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ABSTRACT Gonorrhea is a sexually transmitted disease causing growing concern, with a substantial increase in reported inci-
dence over the past few years in the United Kingdom and rising levels of resistance to a wide range of antibiotics. Understanding
its epidemiology is therefore of major biomedical importance, not only on a population scale but also at the level of direct trans-
mission. However, the molecular typing techniques traditionally used for gonorrhea infections do not provide sufficient resolu-
tion to investigate such fine-scale patterns. Here we sequenced the genomes of 237 isolates from two local collections of isolates
from Sheffield and London, each of which was resolved into a single type using traditional methods. The two data sets were se-
lected to have different epidemiological properties: the Sheffield data were collected over 6 years from a predominantly hetero-
sexual population, whereas the London data were gathered within half a year and strongly associated with men who have sex
with men. Based on contact tracing information between individuals in Sheffield, we found that transmission is associated with a
median time to most recent common ancestor of 3.4 months, with an upper bound of 8 months, which we used as a criterion to
identify likely transmission links in both data sets. In London, we found that transmission happened predominantly between
individuals of similar age, sexual orientation, and location and also with the same HIV serostatus, which may reflect serosorting
and associated risk behaviors. Comparison of the two data sets suggests that the London epidemic involved about ten times more
cases than the Sheffield outbreak.

IMPORTANCE The recent increases in gonorrhea incidence and antibiotic resistance are cause for public health concern. Suc-
cessful intervention requires a better understanding of transmission patterns, which is not uncovered by traditional molecular
epidemiology techniques. Here we studied two outbreaks that took place in Sheffield and London, United Kingdom. We show
that whole-genome sequencing provides the resolution to investigate direct gonorrhea transmission between infected individu-
als. Combining genome sequencing with rich epidemiological information about infected individuals reveals the importance of
several transmission routes and risk factors, which can be used to design better control measures.
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Gonorrhea is a sexually transmitted disease (STD) caused by
the bacterium Neisseria gonorrhoeae. In the United King-

dom, gonorrhea is one of the most common bacterial STDs,
and its reported incidence has markedly increased since 2008 in
both men and women, reaching a total of 35,000 diagnosed
cases in 2014 (1). Treatment with antimicrobials is usually suc-
cessful, but increased resistance to many frontline antibiotics
has recently been observed (2, 3). Implementation of effective
control measures to mitigate the spread of gonorrhea is diffi-
cult due to a lack of understanding of the importance of the
complex transmission routes and reservoirs (4). Traditional
epidemiological studies are complicated by the facts that gon-
orrhea can be carried asymptomatically for months in about
10% of men and 50% of women (5) and in the United Kingdom
infects disproportionately men who have sex with men (MSM)

and young heterosexuals of black ethnicity and features signif-
icant geographical and temporal variations (6).

Molecular epidemiology approaches—for example, opa typing
(7), N. gonorrhoeae multiantigen sequence typing (NG-MAST)
(8), or multilocus sequence typing (MLST) (9)— have proved
helpful to demonstrate that multiple strains often circulate simul-
taneously within a host population, to detect emerging, often re-
sistant, clones, and to identify clusters of individuals infected with
the same strain. Primarily, these typing schemes are useful to rule
out transmission links between individuals who carry different
types and do not have sufficient resolution to shed light on fine
patterns of transmission between individuals carrying the same
type.

In recent years, bacterial epidemiology has started to be trans-
formed by the availability of fast, affordable whole-genome se-
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quencing, which can help identify transmission links sometimes
even at the level of direct transmission between individuals (10–
12). The value of genomic data to investigate local outbreaks has
been demonstrated for several bacterial pathogens, including
Staphylococcus aureus (13, 14), Clostridium difficile (15, 16), and
Mycobacterium tuberculosis (17, 18). In a study of gonococcal ep-
idemiology, whole-genome sequencing has recently been applied
to a collection of isolates from across the United States, showing
important structuring of the pathogen population with both ge-
ography and sexual orientation of the hosts (19).

To test the usefulness of gonococcal genome sequencing to
track transmission at the finer scale of outbreaks occurring within
a city, we selected two local isolate collections with different epi-
demiological properties, both of which have been previously de-
scribed without genomic data. The Sheffield isolate collection was
assembled between 1995 and 2000 at the single genitourinary
clinic in the city, from a mostly heterosexual population in which
contact tracing was performed. Multiple strains of the pathogen
have been found to circulate using opa typing (20, 21) and NG-
MAST typing (22), and in both cases molecular typing was corre-
lated with known sexual contact links. We applied whole-genome
sequencing to 132 isolates with the most prevalent NG-MAST
type, ST12.

The London collection consists of 2,045 isolates sampled be-
tween June and November 2004 from 13 major sexual health clin-
ics throughout London, representing 54% of the 3,754 cases re-
ported in London at that time (23, 24). Contact tracing
information was not available, but rich metadata were recorded
for each infected individual, including ethnic background, HIV
status where known, postcode, and reporting clinic. All isolates
were previously typed using NG-MAST, revealing the coexistence
of a large number of strains, some of which were mostly MSM
associated and others mostly heterosexual associated (23). Forty-
five percent of infected individuals had one of 21 major strains,
among which NG-MAST type ST225 was the most strongly MSM
associated (with 92% of cases being MSM) and not geographically
clustered within London (24). We applied whole-genome se-
quencing to 105 isolates of ST225.

Our aim was to assess the potential benefits that whole-genome
sequencing data could provide for epidemiology within single
NG-MAST types. A relatively recent history of transmission
would be expected due to the shared type and the localized sam-
pling frames. The epidemiological backgrounds of the two studies
are very different, with the Sheffield data set coming from a single
STD clinic in a city more than 10 times smaller than the London
data set, which was collected at 13 clinics. Furthermore, the Shef-
field isolates are heterosexual associated, whereas the London iso-
lates are MSM associated. Consequently, this will also allow us to
investigate how differences in variation within the two data sets
reflect their underlying context.

RESULTS AND DISCUSSION
Genomic analysis of the Sheffield data set. We sequenced the
genomes of 132 isolates from Sheffield dated from 1995 to 2000,
all of which had the same genotype, ST12, as defined by NG-
MAST (see Table S1 in the supplemental material). Few recombi-
nation events were detected using Gubbins (25), with a relative
effect of recombination compared to mutation of r/m � 0.04,
which was much lower than those of previous reports based on
species-wide diversity (19, 26). This may reflect a difference in the

effect of recombination when measured at different scales or di-
versity or between different lineages, as previously reported in
other bacterial pathogens, such as Staphylococcus aureus (27),
Clostridium difficile (15), or Streptococcus pneumoniae (28). The
few detected recombination events occurred mainly in genes cod-
ing for outer membrane proteins that undergo antigenic variation
and have previously been described as highly recombinant—for
example, opa and pil genes (29). After both repetitive and recom-
binant regions were removed, a total of 156 variable sites were
found to distinguish the genomes from each other. A maximum
likelihood phylogeny was constructed using these data and
showed a strong temporal signal based on the correlation between
root-to-tip distances and isolation dates for all leaves in the phy-
logeny (R² � 0.49) (see Fig. S1 in the supplemental material).

We therefore applied the Bayesian evolutionary analysis soft-
ware BEAST (30) to these data in order to reconstruct a timed
phylogeny (Fig. 1). The molecular clock rate was estimated to be
1.41 � 10�6 single nucleotide polymorphisms (SNPs) per site per
year with a 95% confidence interval (CI) of 1.15 � 10�6 to 1.70 �
10�6. This rate was equivalent to 3.05 (95% CI, 2.47 to 3.67) mu-
tations per year across the genome, is in good agreement with
previous estimates in N. gonorrhoeae (19, 26) and the related spe-
cies Neisseria meningitidis (31), and was around the middle of the
range of reported values for other bacterial pathogens (32, 33).

FIG 1 Timed phylogeny for the Sheffield data set reconstructed using BEAST.
Known sexual contacts are indicated by uniquely colored circles and squares.
(Inset) Intervals for the time to the last common ancestor (TMRCA) of each
pair within a group of known sexual contacts.
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Known sexual contacts were significantly clustered on the
timed phylogeny (Fig. 1 [permutation test]; see Fig. S2 in the sup-
plemental material [P � 10�4]). For the 25 pairs of known sexual
contacts (see Table S1 in the supplemental material), the median
time to the most recent common ancestor (TMRCA) of the iso-
lated bacteria was 3.4 months, with an interquartile range from 2.3
to 5.1 months (Fig. 1, inset). When considering direct transmis-
sion between individuals sampled at roughly the same time, with
no diversity being transmitted (due to a strong transmission bot-
tleneck), the most recent common ancestor of the two sampled
genomes would have existed within the pathogen population of
the infector (34–36). The TMRCA is therefore a lower bound for
the time from infection to sampling of the donor and an upper
bound for the time from infection to sampling of the recipient, so
that the mean TMRCA for pairs of contacts is expected to be
approximately equal to the average duration of infection. Our
result is in good agreement with previous estimates ranging from
2 to 6 months for the average duration of gonorrhea infection in
several modeling studies (37–39). This duration is significantly
longer than the few days reported for the incubation period in
male experimental challenges (40), even accounting for the few
additional days taken from symptom onset to care seeking (41).
However, since the Sheffield population is predominantly hetero-
sexual, the mean duration of infection is an average between men
and women and takes into account the fact that a large fraction of
women as well as a smaller proportion of men can remain asymp-
tomatic for extended periods of time (42).

Since all pairs of known sexual contacts have a TMRCA of less
than 8 months, we decided to use this value as the maximum
threshold for the TMRCA between two individuals who have di-
rectly infected each other. This threshold should conservatively
rule out transmission for pairs of genomes with a higher TMRCA,
because all pairs of known sexual contacts fulfill this criterion, and
yet not all of them are direct transmission pairs since the data
include four triplets and one quadruplet of sexual contacts (Fig. 1,
inset). Pairs of genomes sampled more than 8 months apart are
unlikely to be transmission links. We compared all pairs of ge-
nomes sampled within 3 months of each other, which applies to all
25 pairs of known sexual contacts, and found that 24% (398/
1,632) had a TMRCA of less than 8 months, including the known
sexual contacts (see Fig. S3 in the supplemental material). Since all
of these pairs were sampled within a short period of time in the
same city and had the same NG-MAST type, a nongenomic anal-
ysis could not rule out transmission for any of them, but with the
help of genomic data, we can confidently rule out transmission for
the majority.

To complement the phylogenetic analysis of the Sheffield data,
we applied Outbreaker, which allows the direct reconstruction of
a transmission tree representing transmission pathways within a
sample, including the possibility of unsampled missing links in the
transmission chains (43). Known sexual contacts clustered to-
gether on the reconstructed transmission tree, with at most three
intermediates in the transmission chain between contacts (Fig. 2).
When looking at all pairs of individuals in the Sheffield data set
sampled within 3 months of each other, a strong correlation was
found between their TMRCA in the BEAST tree and whether or
not Outbreaker inferred them to be linked (see Fig. S4 in the
supplemental material) (Kruskal-Wallis test [KWT], P � 10�15;
mean TMRCA of 0.28 and 1.54 years for pairs linked and unlinked

by Outbreaker, respectively), indicating a good agreement be-
tween the two approaches.

Genomic analysis of the London data set. We sequenced the
genomes of 105 isolates sampled in London between June and
November 2004, all of which were representatives of NG-MAST
type ST225 (see Table S2 in the supplemental material). Signifi-
cant recombination was detected using Gubbins (25), with r/m �
1.17, which was higher and in better agreement with previous
reports (19, 26) than the value for the Sheffield data. Most of the
recombination events occurred on deep branches and mainly af-
fected outer membrane and pilus genes, repeat regions, and a pro-
phage. A total of 167 variable sites were found after repetitive and
recombinant regions were removed.

The temporal signal was weak in this data set due to the short
sampling span of only 6 months, so that the molecular clock rate
could not be directly estimated with confidence from this data set.
The distribution of root-to-tip distance versus sampling dates
was, however, compatible with that expected under the rate esti-
mated for the Sheffield data set (see Fig. S5 in the supplemental
material). A timed tree was therefore produced using BEAST (30),
but forcing the molecular clock rate to be equal to that estimated
for the Sheffield data (Fig. 3). We also tried to apply Outbreaker to
this data set as we did for the Sheffield data set, but the results were
not biologically meaningful due to the shorter sampling interval
for the London data, which is incompatible with Outbreaker’s
assumption of a constant sampling density from beginning to end
of an outbreak (43).

The analysis of the Sheffield data suggested a threshold of at
most 8 months for the TMRCA compatible with direct transmis-
sion from one individual to another. The London data come from

FIG 2 Transmission tree for the Sheffield data set reconstructed using Out-
breaker. Cases are indicated by black dots, except for known sexual contacts,
who are indicated using the same markers as in Fig. 1. Each case is aligned on
the x axis with its reporting date, and the y axis is arbitrary. Black links between
cases indicate inferred direct transmission, and gray links indicate indirect
transmission through at least one unsampled case.

Genomic Analysis of Gonorrhea Outbreaks

May/June 2016 Volume 7 Issue 3 e00525-16 ® mbio.asm.org 3

mbio.asm.org


a predominantly MSM population, but the same threshold should
be applicable since the asymptomatic frequency of anorectal cases
among MSM is ~80% (44), similar to the ~75% in heterosexual
females (42). We therefore applied the same criterion to all pairs of
individuals in the London data who were sampled within
3 months of each other. We found that transmission was a possi-
bility for 4% (165/4,251) of such pairs (see Fig. S6 in the supple-
mental material). Likely transmission links were significantly as-
sociated with shorter geographical distances between postcodes of
residence in London (KWT, P � 6 � 10�3; mean, 10.3 versus
19.1 km), as would be expected if sexual partnerships tend to be
geographically clustered. The age difference was significantly
lower for linked individuals than for unlinked individuals (KWT,
P � 1.3 � 10�4; mean, 7.5 versus 9.8 years), likely reflecting a
tendency for sexual partners to be about the same age, as found by
behavioral surveys such as Natsal-3 (the third of the National Sur-
veys of Sexual Attitudes and Lifestyles) (45). Linked individuals
reported the same sexual orientation more often than expected by
chance for this sample of individuals (Fisher’s exact test [FET], P
� 6 � 10�3). This significant similarity in location, age, and sex-
uality of linked individuals suggests that the transmission analysis,
which was based only on pathogen genome similarity, successfully
captured the correct transmission links. Among the 105 individ-
uals, 24 were HIV positive, 47 were HIV negative, and 33 had
unknown HIV status. Relative to the number of transmission links
involving an HIV-positive individual and an HIV-negative indi-

vidual, there was an excess of transmission links found between
pairs of individuals who were both HIV positive (FET, P � 2.6 �
10�3), and simultaneously there was a dearth of transmission links
when both individuals were HIV negative (FET, P � 0.03).

Among the 105 individuals in the London sample, the genomic
analysis above suggested that 29 did not have any likely transmis-
sion link, 19 had one, 8 had two, 14 had three, and the remaining
35 had between four and eleven links. This number of likely trans-
mission links for a given individual was not significantly associ-
ated with sexual orientation (KWT, P � 0.13; mean, 3.19 versus
1.28 links), reported sex abroad (KWT, P � 0.41; mean, 2.37 ver-
sus 3.41 links), or reported previous gonorrhea (KWT, P � 0.33;
mean, 3.52 versus 2.89 links) but was significantly increased for
individuals who were HIV positive (KWT, P � 1.6 � 10�4; mean,
5.25 versus 2.08 links), in accordance with the observation above
of a higher number of links between HIV-positive individuals.
This observation may indicate a role of HIV infection in suscep-
tibility and transmissibility of gonorrhea (46, 47), may be caused
by both HIV and gonorrhea infection being linked with the same
high-risk behaviors, or both. It is also probable that HIV-positive
MSM have on average more partners and engage in serosorting
and riskier behaviors (48, 49). A significant correlation was found
between the number of transmission links and the reported num-
ber of sexual partners in the United Kingdom in the last 3 months
(Spearman’s rank correlation test, rho � 0.4; P � 2 � 10�5). This
correlation was partly explained by a higher number of reported
partners for HIV-positive individuals (KWT, P � 2.2 � 10�3;
mean, 8.03 versus 2.61), but a correlation was also suggested be-
tween number of links and number of partners when analyzing
HIV-positive and HIV-negative individuals separately (rho � 0.5,
P � 0.01, and rho � 0.3, P � 0.04, respectively).

Comparison between the Sheffield and London data sets.
Having analyzed the Sheffield and London data sets separately, we
now turn to comparative analysis between them. The temporal
sampling frames are different in the two data sets since sampling
in Sheffield happened over 6 years, whereas the London data cover
only 6 months. It is therefore not possible, for example, to com-
pare the frequencies with which a putative transmission donor is
found for cases in both data sets, because this frequency would be
expected to be smaller in London, since donors would more often
have been reported before sampling started. However, direct com-
parisons become possible by focusing on pairs of isolates sampled
at approximately the same time, since the relationships between
such pairs should not be affected by differences in sampling frame
duration. Having reconstructed dated phylogenies for both data
sets (Fig. 1 and 3), we can compare the distributions of TMRCA
for all pairs of isolates sampled within 3 months of each other
(Fig. 4). As previously noted, a larger proportion of pairs have a
TMRCA under 8 months in Sheffield relative to London (24%
versus 4%), and overall the London pairs have an average TMRCA
of 4.4 years compared to 1.5 years for the Sheffield pairs, with the
difference being highly significant (KWT, P � 1 � 10�15). More
pairs of individuals in Sheffield are therefore likely to have infected
each other compared to in London, and this result is robust to the
choice of other TMRCA thresholds than 8 months for when to
rule out transmission (Fig. 4).

This difference between the Sheffield and London data sets can
be explained from a population genetics viewpoint by a pathogen
effective population size (Ne) roughly three times higher in Lon-
don relative to Sheffield (50). Using a metapopulation analogy,

FIG 3 Timed phylogeny for the London data set reconstructed using BEAST.
Each isolate is annotated on the right-hand side as follows. First column: black
for MSM, blue for heterosexual men, and red for heterosexual women. Second
column: black for HIV negative and red for HIV positive. Third column:
number of reported United Kingdom partners in the last 3 months, with black
for zero, gray for one, dark blue for two to five, and light blue for six or more.
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the effective population size of a pathogen can be shown to be
proportional to the number of infected individuals and inversely
proportional to the transmission rate (51–53). A recent study es-
timated that gonorrhea spreads two to three times faster in MSM
than heterosexual networks (54), which is consistent with a lower
proportion of asymptomatic cases in men compared to women
and symptoms that are more likely to result in rapid care seeking
(5, 42). This difference should contribute to a lower Ne, suggesting
that the number of infected individuals in London at a given time
may have been six to nine times higher than in Sheffield for the
two specific lineages of gonorrhea studied here, namely, NG-
MAST ST12 in Sheffield and ST225 in London. This estimation is
in broad agreement with the similar number of reported cases in
Sheffield and London, despite the sampling interval being about
ten times longer in the former.

Conclusions. We have presented the first genomic epidemiol-
ogy investigation of two large, localized outbreaks of gonorrhea—
one including 132 isolates from Sheffield collected over 6 years
among a mostly heterosexual population, and the other including
105 isolates from London gathered over half a year from a mainly
MSM population. We showed that whole-genome sequencing can
be used to predict person-to-person transmission events, which
we combined with epidemiological information about the in-
fected individuals to reveal patterns of transmission and infection
risk factors. Importantly, both isolate collections had previously
been assigned to single NG-MAST types, highlighting again the
superior resolution provided by genomic data for molecular epi-
demiology. Pairs of cases detected in the same town, within
3 months of each other and carrying the same molecular type,
would be considered to be “linked” using traditional molecular
epidemiology, and yet we showed that genome sequencing ruled
out transmission for the majority of such pairs in both outbreaks.
Furthermore, the proportions of pairs of cases for which transmis-
sion were found to be likely using genomic comparisons were very
different in Sheffield (24%) and in London (4%), and we esti-
mated that the number of cases was six to nine times higher in
London compared to Sheffield. Molecular typing using NG-
MAST remains useful to identify cases that are part of the same

local outbreak, but our results clearly show that a type does not
represent a uniform epidemiological entity. As cost effectiveness
and turnaround time of whole-genome sequencing continue to
improve, it will become an increasingly important tool in the in-
vestigation and control of gonococcal outbreaks, but unlocking its
full potential requires the simultaneous application of traditional
epidemiological techniques such as the use of questionnaires or
contact tracing.

MATERIALS AND METHODS
Bacterial isolates. From the previously described Sheffield collection (20–
22), which was sampled between 1995 and 2000, we included 132 out of
140 isolates of the most prevalent NG-MAST type, ST12. Table S1 in the
supplemental material contains the list of these isolates and associated
metadata. From the previously described London collection (23, 24),
which consists of 2,045 isolates sampled between June and November
2004, we included 105 out of 124 isolates from the most MSM-associated
NG-MAST type, ST225. Table S2 contains the list of these isolates and
associated metadata. Exclusion of 8 and 19 isolates from the Sheffield and
London collections, respectively, was due to loss of samples, loss of asso-
ciated metadata, or failure to grow or sequence.

Whole-genome sequencing. For each of the two data sets, the oldest
available isolate was used for the production of a reference genome using
454. A 3-kb library was prepared and sequenced on a 1/4 plate run. For the
London reference isolate, this produced 139.2 Mbp. De novo assembly was
carried out using Newbler, resulting in 12 scaffolds with a total length of
2.14 Mbp. The sequencing of the Sheffield isolate produced 91.1 Mbp and
13 scaffolds with a total length of 2.14 Mbp. The length of these two
reference genomes is in good agreement with previous reports of the
lengths of N. gonorrhoeae genomes (19, 26, 55). Both assemblies were
annotated using the RAST annotation pipeline (56) and manually cu-
rated. Prophages were detected using the online tool PHAST (57). Further
mobile genetic elements were detected through genome comparisons
with already published N. gonorrhoeae genomes and BLAST analysis. Re-
peats were detected using the EMBOSS tools einverted and equicktandem
(58).

The genomes of all Sheffield isolates and all London isolates were
sequenced on an Illumina HiSeq2000 with 100-bp paired-end reads.
Paired-end reads were mapped against the corresponding reference ge-
nome using SMALTv0.7.5 (http://www.sanger.ac.uk/science/tools/
smalt-0) with subsequent realignment around indels using GATKv1.5.9
(59). Single nucleotide polymorphisms (SNPs) were called as previously
described (60). Recombination was detected using Gubbins (25), and
recombinant SNPs were excluded. Furthermore, SNPs within mobile ge-
netic elements as well as repetitive regions were also excluded. This re-
sulted in alignments containing 156 and 167 SNPs for Sheffield and Lon-
don, respectively.

Phylogenetic analysis. Maximum likelihood phylogenies were con-
structed using phyml (61). In the Sheffield tree, we included a single ge-
nome from London, and in the London tree, we included a single genome
from Sheffield, to be used as outgroups in order to root the trees. Com-
parison of root-to-tip distances with isolation dates for each genome re-
vealed a strong temporal signal in the Sheffield data (see Fig. S1 in the
supplemental material) but not in London (see Fig. S5 in the supplemen-
tal material) due to a short sampling interval. The Bayesian evolutionary
analysis software BEAST (30) was applied to both data sets, with the mo-
lecular clock of the London data set being forced equal to the rate esti-
mated for the Sheffield data set. The resulting timed phylogenies are
shown in Fig. 1 and 3. We used BEAST version 1.8.2 with the default HKY
substitution model, the default coalescent model with constant popula-
tion size, and a strict clock model with rate prior distribution Exponen-
tial(1) for the Sheffield data and fixed rate for the London data. For each of
the two data sets, we performed four runs of 107 iterations, which were
compared in Tracer (http://beast.bio.ed.ac.uk/tracer) to confirm conver-
gence.

FIG 4 Density histograms of the time to the most recent common ancestor
for all pairs of cases sampled within 3 months of each other. The Sheffield data
are shown in red when a sexual contact was reported and in green otherwise,
whereas the London data are shown in blue.
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Transmission analysis. We sought a value for the threshold on the
time to the most recent common ancestry of two genomes beyond which
direct transmission between the two corresponding individuals can be
discounted (15). Based on known sexual contacts in the Sheffield data set,
we estimated that 8 months was an appropriate value for this threshold.
We applied this criterion to all pairs of genomes sampled within 3 months
of each other in both Sheffield and London to determine for each pair
whether transmission was likely or not. Pairs of genomes for which trans-
mission was likely are shown in Fig. S3 and S6 in the supplemental mate-
rial for the Sheffield and London data sets, respectively. We also used
Outbreaker, a Bayesian approach for reconstructing a transmission tree
from dated genetic data (43). For the generation time, we used a dis-
cretized gamma distribution with a mean of 90 days and a standard devi-
ation of 40 days, which has high variance reflecting our lack of knowledge
of exact values (62). The Outbreaker output for the Sheffield data is shown
in Fig. 2 and compared with the BEAST-based approach in Fig. S4 in the
supplemental material. Outbreaker did not produce meaningful results
for the London data due to the short sampling frame, which implies that
the donor of many cases would have occurred and been reported before
the sampling frame.

Nucleotide sequence accession numbers. Sequence data have been
deposited in the European Nucleotide Archive. Accession numbers for the
Illumina data from each isolate can be found in Tables S1 and S2 in the
supplemental material.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at http://mbio.asm.org/
lookup/suppl/doi:10.1128/mBio.00525-16/-/DCSupplemental.

Figure S1, PDF file, 0.01 MB.
Figure S2, PDF file, 0 MB.
Figure S3, PDF file, 0.1 MB.
Figure S4, PDF file, 0 MB.
Figure S5, PDF file, 0.01 MB.
Figure S6, PDF file, 0.01 MB.
Table S1, PDF file, 0.03 MB.
Table S2, PDF file, 0.04 MB.
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