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Multi-agent platinum and radiation regimens, the preferred 
treatment for advanced malignancy (1), have increased 
cancer survivor rates, but the higher doses that may be 
required to stop the cancer can be toxic to normal tissues 
(2-6). This cancer therapy induced non-target tissue toxicity 
is a major limitation in cancer treatment and normal 
tissue toxicity the “silent killer” of many cancer survivors. 
The toxicity appears during or post cancer therapy and 
leads to effects that range from subclinical dysfunction to 
irreversible organ failure or even death due to impaired 
vital organ function and its metabolism (Figure 1). The issue 
is a growing concern as the number of cancer survivors 
is projected to increase from 16.9 million in 2019 to 26.1 
million by 2040 (7). 

Current technologies are not efficient enough to detect 
early diagnostic markers for cancer therapy induced normal 
tissue toxicity (8). Furthermore, no FDA-approved cancer 
drugs or interventional or combination therapies provide 
both normal tissue protection and inhibit cancer growth. It 
is therefore clinically warranted to employ high throughput 
technologies to unmask and identify the cancer therapy 
induced gene signatures responsible for early and late 
normal tissue toxicity and to develop a novel therapeutic 
strategy to simultaneously protect normal tissue from cancer 
therapy induced toxicities and control cancer growth.

Large data including bioinformatic on clinical samples 
and other research documents have demonstrated that how 

chemo-radiation induces mitochondrial reactive oxygen 
species (ROS) (9) and promotes normal tissue DNA damage 
through oxidative stress (6). This damage in turn leads 
to deregulation of the tumor suppressor retinoblastoma 
tumor suppressor RB/E2F pathway (10,11), which can 
result in DNA damage associated cancer progression, and 
ultimately to irreversible vital organ failure or death (12,13). 
Cancer discoveries suggest that cancer cell proliferation 
and migration is tightly regulated by the tumor suppressor 
retinoblastoma gene (RB1) and its pathway. Retinoblastoma 
protein belongs to the pocket protein family which includes 
p07, p110 and p130, and the deregulated retinoblastoma 
protein pathway is observed in many tumor models. RB 
controls the excessive proliferation via transcriptional 
repression of E2F target genes at the G1 to S phase 
transition. Under pathological conditions retinoblastoma 
protein pRb is inactivated (hyperphosphorylated) by cyclin 
dependent kinases (CDK4/6), which are serine/threonine 
kinases. Tumor suppressor pRb harbors multiple serine 
residues and CyclinD/CDK4/6 complex phosphorylates 
pRb at serine residues, and hyper-phosphorylated Rb 
becomes inactive and fails to induce transcriptional 
repression on cell cycle gene promoters. Pfizer Global 
Research made a long-standing effort to discover a CDK4/6 
inhibitor called palbociclib (PD 0332991) that selectively 
inhibits CDK4/6 activity and in a joint effort with Fry  
et al. successfully formulated and tested it on RB proficient 
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tumor models (14). The results from the study clearly 
demonstrated that palbociclib inhibited tumor growth in 
multiple tumor models in an RB proficient clinical setting. 

Palbociclib functions as a potent antiproliferative agent 
in retinoblastoma protein (pRb)-positive tumor cells  
in vitro and in vivo and induces G1 arrest, with reduction 
in phospho-Ser780/Ser795 residues on pRb protein. 
Following the palbociclib discovery, additional CDK4/6 
inhibitors were discovered: ribociclib, LEE 011, abemaciclib 
(LY2835219), and trilaciclib. Application of these CDK4/6 
inhibitors on preclinical tumor models and use in clinical 
trials as single agent or fused with chemotherapy in patients 
with RB-positive tumors suggest that inhibition of CDK4/6 
activity reestablishes cell cycle control by activating the pRb 
pathway. CDK4/6 inhibitors made to target ATP binding 
regions on CDK4/6 molecule. Palbociclib and ribociclib 
shows very high affinity to CDK4/6 protein and beyond 
cell cycle control and palbociclib also induces senescence 
and apoptosis via RB dependent mechanisms in RB positive 
cancer cells (15) as described in Figure 1.

T h e  m a i n  p u r p o s e  o f  t h i s  c o m m e n t a r y  o n 
myelopreservation with CDK4/6 inhibitor trilaciclib by 
Weiss et al. (16) is to bring attention to the cancer research 
community that CDK4/6 inhibitors are not limited to 
suppression but also functions as novel protectors for 
normal cells against cancer therapy induced toxicity. 
Outcomes from multiples studies on CDK4/6 inhibitors 
also support the findings by Weiss et al. (16). 

Mechanistic studies on an FDA-approved palbociclib 
(PD 0332991) anti-cancer drug have demonstrated in 
many tumor models that it targets the cell cycle and 
selectively inhibits cancer growth by activating the 
retinoblastoma tumor suppressor protein (inhibiting serine 
phosphorylation) and its signaling pathway (15,17,18). 
Recent discovery on palbociclib suggests that palbociclib 
also functions as a novel protector of normal tissue against 
therapy induced toxicity via RB-dependent mechanisms 
(15,19-21) and these studies also supports the work by 
Weiss et al. (16). CDK4/6 inhibition activates tumor 
suppressor protein pRB and the activated RB interacts with 
many of its interacting partners and performs multiple 
vital functions other than tumor suppression (Figure 2). In 
parallel, platinum-based cancer therapy induced damage 
on hematopoietic stem and progenitor cells (HSPC) 
causes multi-lineage myelosuppression. An intravenous 
application of trilaciclib (CDK4/6 inhibitor) (16)  
preserves HSPC and immune system function against 
chemotherapy (myelopreservation), and this discovery along 
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Figure 1 Cancer therapy induced toxicity on vital organs. 
Diagrammatic representation of cancer therapy induced 
cardiopulmonary toxicity, neurological disorder, memory loss, 
hematological dysfunction, bone fracture, renal toxicity, and 
immune dysfunction, gastrointestinal intestinal and gut microbiota 
toxicity in cancer patients.
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Figure 2 Tumor suppressive and normal tissue protective 
potential of CDK4/6 inhibitors. CDK4/6 inhibitors activate 
RB/E2F signaling pathway and targets cell cycle machinery and 
induces apoptosis and cellular senescence. Additionally, CDK4/6 
inhibitors involved maintaining genome stability by DNA repair 
mechanisms via RB dependent mechanism. CDK4/6 inhibition 
induces anti-tumor immunity and offers vital organ/cell protection, 
differentiation and myogenesis against cancer therapy induced 
toxicity.
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with published documents together strongly supports that 
palbociclib triggers antitumor immunity as described in (21). 
Recent findings suggest that CDK4/6 inhibition triggers 
apoptosis in non-small cell lung cancer (15) via activation 
of the pRB pathway and that RB is localized to the 
nucleus (22) and involved in the DNA repair pathway via 
nonhomologous recombination process. These discoveries 
suggest that CDK4/6 inhibitors protect normal tissue from 
cancer therapy induced toxicity (19). Additionally, recent 
discoveries strongly suggest that the CDK4/6 inhibitors 
play a major role in controlling pulmonary hypertension (23) 
via the RB dependent pathway. 

Cyclin-dependent kinase CDK4/6 plays a vital role in 
mammalian cell cycle regulation and it drives progression 
of cells into S phase (DNA synthesis phase) of cell division. 
In tumors, CDK4/6 activity deregulates the p16INK4a-Rb 
pathway that leads to uncontrolled cell division and cancer 
cell proliferation. Retinoblastoma tumor suppressor protein 
interacts with hundreds of molecules, involves in DNA repair 
pathway, and maintains genome integrity. Recently, reversible 
CDK4/6 inhibitors (palbociclib and trilaciclib) were 
employed to protect the immune system from chemotherapy 
induced toxicity. Weiss et al. (16) showed chemotherapy 
tolerance in lung cancer patients with myelopreservation 
benefits. Similarly, pulmonary arterial hypertension is 
mediated via proliferation of pulmonary arterial smooth 
muscle cells (PASMCs) with high CDK4/6 activity and poor 
prognosis. Selective inhibition of CDK4/6 via palbociclib 
inhibits PASMC proliferation via RB/E2F pathway (23).

Recent preclinical studies on CDK4/6 inhibitors suggest 
that CDK4/6 inhibitors play a vital role in normal cell 
protection other than tumor suppression. Additionally, 
CDK4/6 inhibition in human subjects by Weiss et al. reflects 
that CDK4/6 inhibitors have defensive potential to fight 
against cancer and therapy induced toxicity, and also triggers 
anti-tumor immunity in preclinical models (16,21,23-25). 
All of these studies suggest that CDK4/6 specific inhibition 
offers normal tissue protection and supports the Weiss 
et al. discovery with regard to myelopreservation in lung 
cancer patients (16). Taken together, these studies suggest 
that CDK4/6 inhibitors control cancer cell growth and 
simultaneously provide normal tissue protection against 
cancer therapy induced toxicities. Further studies are 
warranted to define the mechanistic pathways involved 
in normal tissue protection with CDK4/6 inhibition and 
to further interrogate whether this reversible CDK4/6 
inhibition causes any long term side effects. Additionally, 
it is important to apply high throughput RNA and DNA 

sequencing technologies to investigate whether CDK4/6 
inhibition promotes any drug resistance or any irreversible 
phenotypic or genotypic changes in normal tissue.
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