regions, we separated all

pairs of bins into two categories, contacted (i.e., trans-F> 0) and uncontacted (i.e., trans-
F = 0). We found that trans-ra values for contacted bin pairs are significantly higher than those

for uncontacted bin pairs (P< 0.0001; Fig 3F), consistent with our hypothesis that 3D chroma-

tin proximity induces chromatin co-accessibility. The above statistical significance was deter-

mined by performing a Mantel test using the original trans-ra matrix of the aforementioned

allele pairs and the corresponding trans-Fmatrix. Corroborating our finding, a recent study of

single-cell (but not allele-specific) chromatin accessibility data also found that the co-accessi-

bility of two loci rises with their 3D proximity [40].

To test the hypothesis that chromatin co-accessibility leads to expression co-fluctuation

(even for unlinked alleles) (Fig 3A), we analyzed the allele-specific ATAC-seq data and single-

cell allele-specific RNA-seq data together. Although these data were generated from different

cell types in mouse, we reason that, because the 3D chromosome conformation is highly simi-

lar among tissues [41], chromatin co-accessibility, which is affected by 3D chromatin proxim-

ity (Fig 3F), may also be similar among tissues. Hence, it may be possible to detect a

correlation between chromatin co-accessibility and expression co-fluctuation. To this end, we

used unbinned ATAC-peak data to compute trans-ra but limited the analysis to those peaks

with at least 10 reads per allele. We used the allele-specific RNA-seq data to compute trans-re =

re(A1, B2)/2+re(A2, B1)/2 for pairs of linked genes. We then assigned each gene to its nearest

ATAC peak and averaged trans-re among gene pairs assigned to the same pair of ATAC peaks.

We subsequently grouped ATAC peak pairs into 100 equal-interval bins according to their co-

accessibilities, and observed a clear positive correlation between median trans-ra and median

trans-re across the 100 bins (Fig 3G). For unbinned data, trans-ra and trans-re also show a sig-

nificant, positive correlation (ρ = 0.021, P = 0.027, Mantel test). Although the assignment of a

gene to its nearest ATAC peak may not be biologically meaningful in some cases, such poten-

tial errors only add noise to our analysis, meaning that the true signal should be stronger than

what is observed.

As predicted, there is also a positive correlation between δi and δe (ρ = 0.014, P = 1.6×10−17).

In this analysis, for each linked pair of Hi-C bins, we computed δi. We assigned each gene in

our dataset to its nearest Hi-C bin, estimated δe for each pair of genes that are respectively

located in the two Hi-C bins considered, and computed the average δe between the two bins.
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The correlation between δi and δe can be visualized in Fig 3H, where Hi-C bin pairs are sep-

arated into 100 equal-size groups based on δi. Note that although the impact of 3D proxim-

ity (Fig 3H) appears weaker than the impact of genomic distance (Fig 2D) on δe, these two

plots are not directly comparable because of the following reasons. First, the Hi-C contact

frequency is not an accurate measure of 3D proximity, especially for region pairs that rarely

contact, which apply to the vast majority of region pairs (Fig 3C). By contrast, genomic dis-

tance is measured accurately. Second, the resolution of the Hi-C data used is much lower

(500 kb) than that of the genomic distance (1 bp). Third, the Hi-C data and gene expression

co-fluctuations data are not from the same cell type, which reduces the observed impact of

3D proximity.

Together, the above results support our hypothesis that, compared with unlinked genes,

linked genes have a shared chemical environment due to their 3D proximity and hence chro-

matin co-accessibility, which leads to their expression co-fluctuation (Fig 3A). However, 3D

proximity can lead to promoter co-accessibility by several means, which have been broadly

summarized into three categories of mechanisms [30]: 1D scanning, 3D looping, and 3D diffu-

sion. 1D scanning refers to the spread of chromatin states along an entire chromosome, but

1D scanning is rare, with only a few known examples such as X-chromosome inactivation

[30]. Hence, 1D scanning is unlikely to be the mechanism responsible for the broad linkage

effect discovered here. 3D looping refers to the phenomenon that a chromosome often forms

loops to bring far-separated loci into contact, whereas 3D diffusion refers to chromosome

communication by local diffusion of transcription-related proteins. For tightly linked loci, our

data do not allow a clear distinction between 3D looping and 3D diffusion in causing the link-

age effect discovered here. But 3D diffusion seems more likely for the long-range effect,

because the range of 3D looping seems limited to loci separated by no more than 200 kb simply

due to the rapid decrease of the contact frequency with the physical distance between two loci

[42], evident in Fig 3C (note the log scale of the Y-axis). It has been estimated that loci sepa-

rated by 10 Mb behave essentially the same as two loci that are on different chromosomes in

terms of the contact frequency [30], and any contact-based mechanism is unlikely to be long-

range (e.g., topologically associating domains) [41]. Therefore, the most likely cause of our

observed long-range linkage effect is 3D diffusion.

In the 3D diffusion mechanism, which molecule is most likely responsible for the observed

long-range linkage effect on expression co-fluctuation? If the chemical influencing transcrip-

tion has a diffusion time in the nucleus much shorter than the interval between transcriptional

bursts, two genes have essentially the same environment with respect to that chemical regard-

less of their 3D distance [43] and hence no linkage effect is expected (top cell in Fig 3I). On the

contrary, if the chemical diffuses too slowly, the linkage effect will be local [43] and hence can-

not be chromosome-wide (bottom cell in Fig 3I). Therefore, the diffusion rate of the chemical

responsible for the long-range linkage effect cannot be too low or too high such that they

become evenly distributed in a chromosome territory but not the whole nucleus in a time

comparable to the interval between transcriptional bursts (middle cell in Fig 3I). The typical

transcriptional burst interval is 18–50 minutes in mammalian cells [37, 38]. The time for a

chemical to distribute evenly in a given volume with radius R is on the order of R2/D, where D
is the diffusion coefficient of the chemical [34]. Most molecules in the nucleus are rapidly dif-

fused. For example, transcription factors typically have a diffusion coefficient of 0.5–5 μm2/s in

the nucleus [34, 44], meaning that they can diffuse across the whole nucleus in about 3 to 30

seconds. By contrast, core histone proteins such as H2B proteins diffuse extremely slowly due

to their tight binding to DNA. They are usually considered immobilized because diffusion is

rarely observed during the course of an experiment [44, 45]. Therefore, none of these mole-

cules are responsible for the long-range linkage effect observed. Interestingly, linker histones,
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which include five subtypes of H1 histones in mouse that play important roles in chromatin

structure and transcription regulation [46], have a diffusion coefficient of about 0.01 μm2/s

[47]. Thus, it takes H1 proteins 25–100 seconds to diffuse through a chromosome territory,

but about 30 minutes to diffuse across the whole nucleus. The former time but not the latter is

much smaller than the typical transcriptional burst interval. Hence, it is possible that H1 diffu-

sion in the nucleus is the ultimate cause of the linkage effect. We provide empirical evidence

for this hypothesis in a later section.

Beneficial linkage of genes encoding components of the same protein

complex

Our finding that chromosomal linkage leads to gene expression co-fluctuation implies that

linkage between genes could be selected for when expression co-fluctuation is advantageous.

Due to the complexity of biology, it is generally difficult to predict whether the expression co-

fluctuation of a pair of genes is beneficial, neutral, or deleterious. However, the expression co-

fluctuation of genes encoding components of the same protein complex is likely advantageous.

To see why this is the case, let us consider a dimer composed of one molecule of protein A and

one molecule of protein B; the heterodimer is functional but monomers are not. We denote

the concentration of dissociated protein A as [A], the concentration of dissociated protein B as

[B], and the concentration of protein complex AB as [AB]. At the steady state, [AB] = K[A][B],

where K is the association constant [48]. Furthermore, the total concentration of protein A,

[A]t, equals [A] + [AB], while the total concentration of protein B, [B]t, equals [B] + [AB].

Based on these relationships, we simulated 10,000 cells, where the mean and coefficient of vari-

ation (CV) are respectively 1 and 0.2 for both [A]t and [B]t (see Materials and Methods). We

assumed K = 105 based on empirical K values of stable protein complexes [49]. We found that,

as the correlation between [A]t and [B]t increases, mean [AB] of the 10,000 cells rises (Fig 4A).

We also considered a wide range of other K values (10−1, 100, 101, 102, 103, and 104) and found

the result largely unchanged. The lower-bound mean [AB] is about 3% higher under co-fluctu-

ation than under no co-fluctuation. Furthermore, the effect size rises substantially with CV.

For example, when CV = 0.5, which is not unusual in eukaryotes [49], the effect increases to

20%. We also considered protein complexes with other stoichiometries and the scenario when

the mean [A]t to mean [B]t ratio deviates from the stoichiometry (see Materials and Methods).

In all parameter combinations examined, the mean [AB] increases with the correlation

between [A]t and [B]t, albeit with a wide range of effect size (0.001% to 27% higher mean [AB]

under co-fluctuation than under no co-fluctuation). If we assume that fitness rises with [AB],

the co-fluctuation of [A]t and [B]t is beneficial, compared with independent fluctuations of

[A]t and [B]t. In addition, because mean [A] and mean [B] must decrease with the rise of mean

[AB], the co-fluctuation of [A]t and [B]t could also be advantageous because it lowers the con-

centrations of the unbound monomers that may be toxic. Indeed, past studies found better

expression co-fluctuations of genes encoding members of the same protein complex than ran-

dom gene pairs [50, 51], suggesting that expression co-fluctuation of members of the same

protein complex is selectively favored. Because our simulation considers protein concentra-

tions instead of gene expressions, it directly applies to both haploid and diploid cells. The only

difference is that protein concentrations such as [A]t and [B]t have a lower CV in diploid than

haploid cells [6]. Further, as shown in S3 Fig, mouse cells analyzed here do show a higher cor-

relation in the total expression level of two alleles between linked than unlinked genes.

To test if genes encoding components of the same protein complex tend to be linked, we

used the mouse protein complex data from CORUM and downloaded the chromosomal posi-

tions of all mouse protein-coding genes from Ensembl [52]. Because genes may be linked due
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to their origins from tandem duplication [53], the data were pre-processed to produce a set of

duplicate-free mouse protein-coding genes (see Materials and Methods). We then randomly

shuffled the genomic positions of the retained genes encoding protein complex components

among all possible positions of the duplicate-free mouse protein-coding genes. The observed

number of linked pairs of genes encoding components of the same protein complex is signifi-

cantly greater than the random expectation (Fig 4B). For comparison, we also computed the

number of linked pairs of genes encoding components of different protein complexes. This

number is not significantly greater than the random expectation (Fig 4C). Thus, the enrich-

ment in gene linkage is specifically related to coding for subunits of the same protein complex.

Interestingly, the observed median distance between the TSSs of two linked genes encoding

protein complex subunits is not significantly different from the random expectation, regardless

of whether subunits of the same (Fig 4D) or different (Fig 4E) protein complexes are

considered.

The phenomenon that members of the same protein complex tend to be encoded by linked

genes could have arisen for one or both of the following reasons. First, selection for co-fluctua-

tion among proteins of the same complex has driven the evolution of gene linkage. Second,

due to their co-fluctuation, products of linked genes may have been preferentially recruited to

the same protein complex in evolution. Under the first hypothesis, originally unlinked genes

encoding members of the same protein complex are more likely to become linked in evolution

than originally unlinked genes that do not encode members of the same complex. To verify

this prediction, we examined mouse genes using rat and human as outgroups (Fig 4F), because

our δe estimates are from the mouse. We obtained pairs of genes encoding components of the

same protein complex in both human and mouse. Hence, these pairs likely encode members

of the same protein complex in the common ancestor of the three species. Among them, 875

pairs are unlinked in human and rat, suggesting that they were unlinked in the common ances-

tor of the three species. Of the 875 pairs, 25 pairs become linked in the mouse genome, signifi-

cantly more than the random expectation under no requirement for gene pairs to encode

members of the same complex (P = 0.005; Fig 4F; see Materials and Methods). Therefore, the

first hypothesis is supported. Under this hypothesis, the result in Fig 4D may be explained by

the long-range linkage effect on expression co-fluctuation, such that once two genes encoding

components of the same protein complex move to the same chromosome, selection is not

strong enough to drive them closer to each other. To test the second hypothesis, we need gene

pairs encoding proteins that belong to the same protein complex in mouse but not in human

nor rat, which require such low false negative errors in protein complex identification that no

current method can meet. Hence, we leave the test of the second hypothesis to future studies.

Note that the above tests have two caveats. First, it is possible that some tandem duplicates

remain in our data, which will compromise the analysis in Fig 4B. However, the result in Fig

Fig 4. Genes encoding components of the same protein complex tend to be chromosomally linked. (A) Mean concentration of the protein

complex AB ([AB]) in 10,000 cells increases with the co-fluctuation of the concentrations of its two components measured by the correlation of

the total concentration of protein A ([A]t) and that of B ([B]t). (B-C) The frequency distribution of the number of pairs of linked genes encoding

components of the same protein complex (B) and components of different protein complexes (C) in 10,000 randomly shuffled genomes. Arrows

indicate the observed values. (D-E) The frequency distribution of the median distance between two linked genes that encode components of the

same protein complex (D) and components of different protein complexes (E) in 10,000 randomly shuffled genomes. Arrows indicate the

observed values. (F) Test of the hypothesis of protein complex-driven evolution of gene linkage, which asserts that the probability for an originally

unlinked pair of genes to become linked is higher when they encode members of the same protein complex than when they do not. Of 875 pairs of

genes that are unlinked in both human and rat and encode members of the same protein complex in both human and mouse, 25 become linked in

mouse, as indicated by the arrow. The bars show the frequency distribution of the corresponding expected number under the null hypothesis. (G)

Protein complex genes that are linked with at least one gene encoding a member of the same complex tend to be highly expressed in tissues with

low abundances of linker histones. Y-axis shows the correlation in expression level between protein complex genes and the linker histone genes

across tissues.

https://doi.org/10.1371/journal.pgen.1008389.g004
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4F is robust to such potential errors because the gene pairs concerned are originally unlinked

so could not have arisen by tandem duplication. Thus, our evidence for positive selection for

gene linkage holds even when the data are contaminated by tandem duplicates. Second, we

inferred ancestral gene linkage by the parsimony principle, which may occasionally be incor-

rect. But such errors add only random noise to our analysis, suggesting that the actual strength

of evidence for our hypothesis is likely stronger than what is shown here.

As mentioned, our theoretical consideration suggests that, due to their intermediate diffu-

sion coefficients, H1 histones may be responsible for the observed chromosome-wide expres-

sion co-fluctuation. Because the local H1 concentration fluctuates more when its cellular

concentration is lower, we predict that the benefit and the selection coefficient for linkage of

genes encoding members of the same protein complex are greater in tissues with lower H1

concentrations. Given that gene expression is costly, for a given gene, it is reasonable to assume

that the relative importance of its function in a tissue increases with its expression level in the

tissue [54, 55]. Hence, we predict that, the more negative the across-tissue expression correla-

tion is between a protein complex member gene and H1 histones, the higher the likelihood

that the gene is driven to be linked with other genes encoding members of the same protein

complex. To verify the above prediction, we used a recently published RNA-seq dataset [56] to

measure Pearson’s correlation between the mRNA concentration of a gene that encodes a pro-

tein complex subunit and the mean mRNA concentration of all H1 histone genes across 13

mouse tissues. Indeed, the linked protein complex genes show more negative correlations than

the unlinked protein complex genes (P = 0.012, one-tailed Mann-Whitney U test; Fig 4G). The

disparity is even more pronounced when we compare linked protein complex genes that

become linked in the mouse lineage with unlinked protein complex genes (P = 0.00068, one-

tailed Mann-Whitney U test; Fig 4G). This is likely owing to the enrichment of genes that are

linked due to the linkage effect in the group of evolved linked protein complex genes

(
Observed� null expectation

null expectation ¼ 25� 13

13
¼ 92%) when compared with the group of linked protein complex

genes (
Observed� null expectation

null expectation ¼ 200� 161

161
¼ 24%). The above three groups of genes (evolved linked

protein complex genes, linked protein complex genes, and unlinked protein complex genes)

were constructed using stratified sampling to ensure that their mean expression levels across

tissues are not significantly different (see Materials and Methods). For comparison, we per-

formed the same analysis but replaced H1 histones with TFIIB, a general transcription factor

that is involved in the formation of the RNA polymerase II preinitiation complex and has a

high diffusion rate [57]. The trends shown in Fig 4G no longer holds (unlinked vs. linked:

P = 0.11, one-tailed Mann-Whitney U test; unlinked vs. evolved linked: P = 0.63, one-tailed

Mann-Whitney U test). We also performed the same analysis but replaced H1 histones with

core histone proteins, which are immobilized [45]. Again, the trends in Fig 4G disappeared

(unlinked vs. linked: P = 0.48, one-tailed Mann-Whitney U test; unlinked vs evolved linked:

P = 0.89, one-tailed Mann-Whitney U test). These results support our hypothesis about the

role of H1 histones in the linkage effect of expression co-fluctuation.

Discussion

Using allele-specific single-cell RNA-seq data, we discovered chromosome-wide expression

co-fluctuation of linked genes in mammalian cells. We hypothesize and provide evidence that

genes on the same chromosome tend to have close 3D proximity, which results in a shared

chemical environment for transcription and leads to expression co-fluctuation. While the link-

age effect on expression co-fluctuation is likely an intrinsic cellular property, when the expres-

sion co-fluctuation of certain genes improves fitness, natural selection may drive the

relocation of these genes to the same chromosome. Indeed, we provide evidence suggesting
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that the chromosomal linkage of genes encoding protein complex subunits is beneficial owing

to the resultant expression co-fluctuation that minimizes the dosage imbalance among these

subunits and has been selected for in genome evolution.

Although many statistical results in this study are highly significant, the effect sizes appear

small in several analyses, most notably the δe and δa values for linked genes. The small effect

sizes are generally due to the large noise in the data, less ideal types of data used, and mis-

matches between the data sets co-analyzed. For instance, δe between linked genes estimated

here (Fig 2D) is much smaller than what was previously estimated for a pair of linked flo-

rescent protein genes [21], due in a large part to the inherently large error in quantifying

mRNA concentrations by single-cell RNA-seq [58]. The small size of δa (Fig 3E) is likely

caused at least in part by the low efficiency of ATAC-seq in detecting open chromatin (see

Materials and Methods). The positive correlation between trans-ra and trans-re (Fig 3G) is

likely an underestimate due to the use of different cell types in RNA-seq and ATAC-seq. As

shown in Fig 2E and 2F, the actual effect sizes would be much larger should better experimen-

tal methods and/or data become available. Hence, it is likely that many effects are underesti-

mated in this study. Indeed, we estimated that the true effect sizes of δe and δa are at least an

order of magnitude larger than observed (see Materials and Methods). In addition, the co-fluc-

tuation effect detected by Raj et al. may be unusually large because in that study the chromo-

somal distance between the two genes was extremely small and the two genes used identical

regulatory elements [21]. Regardless, we stress that whether an effect is large/important

depends on whether it is detectable by natural selection, and our results in Fig 4 suggest that

the effects appear visible to natural selection, as reflected in the preferential chromosomal link-

age of genes encoding protein complex subunits. Note that natural selection can detect a selec-

tive differential as small as the inverse of the effective population size, which is about 70,000 in

mouse [59].

Because the expression co-fluctuation of two genes can be achieved by the sharing of regula-

tory elements and/or linkage, it is important to understand the relative contributions of the

two mechanisms. But this question is generally difficult to answer because the extent to which

two genes share regulatory elements is usually unknown. However, a lower bound contribu-

tion of the linkage effect can be estimated by examining two (equally regulated) alleles of the

same gene. In this extreme case, the contribution of the linkage effect on expression co-fluctua-

tion is about one thirteenth the contribution of sharing regulatory elements (see Materials and

Methods). Although linkage likely makes a smaller contribution than regulatory element shar-

ing to the expression co-fluctuation of genes, linkage can increase the expression co-fluctua-

tion to a level that regulatory element sharing alone cannot reach. This additional

improvement can be important under certain circumstances, as shown recently for genes

encoding enzymes of the yeast galactose use pathway [60].

Because we used RNA-seq to measure expression co-fluctuation, our results apply to the

co-fluctuation of mRNA concentrations. In the case of protein complex components, it is pre-

sumably the co-fluctuation of protein concentrations rather than mRNA concentrations that

is directly beneficial. Although the degree of covariation between mRNA and protein concen-

trations is under debate [61, 62], the two concentrations correlate well at the steady state [21].

One key factor in this correlation is the protein half-life, because, when the protein half-life is

long, mRNA and protein concentrations may not correlate well due to the delay in the effect of

a change in mRNA concentration on protein concentration [21]. It is interesting to note that

in Raj et al.’s study [21], mRNA and protein concentrations still correlate reasonably well

(r = 0.43) when the protein half-life is 25 hours, which is much longer than the reported mean

protein half-life of 9 hours in mammalian cells [63]. Corroborating this finding is the recent

report [64] that mRNA and protein concentrations correlate well across single cells in the
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steady state (mean r = 0.732). Note that, although the correlation between mRNA and protein

concentrations measured at the same moment may not be high when the protein half-life is

long, the current protein level can still correlate well with a past mRNA level [65]. Because our

study focuses on cells at the steady state, co-fluctuation of mRNA concentrations is expected

to lead to co-fluctuation of protein concentrations.

We attributed the preferential linkage of genes encoding protein complex subunits to the

benefit of expression co-fluctuation, while a similar phenomenon of linkage was previously

reported in yeast and attributed to the potential benefit of co-expression of protein complex

subunits across environments [66], where co-expression refers to the correlation in mean

expression level. In mammalian cells, our hypothesis is more plausible than the co-expression

hypothesis for five reasons. First, across-environment (or among-tissue) variation in mean

mRNA concentration does not translate well to the corresponding variation in mean protein

concentration [62, 67], but mRNA concentration fluctuation explains protein concentration

fluctuation quite well [21, 64]. Hence, gene linkage, which enhances mRNA concentration co-

fluctuation and by extension protein concentration co-fluctuation, may not improve protein

co-expression across environments. Second, co-expression of linked genes appears to occur at

a much smaller genomic distance than the linkage effect on co-fluctuation detected here [68].

Thus, if selection on co-expression were the cause for the non-random distribution of protein

complex genes, these genes should be closely linked. This, however, is not observed (Fig 4D).

Hence, the previous finding that genes encoding members of (usually not the same) protein

complexes tend to be clustered is best explained by the fact that certain chromosomal regions

have inherently low expression noise and that these regions attract genes encoding protein

complex members because stochastic expressions of these genes are especially harmful (i.e.,

the noise reduction hypothesis) [4, 69]. Third, the protein complex stoichiometry often differs

among environments, which makes co-expression of complex components disfavored in the

face of environmental changes [70, 71]. Nonetheless, under a given environment, protein con-

centration co-fluctuation remains beneficial because of the presence of an optimal stoichiome-

try at each steady state. Fourth, gene linkage is not necessary for the purpose of co-expression,

because the genes involved can use similar cis-regulatory sequences to ensure co-expression

even when they are unlinked. In fact, a large fraction of co-expression of linked genes is due to

tandem duplicates [68], which have similar regulatory sequences by descent. However, even

for genes with the same regulatory sequences, linkage improves expression co-fluctuation at

the steady state. Finally, the co-expression hypothesis or noise reduction hypothesis cannot

explain our observation of the relationship between the expression levels of H1 histones and

those of linked genes encoding protein complex members across tissues (Fig 4G). Taken

together, these considerations suggest that it is most likely the selection for expression co-fluc-

tuation rather than co-expression across environments that has driven the evolution of linkage

of genes encoding members of the same protein complex.

Several previous studies reported long-range coordination of gene expression [62, 72–79],

but most of them was about co-expression above explained. One study used fluorescent in situ

hybridization of intronic RNA to detect nascent transcripts in individual cells [72]. The

authors reported independent transcriptions of most linked genes with the exception of two

genes about 14 Mb apart that exhibit a negative correlation in transcription. Their observations

are not contradictory to ours, because they measured the nearly instantaneous rate of tran-

scription, whereas we measured the mRNA concentration that is the accumulated result of

many transcriptional bursts. As explained, having a similar biochemical environment makes

the activation/inactivation cycles of linked genes coordinated to some extent, even though the

stochastic transcriptional bursts in the activation period may still look independent.
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Our work suggests several future directions of research regarding expression co-fluctuation

and its functional implications. First, it would be interesting to know if the linkage effect on

expression co-fluctuation varies across chromosomes. Although we analyzed individual chro-

mosomes (S5 Fig), addressing this question fully requires better single-cell expression data,

because the current single-cell RNA-seq data are noisy. This also makes it difficult to detect

any unusual chromosomal segment in its δe distribution. Second, our results suggest that 3D

proximity is a major cause for the linkage effect on expression co-fluctuation. In particular, dif-

fusion of proteins with intermediate diffusion coefficients such as H1 histones is likely one

mechanistic basis of the effect. However, the diffusion behaviors of most proteins involved in

transcription are largely unknown. A thorough research on the diffusion behaviors of proteins

inside the nucleus will help us identify other proteins that are important in the linkage effect.

As mentioned, our data do not allow a clear distinction between 3D looping and 3D diffusion

in causing the linkage effect on tightly linked genes. To distinguish between these two mecha-

nisms definitively, we would need allele-specific models of mouse chromosome conformation

[80], which require more advanced algorithms and more sensitive allele-specific Hi-C meth-

ods. Third, our study highlights the importance of the impact of sub-nucleus spatial heteroge-

neity in gene expression. This can be studied more thoroughly via real-time imaging and

spatial modeling of chemical reactions [43, 81]. The lack of knowledge about the details of

transcription reactions prevents us from constructing an accurate quantitative model of gene

expression, which can be achieved only by more accurate measurement and more advanced

computational modeling. Fourth, we used protein complexes as an example to demonstrate

how the linkage effect on expression co-fluctuation influences the evolution of gene order.

Protein complex genes are by no means the only group of genes for which expression co-fluc-

tuation can be advantageous. Previous work suggested that expression co-fluctuation of genes

on the same signaling or metabolic pathway can be beneficial [82, 83], which was recently

experimentally confirmed for the yeast galactose catabolism pathway [60]. But, to understand

the broader evolutionary impact of the linkage effect, a general prediction of the fitness conse-

quence of expression co-fluctuation is necessary. To achieve this goal, whole-cell modeling

may be required [84]. Note that some other mechanisms such as cell cycle [85] can also lead to

gene expression co-fluctuation, so should be considered in the study of the relationship

between gene expression and fitness. Fifth, physical proximity might impact aspects of gene

expression regulation other than co-fluctuation. For instance, previous research found that

selective expression of genes that are clustered on the same chromosome (i.e., stochastic gene

choice) is strongly dependent on intrachromosomal looping, which alters the pairwise physical

distance between genes in the same gene array [86–88]. It will be interesting to explore

whether the principle that governs the linkage effect studied here applies to stochastic gene

choice. Sixth, because expression co-fluctuation could be beneficial or harmful, an alteration

of expression co-fluctuation should be considered as a potential mechanism of disease caused

by mutations that relocate genes in the genome. Seventh, our analysis focused on highly

expressed genes more than lowly expressed ones due to the limited sensitivity of single-cell

RNA-seq. Because lowly expressed genes are affected more than highly expressed genes by

expression noise [89], expression co-fluctuation may be more important to lowly expressed

genes than highly expressed ones. More sensitive and accurate single-cell expression profiling

methods are needed to study the expression co-fluctuation of lowly expressed genes. Eighth,

we focused on mouse fibroblast cells because of the limited availability of allele-specific single-

cell RNA-seq data. To study how expression co-fluctuation impacts the evolution of gene

order, it will be important to have data from multiple cell types and species. Last but not least,

as we start designing and synthesizing genomes [90], it will be important to consider how gene

order affects expression co-fluctuation and potentially fitness. It is possible that the fitness
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effect associated with expression co-fluctuation is quite large when one compares an ideal gene

order with a random one. It is our hope that our discovery will stimulate future researches in

above areas.

Materials and methods

High-throughput sequencing data

The processed allele-specific single-cell RNA-seq data were downloaded from https://github.

com/RickardSandberg/Reinius_et_al_Nature_Genetics_2016?files=1 (mouse.c57.counts.rds

and mouse.cast.counts.rds). The Hi-C data [33] were downloaded from https://www.ncbi.nlm.

nih.gov/geo/query/acc.cgi?acc=GSE72697, and we analyzed the 500kb-resolution Hi-C inter-

action matrix with high SNP density (iced-snpFiltered). The processed ATAC-seq data were

provided by authors [39], and the data from 16 NPC populations were analyzed. All analyses

were performed using custom programs in R or python.

Protein complex data and pre-processing

The mouse protein complex data were downloaded from the CORUM database (http://mips.

helmholtz-muenchen.de/corum/) [91]. The coordinates for all mouse protein-coding genes

were downloaded from Ensembl BioMart (GRC38m.p5) [52]. To produce duplicate-free gene

pairs, we also downloaded all paralogous gene pairs from Ensembl BioMart. Note that these

gene pairs can be redundant, meaning that a gene may be paralogous with multiple other

genes and appear in multiple gene pairs. We then iteratively removed duplicate genes based on

the following rules. First, if one gene in a pair of duplicate genes has been removed, the other

gene is retained. Second, if neither gene in a duplicate pair has been removed and neither

encodes a protein complex component, one of them is randomly removed. Third, if neither

gene in a duplicate pair has been removed and only one of them encodes a protein complex

member, we remove the other gene. Fourth, if neither gene in a duplicate pair has been

removed and both genes encode protein complex components, one of them is randomly

removed. Applying the above rules resulted in a set of duplicate-free genes with as many of

them encoding protein complex members as possible.

Gibbs sampling for testing protein complex-driven evolution of gene order

We obtained all mouse genes that have one-to-one orthologs in both human and rat, and

acquired from Ensembl their chromosomal locations in human, mouse, and rat. Gene pairs

are formed if their products belong to the same protein complex in human as well as mouse,

based on protein complex information in the CORUM database mentioned above. Among

them, 875 gene pairs from 342 genes are unlinked in both human and rat, of which 25 pairs

become linked in mouse. To test whether the number 25 is more than expected by chance,

we compared these 342 genes with a random set of 342 genes that also form 875 unlinked

gene pairs in human and rat. These unlinked pairs are highly unlikely to encode members

of the same complex, so serve as a negative control. Because of the difficulty in randomly

sampling 342 genes that form 875 unlinked gene pairs, we adopted Gibbs sampling [92],

one kind of Markov-Chain Monte-Carlo sampling [93]. The procedure was as follows.

Starting from the observed 342 genes, represented by the vector of (gene 1, gene 2, . . ., gene

342), we swapped gene 1 with a randomly picked gene from the mouse genome such that

the 342 genes still satisfied all conditions of the original 342 genes described above. We then

similarly swapped gene 2, gene 3, . . ., and finally gene 342, at which point a new gene set

was produced. To allow the Markov chain to reach the stationary phase, we discarded the
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first 1000 gene sets generated. Starting the 1001st gene set, we retained a set every 50 sets

produced until 1000 sets were retained; this ensured relative independence among the 1000

retained sets. In each of these 1000 sets, we counted the number of gene pairs that are linked

in mouse. The fraction of sets having the number equal to or greater than 25 was the proba-

bility reported in Fig 4F.

Chromatin co-accessibility among cells vs. among cell populations

Let us consider the chromatin accessibilities of two genomic regions, A and B, in a population

of N cells (N = 50,000 in the data analyzed) [39]. Let us denote the chromatin accessibilities for

the two regions in cell i by random variables Ai and Bi, respectively, where i = 1, 2, 3, . . ., and

N. We further denote the corresponding total accessibilities in the population as random vari-

ables AT and BT, respectively. We assume that Ai follows the distribution X, while Bi follows

the distribution Y. We then have the following equations.

AT ¼
PN

i¼1
Ai and BT ¼

PN
i¼1
Bi: ð1Þ

Pearson’s correlation between AT and BT across cell populations all of size N is

CorrðAT;BTÞ ¼
EðAT � BTÞ � EðATÞEðBTÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðATÞVarðBTÞ

p ¼
Eð
PN

i¼1

PN
j¼1
AiBjÞ � N2EðXÞEðYÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2VarðXÞVarðYÞ

p

¼

PN
i¼1

PN
j¼1
EðAiBjÞ � N2EðXÞEðYÞ

N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðXÞVarðYÞ

p : ð2Þ

Because cells are independent from one another, when i 6¼ j,

EðAiBjÞ ¼ EðAiÞEðBjÞ: ð3Þ

Thus,

PN
i¼1

PN
j¼1
EðAiBjÞ ¼

PN
i¼1
EðAiBiÞ þ

PN
i¼1

PN
j¼1

j 6¼ i

EðAiÞEðBiÞ

¼ NEðXYÞ þ ðN2 � NÞEðXÞEðYÞ: ð4Þ

Combining Eq (2) with Eq (4), we have

CorrðAT;BTÞ ¼
NEðXYÞ � NEðXÞEðYÞ
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðAÞ � VarðBÞ

p ¼
EðXYÞ � EðXÞEðYÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðXÞ � VarðYÞ

p ¼ CorrðX;YÞ: ð5Þ

Hence, if the number of cells per population is a constant and there is no measurement

error, correlation of chromatin accessibilities of two loci among cells is expected to equal

the correlation of total chromatin accessibilities per population of cells among cell

populations.

To examine how violations of some of the above conditions affect the accuracy of Eq (5),

we conducted computer simulations. We assume that the accessibility of a genomic region in a

single cell is either 1 (accessible) or 0 (inaccessible). This assumption is supported by previous

single-cell ATAC-seq data [40], where the number of reads mapped to each peak in a cell is

nearly binary. Now let us consider two genomic regions whose chromatin states are denoted

by A and B, respectively. The probabilities of the four possible states of this system are as
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follows.

PrðA ¼ 0;B ¼ 0Þ ¼ p;

PrðA ¼ 0;B ¼ 1Þ ¼ q;

PrðA ¼ 1;B ¼ 0Þ ¼ r;

and PrðA ¼ 1;B ¼ 1Þ ¼ s;

ð6Þ

where p + q + r + s = 1. Hence, we have

EðAÞ ¼ r þ s;

EðBÞ ¼ qþ s;

EðABÞ ¼ s;

VarðAÞ ¼ ðr þ sÞðpþ qÞ;

VarðBÞ ¼ ðqþ sÞðpþ rÞ:

ð7Þ

With Eq (7), we can compute Corr(A,B). In other words, for any given set of p, q, r, and s, we

can compute the among-cell correlation in chromatin accessibility between the two regions.

We then generated 10,000 random sets of p, q, r, s from a Dirichlet distribution. For each

set of p, q, r, and s, we simulated the state of a cell by a random sampling from the four possible

states. We did this for 16 cells as well as 16 cell populations each composed of 50,000 cells. We

computed the total accessibility of each region in each cell population by summing up the cor-

responding accessibility of each cell. As expected, the among-cell correlation between the two

regions in accessibility matches the true correlation (S6A Fig). The deviation from the true cor-

relation is due to sampling error. Based on Eq (5), the among-cell-population correlation

between the two regions in total accessibility approximates the true correlation, which is

indeed observed in our simulation (S6B Fig).

Nevertheless, accessibility of a region may be undetected due to low detection efficiencies of

high-throughput methods, which makes the observed correlation between the accessibilities of

two regions lower than the true correlation. To assess the impact of such low detection effi-

ciencies on the correlation, we simulated a scenario with a 10% detection efficiency, which is

common in high-throughput methods [58]. That is, for every accessible region, it is detected as

accessible with a 10% chance and inaccessible with a 90% chance; every inaccessible region is

detected as inaccessible with a 100% chance. Our simulation showed that the observed correla-

tion between the accessibilities of two regions is weaker than the true correlation regardless of

whether the data are from individual cells (S6C Fig) or cell populations (S6D Fig).

True δa vs. observed δa

The framework developed in the above section allows using computer simulation to acquire a

lower-bound estimate of the true δa. We simulated δa by considering two pairs of regions

simultaneously. For each pair of regions, we first randomly sampled p, q, r, and s, followed by

the computation of the true correlation using Eq (7). The difference between the true correla-

tions of the two pairs of regions is equivalent to the true δa. Then, for each pair of regions, we

can obtain the estimated δa from estimated correlations using simulation. In our allele-specific

ATAC-seq data, only 55% of all reads are allele-specific. Given that in high-throughput

sequencing data, the detection efficiency is 10 to 20% when all reads are considered [94], we

choose 8.25% (= 0.15 × 0.55) as the detection efficiency in our simulation. We repeated this

procedure 10,000 times and plotted the result in S7A Fig. We inferred the corresponding true

δa from the observed median δa in the actual data using the regression in S7A Fig.
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True δe vs. observed δe

To obtain a lower-bound estimate of the true δe, we performed a simulation incorporat-

ing the known parameters of single-cell RNA-seq in our dataset. The simulation was per-

formed as follows. First, we determined the mean expression levels for a pair of genes, A
and B, by sampling from the distribution of mean expression levels of genes analyzed,

which was obtained based on the estimation that 1 RPKM corresponds to 1 transcript per

cell in the original dataset [23]. Note that the mean expression level of each allele (A1, A2,

B1, and B2) is one half the above sampled value. Second, we generated the expression lev-

els across 60 cells for a pair of alleles (A1 and B1) from the joint multivariate normal dis-

tribution. The multivariate normal distribution can be uniquely determined once the

correlation coefficient between the two alleles and their CV are chosen. We fixed the CV

of the two alleles at 0.5, based on sm-FISH experiments in mammalian cells for genes

whose expression levels are similar to the genes we analyzed [95]. Note that the CV used

here is the mRNA CV, not the protein CV. The correlation between the two alleles was

randomly sampled from the range (-1, 1). We name this correlation r1. Third, for each

allele in each cell, we used binomial sampling to determine the detected transcript level.

In our data set, only 17% of the reads are allele-specific. Because the capturing efficiency

is around 10–20% for full-length single cell RNA-seq data [94], we used 2.55% (=

0.15 × 0.17) as the sampling probability. Fourth, we computed the observed correlation

between A1 and B1 across cells after binomial sampling. Fifth, we repeated the above steps

2 to 4. We named the newly sampled correlation r2. The true δe would be r1−r2, and the

observed δe is the difference between the observed correlations. Sixth, we repeated 10,000

times steps 1 to 5, with all true δe and observed δe recorded (S7B Fig). We inferred the

corresponding true δe from the observed median δe in the actual data using the regression

in S7B Fig.

Simulation of protein complex concentrations

Let the concentration of protein complex AB be [AB]. To study the average [AB] across cells in

a population, we first simulated the concentrations of subunit A and subunit B in each cell. We

assumed that the total concentrations of A and B, denoted by [A]t and [B]t respectively, are

both normally distributed with mean = 1 and CV = 0.2. We used CV = 0.2 because this is the

median expression noise measured by CV for enzymes in yeast [6], the only eukaryote with

genome-wide protein expression noise data [15]. Thus, the joint distribution of [A]t and [B]t is

multivariate normal, which can be specified if the correlation (r) between [A]t and [B]t is

known. With a given r, we simulated [A]t and [B]t for 10,000 cells by sampling from the joint

distribution. We set the concentration to 0 if the simulated value is negative. We computed

[AB] in each cell by solving the following set of equations.

½A�t ¼ ½A� þ ½AB�; ½B�t ¼ ½B� þ ½AB�; and ½AB� ¼ K½A�½B�; ð8Þ

where we used K = 105 based on the empirical values of association constants of stable protein

complexes [49]. The mean complex concentration is the average [AB] among all cells. We also

performed the simulation with other K values (10−2, 10−1, 100, 101, 102, 103, and 104).

The above simulation can be extended for studying protein complexes with various stoichi-

ometries. In general, for protein complex AMBN, we have

½A�t ¼ ½A� þM½AMBN �; ½B�t ¼ ½B� þ N½AMBN �; and ½AMBN � ¼ K½A�
M
½B�N : ð9Þ

We considered (M, N) = (1, 1), (1, 2), (1, 3), (2, 2), (2, 3), and (3, 3), respectively.
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In addition, we studied the consequence of having suboptimal mean [A]t or mean [B]t.

That is, we set the ratio of mean [A]t to mean [B]t atM/N, 2M/N, or 0.5M/N. We considered

CV = 0.2 or 0.5.

Relationship in expression level between protein complex genes

and linker histone genes across tissues

This analysis used the RNA-seq data from 13 mouse tissues [56] as well as the protein complex

data aforementioned. We divided all protein complex genes into three groups: unlinked genes,

linked genes, and evolved linked genes. The first two groups are from duplicate-free protein

complex gene pairs. A gene is assigned to the "linked" group if it is linked with at least one

gene that encodes a member of the same protein complex. We found that the gene expression

levels tend to be higher for the "linked" group than the "unlinked" group. To allow a fair com-

parison between these two groups, we computed the mean expression level of each gene across

tissues and performed a stratified sampling as follows. We lumped all genes from the two

groups and divided them into 20 bins based on their expression levels. For each bin, we

counted the numbers of linked and unlinked genes respectively, and randomly down-sampled

the larger group to the size of the smaller group. After the downsampling, the expression levels

of the two groups of genes are comparable (P = 0.9, two-tailed Mann-Whitney U test). The

third gene group contains genes that are linked in mouse but not in human nor in rat (i.e.,

"evolved linked"). We did not require them to be duplicate-free, but they were ancestrally

unlinked so could not have resulted from tandem duplication. The expression levels of the

third group of genes are not significantly different from those of the first two groups after the

stratified sampling (P = 0.68).

After obtaining the three groups of genes, we examined the among-tissue correlation

between the expression level of each of these genes and the total expression level of all 11 H1

histone genes in mouse [96]. For control, we performed the same analysis but replaced H1 his-

tones with TFIIB, a rapidly diffused transcription factor. In another control, we replaced H1

histones with immobilized core histones (H2A, H2B, H3, and H4). H2A, H2B, H3, and H4

genes are obtained from Mouse Genome Informatics (http://www.informatics.jax.org/) [97]:

http://www.informatics.jax.org/vocab/pirsf/PIRSF002048

http://www.informatics.jax.org/vocab/pirsf/PIRSF002050

http://www.informatics.jax.org/vocab/pirsf/PIRSF002051

http://www.informatics.jax.org/vocab/pirsf/PIRSF002052

Contribution of the linkage effect relative to that of regulatory element

sharing to expression co-fluctuation

The maximum effect of sharing regulatory elements on expression co-fluctuation, referred

to as δre, can be estimated by the median correlation coefficient in expression level between

two alleles of the same gene minus the corresponding value for two alleles of different genes.

We found that median δe is approximately one thirteenth of δre. Thus, the linkage effect

improves expression co-fluctuation brought by regulatory element sharing by at least one

thirteenth.

Data and software availability

Software used and the underlying numerical data for all figures can be downloaded from

Github (https://github.com/mengysun/Linked_noise).
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Supporting information

S1 Fig. Probability distributions of the correlation coefficient in expression level between

alleles of two linked genes. (A) The distribution of cis-correlations for alleles on C57BL/6J-

derived chromosomes. (B) The distribution of cis-correlations for alleles on CAST/EiJ-derived

chromosomes. (C) The distribution of trans-correlation for the C57BL/6J-derived allele at a

gene and the CAST/EiJ-derived allele at another gene.

(PDF)

S2 Fig. The linkage effect on expression co-fluctuation in clone 6 cells and non-clonal cells.

(A) Fraction of gene pairs with positive δe in clone 6. The red line represents the null expecta-

tion under no linkage effect. P-values from binomial tests on independent gene pairs are pre-

sented. (B) In clone 6, median δe in a bin decreases as the median genomic distance between

linked genes in the bin rises. All bins have the same distance interval. TSS, transcription start

site. The red line shows δe = 0. The blue line shows the linear regression of binned data. Spear-

man’s ρ from unbinned data and associated P-value determined by a shuffling test are pre-

sented. (C) Fraction of gene pairs with positive δe in non-clonal mouse fibroblast cells. The red

line represents the null expectation under no linkage effect. P-values from binomial tests on

independent gene pairs are presented. (D) In non-clonal cells, median δe in a bin decreases as

the median genomic distance between linked genes in the bin rises. All bins have the same dis-

tance interval. The red line shows δe = 0. The blue line shows the linear regression of binned

data. Spearman’s ρ from unbinned data and associated P-value determined by a shuffling test

are presented.

(PDF)

S3 Fig. The linkage effect on expression co-fluctuation in clone 7 cells analyzed using total

reads of two alleles per locus. (A) Median4e in a bin decreases with the median genomic dis-

tance between linked genes in the bin.4e for a linked gene pair is the correlation in RNA-seq

read number between the two genes minus the median correlation for pairs of unlinked genes.

All bins have the same distance interval. TSS, transcription start site. The red line shows4e =

0. The blue line shows the linear regression of binned data. Spearman’s ρ of unbinned data

and associated P-value determined by a shuffling test are presented. (B) Median40e in a bin

decreases with the corresponding median genomic distance between linked genes in the bin.

40e for a linked gene pair is the correlation in expression level measured by RPKM (Reads Per

Kilobase per Million mapped reads) between the two genes minus the corresponding median

correlation for pairs of unlinked genes. The blue line shows the linear regression of binned

data. Spearman’s ρ from unbinned data and associated P-value determined by a shuffling test

are presented.

(PDF)

S4 Fig. δe for pairs of neighboring genes with different orientations. The lower and upper

edges of a box represent the first (qu1) and third (qu3) quartiles, respectively, the horizontal

line inside the box indicates the median (md), the whiskers extend to the most extreme values

inside inner fences, md±1.5(qu3-qu1), and the dots represent values outside the inner fences

(outliers). The nearest pairs were identified using the coordinates downloaded from Ensembl.

After requiring a minimal read number of 10 for each allele, we separate neighboring gene

pairs into three categories according to the orientations of their transcription directions. NS,

P> 0.05, Wilcoxon rank-sum test.

(PDF)
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S5 Fig. δe decreases with distance between genes on each mouse chromosome. Blue lines

show linear regressions for binned data. All bins have the same distance intervals, while differ-

ent chromosomes contain different numbers of bins depending on the chromosome length.

Spearman’s correlations from unbinned data and associated nominal P-values determined by

shuffling tests are presented. Upon multiple testing correction, the correlations remain signifi-

cant for chromosomes 1, 2, 5, 6, 11, and 12.

(PDF)

S6 Fig. Simulation-based analysis of chromatin co-accessibility between two ATAC peaks

quantified using single cells vs. using cell populations. (A) The correlations quantified using

single-cell-based measurements are close to their corresponding true correlations when the

capturing efficiency is 100%. (B) The correlations quantified using cell-population-based mea-

surements are close to the true correlations when the capturing efficiency is 100%. (C) The cor-

relations quantified using single-cell-based measurements tend to be weaker than their

corresponding true correlations when the capturing efficiency is 10%. (D) The correlations

quantified using cell population-based measurements tend to be weaker than the true correla-

tions when the capturing efficiency is 10%.

(PDF)

S7 Fig. Simulations show that low capturing efficiencies lead to underestimation of δa and

δe. (A) The magnitude of δa estimated from allele-specific ATAC-seq is much smaller than the

true δa. (B) The magnitude of δe estimated from allele-specific single-cell RNA-seq is much

smaller than the true δe.
(PDF)
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