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Abstract:
backsplicing of precursor linear RNAs. Although their functions are largely unknown, they have

Mammalian circRNAs are covalently closed circular RNAs often generated through

been found to influence gene expression at different levels and in a wide range of biological processes.
Here, we investigated if some circRNAs may be differentially abundant in Alzheimer’s Disease (AD).
We identified and analyzed publicly available RNA-sequencing data from the frontal lobe, temporal
cortex, hippocampus, and plasma samples reported from persons with AD and persons who were
cognitively normal, focusing on circRNAs shared across these datasets. We identified an overlap
of significantly changed circRNAs among AD individuals in the various brain datasets, including
circRNAs originating from genes strongly linked to AD pathology such as DOCK1, NTRK2, APC
(implicated in synaptic plasticity and neuronal survival) and DGL1/SAP97, TRAPPCY, and KIF1B
(implicated in vesicular traffic). We further predicted the presence of circRNA isoforms in AD using
specialized statistical analysis packages to create approximations of entire circRNAs. We propose that
the catalog of differentially abundant circRNAs can guide future investigation on the expression and
splicing of the host transcripts, as well as the possible roles of these circRNAs in AD pathogenesis.

Keywords: circular RNAs; RNA-sequencing analysis; backsplice junction

1. Introduction

Mammalian circular (circ)RNAs arise from the looping of the 5" and 3’ ends of an
RNA to form a covalent bond. They generally arise from backsplicing of exons [1,2],
although intronic circRNAs have also been described [3]. CircRNAs can originate from
both precursors of coding RNAs (mRNAs) and noncoding RNAs, and can encompass
whole or parts of single exons, multiple exons, introns, and combinations of introns and
exons [1-6]. With widespread use of high-throughput sequencing technologies, tens of
thousands of circRNAs have been identified, typically based on the detection of their
unique junction sequences, the RNA sequence where the 5 and 3’ ends are covalently
ligated [4,5]. Given their closed-loop structure, circRNAs are believed to be more stable
than linear RNAs [7].

The functions of the vast family of circRNAs are largely unknown, but they are
believed to be linked to the molecules with which circRNAs interact [1,2,4-6,8]. Some
of the factors binding to circRNAs are microRNAs, and some abundant circRNAs may
function as microRNA ‘sponges’. As a prominent example of this function, the circRNA
ciRS-7 (also known as CDR1-AS) is highly abundant in a range of tissues, including neurons
and other brain cells, is capable of binding microRNA miR-7 at dozens of sites across the
body of the circRNA, and can ‘sequester’ miR-7 [9,10]. Accordingly, decreasing the levels
of ciRS-7 caused an increase in miR-7 available in the cell for repression of miR-7-specific
mRNA targets; one of these targets encodes the protein UBE2A, which is responsible for
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the removal of amyloid peptides present in AD brains [11]. It is important to note that the
majority of circRNAs are low-abundance molecules and are unlikely function as microRNA
sponges [12,13].

The interaction of circRNAs with proteins, as shown for some transcription factors
and RNA-binding proteins (RBPs), may lead to changes in transcriptional and splicing
programs, influence protein function, and alter the translation and stability of select mR-
NAs [14-16]. For instance, the circRNA circMbl arises from an exon of the MBL/MBNL1
pre-mRNA 2; through binding to the splicing factor MBL, circMbl influences splicing [17].
In other examples, circFoxo3 associated with CDK2 and p21/CDKN1A, preventing CDK2
from becoming active and halting cell cycle progression [18], while binding of circPABPN1
to the RNA-binding protein HuR reduced the binding of HuR to cognate PABPN1 mRNA
and lowered the production of the translational activator PABPN1 [15]. In the case of
the myogenesis-associated circRNA circSamd4, binding to PURA and PURB, repressors
of myosin heavy chain (MYH) transcription, led to the derepression of MYH transcrip-
tion and enabled late stages of myogenesis [16]. Finally, a few circRNAs bearing internal
ribosome entry sites (IRES) may recruit ribosomes and give rise to the production of
circRNA-encoded peptides, although the extent to which circRNAs are translated remains
unclear [19-22].

Although circRNAs are found almost anywhere in the body and some are quite
abundant, most circRNAs are expressed in low levels and are found only in specific tissues.
Thus, many circRNAs have gained attention as reliable biomarkers of organ function,
dysfunction, and disease [23-28]. Given their intrinsic stability, even if circRNAs originate
in other tissues, they often eventually reach the circulation and might be found in plasma. In
this study, we sought to identify circRNAs differentially abundant in Alzheimer’s Disease.
We investigated available RNA-sequencing (RNA-seq) datasets from the frontal lobe,
temporal cortex, hippocampus, and plasma from AD patients and healthy, age-matched
control individuals that had been used previously in linear RNA analyses [29-34]. Using
the circRNA identification software package CIRCexplorer2, we identified circRNAs that
were differentially abundant in AD relative to normal controls across the datasets. Their
predicted sequences were reconstructed with the CIRCexplorer2 de novo assembly module
in order to begin to examine possible interaction partners. Although plasma circRNAs did
not appear to reflect brain circRNAs, an interesting group of brain circRNAs was found to
originate from parent genes implicated in synaptic plasticity and neuronal survival (DOCK1,
NTRK?2, and APC) and others implicated in vesicular traffic (DGL1/SAP97, TRAPPCY, and
KIF1B). We propose that the circRNAs identified in this study can guide the analysis of
specific processes aberrant in the AD environment.

2. Materials and Methods
2.1. RNA Sequencing Datasets from Brain Tissue and Plasma

Six datasets containing total RNA-seq data from AD patients and cognitively nor-
mal, age-matched controls were selected from the Gene Expression Omnibus (GEO). Each
RNA-seq dataset selected contained both AD and control human brain tissue or blood
samples. Altogether, four studies with postmortem brain tissue including two from
the frontal lobe (GSE53697, GSE110731), hippocampus (GSE67333), and temporal lobe
(GSE104704) [29-32], and two studies from plasma (GSE161199, PRINA574438) obtained
from live subjects [33,34] were found to be suitable for circRNA-seq analysis. Each of
the six studies included multiple age- and sex-matched samples, 435 in total: 213 from
AD patients and 222 from matched control individuals (80 brain samples and 355 plasma
samples; Figure 1A).
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A
Study Number [Tissue Type CTRL:AD Average Age |Gender (M:F) | RNA-seq Type m
GSE53697 Frontal Lobe 8:9 Total [29]
GSE67333 Hippocampus 4:4 83 35 Total [31]
GSE104704 Temporal Cortex 18:12 64 NA Total [32]
GSE110731 Frontal Lobe 15:10 86 13:42 Total [30]
GSE161199 Plasma 11:6 NA NA Total [33]
PRJNA574438 Plasma 166:172 NA NA Total [34]
B
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Figure 1. Datasets and workflow used in this study. (A) Each study that was used for gene expression analysis, including
the brain region, number of samples, RNA sequencing type, and available subject demographics. (B) Workflow chart,
starting with total RNA-sequencing data, alignment to the human genome, identification of circRNAs, and measurement of
differential abundance.

2.2. Aligning FASTQ Files to the Human Genome

SRA (sequence read archive) files from each study were downloaded from GEO
and converted to FASTQ files using the SRA Toolkit [35]. These FASTQ files were then
aligned to the human genome (HG19, Ensembl v82) [36] using the STAR aligner (v2.7.1a)
and the TopHat2 aligner (v2.1.1) [37,38] (Figure 1B). The alignment process produced
Sequence Alignment Map (SAM) and Binary Alignment Map (BAM) files, as well as
Chimeric.out.junction files, which denote specific circRNA junction sequences. It was
important to determine whether the sample had been subjected to paired-end or single-end
sequencing, as each required different alignment parameters.

2.3. Using CIRCexplorer2 to Analyze Junction Reads

SAM files generated by the STAR aligner containing mapped sequencing information
were processed through the CIRCexplorer2 (v2.3.8) pipeline. First, the Chimeric.out.junction
files were parsed using the CIRCexplorer2 parse module creating BED (Browser Extensible
Data) files containing backspliced junction information. The BED files were then annotated
with information from the reference genome (Ensembl v82) which produced GTF (gene
transfer format) files containing the location, strandedness, parent gene, and number of
reads for each circRNA identified.

2.4. Constructing circRNA Body Approximations with De Novo Assembly

The BAM files generated by TopHat2 were processed through the CIRCexplorer2
assemble module which used the RABT (reference annotation-based transcript) method to
create assembled circRNA body approximations [39]. CIRCexplorer2 starts at the known
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backspliced junction sequence and builds outwards using the reference genome to create
an approximation of the entire body of the circRNA. The circRNA body approximations
were then annotated using the CIRCexplorer2 de novo module which attempts to identify
novel circRNAs, circRNA isoforms, and alternative splicing events [40]. These annotated
body approximations are stored in a GTF file similar to the annotated backspliced junction
reads file created by the parse module.

2.5. Gene Expression Analysis in R

The GTF files containing the annotated circRNA information were analyzed in R
using packages such as Rsubread (v1.22.2) and edgeR (v3.32.1) [41,42]. To filter out noise,
circRNAs which showed expression of >0.125 counts per million (CPM) in at least two
of the samples in each cohort were used for further analysis. The raw read counts of the
subset were log-transformed (log,) and normalized by the Trimmed Mean of M-values
(TMM) method. Then a negative binomial generalized linear model (GLM) was fit with
gene expression as the dependent variable and clinical cohort as the predictor variable. All
circRNAs that exhibited a three-fold change or greater (1logFC| > 1.5) between AD and
control, and statistically significant p-values (p < 0.05) were deemed to display significantly
different expression levels. This analysis was also performed on the identified linear RNAs.
All differentially abundant RNAs, both circular and linear, were then compiled with their
fold change, p-value, parent gene symbol, and Ensembl transcript ID. These files were
then cross-referenced with each other to identify shared differentially abundant circRNAs
(Supplemental Table S1) and linear RNAs in AD relative to control across all studies.

2.6. Relating circRNAs to AD Pathology

CircRNAs displaying differential abundance in AD patients were then annotated with
their corresponding Ensembl transcript ID (for linear RNAs) and cross-referenced among
the studies to generate lists of commonly differentially abundant circRNAs across the four
brain studies and two plasma studies. In multiple cases, many circRNAs were found to
be associated with a single parent gene and transcript. The parent genes of the circRNAs
that were differentially expressed (AD vs. normal) in at least 2 out of 4 brain tissue
studies, or both plasma studies, were investigated (Figure 2). The overlap between studies
was determined by assignment to the parent gene, due to the undetermined function of
individual circRNAs.
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Figure 2. Differentially abundant circRNAs in brain datasets. Volcano plot representations of the four studies using
brain tissue samples included in this analysis: frontal lobe (GSE53697) (A), hippocampus (GSE67333) (B), temporal lobe
(GSE104704) (C), and frontal lobe (GSE110731) (D). Each point on these plots represents a specific circRNA with log
fold-change (logFC) on the x-axis and —logg (p-value) on the y-axis when comparing AD samples with normal control

individuals. The points in yellow represent circRNAs with only logFC greater than 1.5 (threefold higher), the points in blue

represent circRNAs with only p-value < 0.05 (i.e., —logjo (p-value) > 1.3), and the points in red represent circRNNAs both

logFC > 1.5 (threefold lower) and p-value < 0.05. Below each volcano plot is a list of the top 10 most highly abundant (blue)

and top 10 least abundant (orange) when comparing circRNAs in brain from AD individuals to cognitively normal control

individuals.
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3. Results
3.1. Analysis of AD-Associated RNA-Seq Datasets to Identify circRNAs

We set out to identify circRNAs selectively associated with AD pathology. In order
to analyze the maximum number of samples, we searched the literature for studies that
reported RNA-seq analyses from persons with AD and matched controls, with care that
the total RNA (poly-A and non-poly-A RNA) sequences were available, so that we could
extract the junction sequences and identify circRNAs. We focused on human brain tissues
obtained at necropsy, as AD-associated circRNAs might reveal important molecular details
of AD biology and pathogenesis. As summarized in Figure 1A, four studies were found in
the literature that reported brain tissue RNA-seq analyses following these criteria: two from
the frontal lobe (GSE53697, GSE110731), one from the hippocampus (GSE67333), and one
from the temporal lobe (GSE104704) [29-32]. In all, RNA-seq was identified and retrieved
for 80 brain samples—35 from AD patients, 45 from cognitively normal individuals. We
also focused on plasma, where circRNAs may reveal other important AD biology, possibly
from tissues outside of the brain, and may thus uncover possible biomarkers for AD. As
indicated in Figure 1A, we identified two main studies in plasma following the above
criteria (GSE161199 and PRJNA574438), totaling 355 individuals—178 with AD, 177 normal
controls [33,34].

Following the pipeline described in Figure 1B, we first collected relevant datasets that
compared AD and control samples from human subjects, retrieved the FASTQ files from
each sample, and analyzed the FASTQ files using two strategies. In one arm of the analysis,
using the STAR aligner, FASTQ files were aligned it to the human genome, which yielded
files “Chimeric.out.junction’ and “accepted.hits’ that contained the backspliced junction
sequences of circRNAs and linear RNA sequences, respectively. Reads were aligned as
presented in Supplemental Figure S1A. Next, from the Chimeric.out.junction files, we
used CIRCexplorer2’s parse and annotate modules to create datasets containing annotated
circRNAs; other aligners might reveal different circRNA datasets. Thousands of circRNAs
were identified from each study (Supplemental Figure S1B). Similarly, we utilized the
featureCounts package in R to annotate the linear RNA sequences. We then analyzed the
annotated circRNA and linear RNA datasets in R, while looking for circRNAs differentially
abundant and identifying their parent genes.

In the other arm, we used a different aligning software, TopHat2, but followed the
same general process to create a file that contained the backspliced junction information.
TopHat2 was used because it is required of the CIRCexplorer2 assembly and de novo modules.
These modules took the backspliced junction datasets and constructed an approximation
of the complete body of the circRNAs. Once the assembled body approximations were
created, they were annotated and analyzed in R.

3.2. Analysis of circRNAs Differentially Abundant in AD Brain Compared with Control Brain

Focusing first on the four studies that used brain tissue (GSE53697, GSE110731,
GSE67333, and GSE104704) [29-32], ~3700 circRNAs were found to display different
abundance between normal and AD in at least one study, setting a threshold of at least
a three-fold change in expression in either direction; about 2000 circRNAs were higher
in AD relative to controls, while 1700 were lower relative to controls. For each of the
four studies, volcano plots were created indicating the relative differential expression and
significance for each circRNA (Figure 2). When comparing AD with control groups, the top
10 circRNAs (based on fold change) most abundant and least abundant circRNAs are listed
in the table displayed in each panel, along with the gene symbol of the parent transcript
and the transcript ID (Figure 2). Taken together, these results included numerous circRNAs
showing differential abundance in brains of AD relative to control groups, with comparable
numbers of circRNAs showing higher and lower abundance in AD relative to control.

Among the circRNAs showing increased abundance in AD relative to Control, 10
circRNAs were shared across the four studies, and 43 were found elevated in at least three
studies. Other circRNAs were found elevated in AD in only two studies or one study
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(Figure 3A, Supplemental Table S1). Among the circRNAs showing decreased abundance in
AD relative to Control, only three circRNAs were shared across the four studies (originating
from loci ANKS1B, ARHGAP26, and DPYD), and 19 were found lower in at least three
studies. The remainder of circRNAs were found reduced in AD in only two studies or
one study (Figure 3B, Supplemental Table S1). These results suggest that in different
brain regions of AD individuals, there may be more consistency in the circRNAs that are
significantly elevated than in circRNAs that are significantly less abundant.
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Figure 3. Shared circRNAs differentially expressed across studies. Each bar and corresponding
filled in dots below represent the number of circRNAs more highly abundant in AD than control
(A) and less abundant in AD than control (B) and the studies in which they were found (see also
Supplemental Table S1). For example, in (A) 10 circRNAs were elevated across all four studies; in (B)
only 3 circRNAs were less abundant in all four studies (see also Supplemental Table S1).

3.3. Analysis of circRNAs Differentially Abundant in AD Plasma Compared with Control Plasma

Turning our attention to the plasma studies (GSE161199 and PRJNA574438) [33,34],
and employing the same threshold of greater than three-fold change in either direction,
~1700 circRNAs displayed significantly different abundance in AD relative to control
individuals: ~350 circRNAs were significantly more abundant and ~1100 were significantly
less abundant. Volcano plot representations of the circRNAs in each study are shown, along
with the top higher and lower circRNAs in each RNA-seq collection (Figure 4A,B). In all, 15
circRNAs had significantly increased abundance in both studies (Figure 4C, left), but only
one was found to have significantly decreased abundance in both these studies (Figure 4C,
right). The aggregate of differentially abundant circRNAs (higher as well as lower in AD
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relative to normal) are displayed in Supplemental Figure S2B. Although the 15 elevated
circRNAs originated from genes without any reported relation to AD, they could be good
biomarkers for AD. We note that the intersection of the Venn diagram in Figure 4C shows
a lower overall number of dysregulated circRNAs relative to the sum of intersections in
Supplemental Figure S2B because the conditions of overlap are more stringent in Figure 4C,
as we required the circRNAs to be dysregulated in the same direction, either upregulated
in both studies, or downregulated in both studies. In a few cases, circRNAs were found
dysregulated in two studies, but upregulated in one and down regulated in the other.
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Figure 4. Differentially abundant circRNAs in plasma datasets. Volcano plot representations of the four studies using
plasma study groups included in this analysis: GSE161199 (A) and PRJNA574438 (B). As explained in Figure 2, each point
on these plots represents a specific circRNA with log fold-change (logFC) on the x-axis and p-value on the y-axis when
comparing AD samples (plasma) with normal control individuals. The points in yellow represent circRNAs with only logFC
greater than 1.5 (threefold higher), the points in blue represent circRNAs with only p-value < 0.05 (i.e., —logyg (p-value) >
1.3), and the points in red represent circRNAs both logFC > 1.5 (threefold lower) and p-value < 0.05. Below each volcano
plot is a list of the top 10 most highly abundant (blue) and top 10 least abundant (orange) when comparing circRNAs in
plasma from AD individuals relative to normal control individuals. (C) Venn diagrams represent the number of circRNAs
in plasma more highly abundant in AD (left) and less abundant in AD (right) compared with control, and the studies where
they were found.

When each plasma study was individually compared with the circRNAs that were
found as commonly differentially abundant (in at least 3 of the 4 brain studies) we iden-
tified an overlap of 49 circRNAs in PRINA574438 (Figure 5A, right) and 4 in GSE161199
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(Figure 5A, left). These circRNAs are listed in Supplemental Table S2. Lastly, in Figure 5B,
all six studies were compared showing differentially abundant circRNA through every
possible combination. Out of the 53 circRNAs found in 3 out of 4 brain studies and at
least 1 plasma study, 2 circRNAs, originating from gene loci KIF1B and DLG, were found
to be related to AD. The list of all circRNAs found in different brain regions that are also
found in plasma is shown (Figure 5B, Supplemental Table S3). These detailed lists can
help to identify biomarkers for AD pathology from specific brain regions. As more studies
in which total RNA is analyzed without poly(A) selection, we may see more balanced
differences across the datasets. It will also be important, in future work, to confirm the
value of circRNAs as biomarkers in these human samples using molecular biology methods
that include RNase R digestion of linear RNA.

PRJNAS574438

Brain
GSE161199
Brain

63

il
III IHI[N{ 1l I

Figure 5. Common differentially expressed circRNAs across all studies. (A) Two Venn diagrams depicting differentially

GSE67333
GSE110731
GSE104704
GSE53697
PRJNA574438

Differentially abundant
circRNAs
3 3 8
esse I
—
_

GSE161199° I

1000 500 0
Differentially Expressed CircRNA per Study

expressed circRNAs that were found in at least three of the four brain studies and each plasma study individually. (B)
An upset plot (see Figure 3 legend) showing the differentially expressed circRNAs (with expression levels significantly
increased or decreased) that were shared across all studies, brain and plasma.

3.4. Predictions of Full circRNA Body Sequences

Recent bioinformatic tools (e.g., CIRCexplorer2, CIRI, find_circ) have enabled the
prediction of de novo body approximations for circRNAs, including the identification of
circRNA isoforms. An important caveat is that without being able to subtract poly(A)-
containing RNA, it is not possible to know with certainty if a given RNA-seq read was
originated from RNA that was linear or circular. We compared circRNA sizes just based on
sequence reads with circRNA sizes after de novo approximations to predicted body sizes. In-
terestingly, the size of the circRNAs calculated from canonical linear RNA splicing obtained
from database largely matched those calculated by de novo assembly (Figure 6A, including
all 6 studies, GSE53697, GSE110731, GSE67333, GSE104704, GSE161199, PRINA574438),
supporting the notion that the body of the circRNA is not too different from the linear
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RNA from which it is generated. Nonetheless, in some cases, alternative exon usage led
to different circRNA isoforms, as shown for two circRNNAs from chromosomes 1 and 14,
differentially abundant in brain (Figure 6B), where a number of exons (teal, green, purple)
were alternative included in the circRNA. These putative circRNAs need to be confirmed
by other methods before they are studied further.

circRNA Spliced Length Density

de novo assembly
from database

0 1000 2000 3000 4000 5000

Spliced Length

hsa_circ_chr14_59954391_59965626_F

hsa_circ_chr1_100588765_100591498_R

N Ly § )

. s 4

Figure 6. Spliced length density plot. (A) The spliced lengths of circRNAs calculated using the STAR aligner on FASTQ
files obtained from the GEO/SRA public database is shown (aqua) compared to the density of spliced lengths of circR-
NAs from the de novo assembled body approximations (pink). The extensive overlap of the two curves suggests that
the body size approximations of the circRNAs in this study are only slightly larger than those determined from gene
models in the GEO/SRA database. (B) Two examples of circRNAs displaying alternative de novo assembled isoforms:
hsa_circ_chrl_100588765_100591498_R and hsa_circ_chrl4_59954391_59965626_F. These isoforms were created by exon
skipping and not picked up by the default module of CIRCexplorer2.

3.5. Top Differentially Abundant circRNAs Originated from Genes Implicated in AD Pathogenesis

Among the circRNAs differentially expressed in 2, 3, or all 4 of the brain studies, we
identified six with known associations with AD pathology (Figure 7) [43], originating from
genes DOCK1, NTRK2, DLG1, TRAPPCY, APC, and KIF1B. The circRNA coordinates, the
number of studies in which they were differentially expressed, the number of circRNAs
higher and lower in AD relative to control (direction of changes), and the links to AD
pathobiology are listed. Dysregulated expression from the gene DLG1, from which one
of the 6 circRNAs arises (hsa_circ_chr3_196802707_196817897_R) is thought to be directly
associated to neuronal strength and memory loss, while other genes, such as DOCK1
(from which circRNA hsa_circ_chr10_128859931_128908618_F arises) or gene NTRK2 (from
which circRNA hsa_circ_chr9_87482157_87482346_F arises), are connected in a broader
neurological context [43]. For these 6 circRNAs, the direction of change was shared across
the groups, except for the 12 circRNAs originating from DOCK]I, eleven of which were
elevated, but one was decreased.
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Figure 7. Differentially abundant circRNAs shared across studies, originated from AD-associated gene loci. Table summa-

rizes circRNAs differentially abundant in brain samples from AD relative to normal individuals, produced from parent

RNAs that were transcribed from gene loci linked to AD pathology. The gene names (‘Gene’), relative levels and significance

for circRNAs displaying the greatest differences in abundance (‘logFC’, ‘p-value’), number of studies in which the circRNAs

were found differentially abundant ("# Studies’), the circRNAs more abundant (up) and less abundant (down) in AD relative

to normal, the genomic location (‘Coordinates’), and the ‘Relation to Alzheimer’s Disease’, and the pertinent references are

indicated [44-52].

Additionally, a few circRNAs that were shared across samples and were known to
associate to AD pathology were present in plasma. Of the circRNAs differentially expressed
across at least two of the brain studies, 367 were found differentially expressed in at least
one of the plasma studies when including circRNAs that exhibited a lower threshold
(>2-fold) level of change. Included in these 367 were circRNAs from parent genes DOCK1,
DLG1, TRAPPC9, KIF1B, and APC. When using a three-fold threshold, KIF1B and DLG1
continued to appear in at least one plasma study and three of the four brain studies. All
differentially expressed circRNAs which were common in both the plasma samples had no
documented associations to AD or neurological dysfunction, although the presence of the
aforementioned dysregulated parent genes could mean they might act as biomarkers for
AD in blood.

3.6. Linear vs. circRNA Expression in AD Samples

Finally, we compared the expression of linear RNAs (mRNAs) and circRNAs origi-
nated from the same gene regions. In aggregate, there was little overlap in genes giving
rise to significantly changed circRNAs and genes giving rise to significantly changed linear
RNAs. Although some circRNAs correlated positively with the abundance of their linear
counterpart (e.g., hsa_circ_chr10_116879948_116931050_F), other circRNAs correlated neg-
atively (e.g., hsa_circ_chr13_78293666_78327493_F). In a specific sample from GSE53697,
some abundantly expressed circRNAs were found to also have abundantly expressed linear
counterparts, while other some abundantly expressed circRNAs had linear counterparts
that were only minimally expressed. In Figure 8A, we compared the number of circRNA
reads (in CPM) and to the number of linear RNA counts (in CPM), attempting to find
a correlation between the abundance of circRNAs and linear RNAs. The lack of overall
correlation suggests that, in general, there is no simple relationship between the abundance
of a linear RNA and the abundance of a circRNA. Expression of only a subset of circRNAs
(red box in Figure 8A) is linked to the abundance of its linear RNA counterpart whereas
another subset of circRNAs (blue box in Figure 8A) appears to be present even when the
linear RNA is not highly abundant, probably due to higher stability of the circRNA. In
Figure 8B, left, we list some examples of parent genes that have circRNAs with high read
counts as well as linear RNAs with high read counts; in Figure 8B, right, we list genes with
high numbers of circRNA read counts but low abundance of linear RNA read counts.
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Figure 8. Linear vs. circRNA correlation plot. (A) Representative comparison of the number of circRNAs and linear reads
from a single sample (GSE53697) to illustrate the lack of overall correlation seen between the expression of circRNAs and
linear RNAs (r = 0.024). (B) Specific examples of parent genes that produce either high circRNA reads and high linear

counts (inside the red box) or high circRNA reads and low linear counts (inside the blue box).

4. Discussion

In this study, we have identified circRNAs in previously reported RNA-seq datasets
from brain (hippocampus and temporal and frontal lobes [29-32]) and plasma [33,34]
from individuals with AD and matched cognitively normal controls. While these earlier
reports focused on the linear RNAs expressed in these groups, here we sought to identify
junction sequences, which are specific to circRNAs and were not previously examined.
Using threefold change and (p < 0.05) as inclusion criteria, our analysis revealed that
many circRNAs were differentially abundant in AD brain relative to normal control brain
(Figure 2); the direction of the change differed, as some were higher in AD, while some
were higher in normal controls. In plasma, the comparison between AD and normal from
both studies showed a few shared circRNAs that were more abundant in AD, while only
one circRNA was lower in both plasma studies (Figure 4). However, when compared
to individual plasma studies there was more significant overlap: 83 distinct circRNAs
(Figure 5A, Supplemental Table S2) from distinct gene loci were found to be differentially
abundant in both brain and plasma, and some of them have known associations with AD.

The reduced number of circRNAs shared across the different brain regions is in
keeping with the fact that many circRNAs are produced in specific cell types, tissue regions,
metabolic states, and developmental stages [7,53,54]. Thus, in the brain, a multitude of cell
types (including neurons, microglia, astrocytes, oligodendrocytes, and stroma cells) may
have contributed circRNAs to the collections analyzed (80 samples total), thereby widening
the range of possible circRNAs present in the sample. Moreover, plasma circRNAs are
potentially generated in tissues across the whole body and entered the bloodstream; such
sources include circulating cells, cells lining the circulatory system, and cells deeper in
organs that can pour RNA content (e.g., via extracellular vesicles or as a result of cell
death [55]) into the circulation. The overlap across plasma samples in the two studies
analyzed (355 donors total), would be expected to be even smaller, as was the case in our
analysis (Figure 4). While the overlap between plasma and brain studies was not very
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robust, there were still circRNAs found to be differentially abundant in both tissue types.
To search for potential biomarkers in the plasma study we lowered the log fold-change
threshold from a three-fold change to a two-fold change. By doing so, five out of the six
circRNAs associated with AD genes appeared in plasma (DOCK1, DLGI, KIF1B, APC, and
TRAPPCY). Given the rise in interest in RNA biomarkers of neurodegenerative disease [56],
we hoped to find some plasma circRNAs that might be diagnostic or prognostic for AD.
Our analysis and that from Dube et al. [56] found some similar circRNAs associated to be
differentially abundant in varying capacities including circRNAs derived from DOCKI.

In addition, the circRNAs differentially abundant in AD brain relative to normal brain
pointed to regulatory gene expression programs potentially relevant to AD pathobiology.
One set of circRNAs originated from genes that have been implicated in neuronal de-
velopment, synaptic plasticity, and neuronal survival. It was interesting to see a rise in
circRNAs derived from the DOCK1 locus, which encodes a member (DOCK1, also known
as DOCK180) of a family of 11 “dedicator of cytokinesis” proteins implicated in activating
small GTPases [44]. Although it is widely expressed, in the neural tube, DOCK1 was
shown to participate in the axonal outgrowth elicited by the protein netrin and implicat-
ing the signaling protein RAC1 [45]. DOCKI was an AD-associated gene in a module
of polygenic risk scores associated with astrocyte, language, and cognitive decline [46].
The specific function of circRNAs derived from this locus is unknown at present, but
could be indicative of astrocyte dysfunction in AD brain environment. The gene NTRK2
encodes the protein ‘neurotrophic tyrosine kinase receptor type 2/, a member of a family of
NTRKSs that internalize signals from brain-derived neurotrophic factor (BDNF) and affect
neuronal development, plasticity, and survival. NRTK2 has been genetically associated
with AD [47,48], although no circRNAs derived from transcripts expressed from this locus
have been reported. Another gene giving rise to differentially abundant circRNAs, APC
(Anaphase Promoting Complex), is also implicated in synaptic plasticity, and neuronal
development and survival [51].

The other set of circRNAs originated from genes encoding proteins important for
intracellular transport. Discs large homolog 1 (DLG1), also known as synapse-associated
protein 97 or SAP97, is involved in vesicular trafficking and has been linked to a number
of brain pathologies [49]. Interestingly, TRAPPC9 (Trafficking Protein Particle Complex
Subunit 9) is also implicated in vesicular transport and has similarly been linked to cogni-
tive impairment [50]. The final gene from which differentially abundant circRNAs were
generated (KIF1B) (Figure 7) was also implicated in axonal transport and vesicular traf-
fic [52]. As with other genes in this short list, circRNAs derived from the DGL1/SAP97,
TRAPPCY, and KIF1B loci have not been reported previously, so it is not clear at present
whether altered abundance of these circRNAs reflects changes in overall transcription of
the host genes or in splicing of host precursor RNAs. Moreover, whether they are passive
byproducts or have active functions in the AD brain also remains to be investigated.

Some differentially abundant brain circRNAs were also differentially abundant in
blood, making them potential biomarkers for AD. KIF1B and DLGI1 specifically are good
candidates for biomarkers as they appeared in brain samples and plasma samples even
using a three-fold change threshold. Investigating biomarkers for AD in plasma offers a
potential path to detecting AD less invasively and more efficiently.

Further work is also needed to investigate possible functions of the circRNAs dif-
ferentially abundant in AD vs. normal brain. First, it will be informative to know the
specific cell types in which these circRNAs are found, possibly using modified single-cell
analysis with sufficient depth to detect circRNAs and assess the number of copies that
exist per cell. Second, it is important to elucidate the entire body of the circRNAs, so that
confident predictions of interacting factors can be made, particularly for abundant circR-
NAs. Although the bioinformatic tools used in this study offered circRNA whole-body
predictions, whole-body sequences should be determined rigorously using alternative
methods such as Oxford Nanopore Technologies sequencing. Finally, molecular validation
of factors interacting with the circRNAs differentially expressed in AD brain will shed
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light into some of the possible roles described for circRNAs [1,2,4-6,8]. It can then be
assessed whether such circRNAs might associate functionally with proteins, microRNAs
or other nucleic acids, perhaps function in scaffolding or sequestration of factors, or even
in partial translation. These results can offer important information regarding the role of
specific circRNAs in the AD environment, and point to specific future areas of therapeutic
intervention in AD.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/article/
10.3390/genes12081258 /s1, Figure S1: Aligned vs unaligned identified reads, Figure S2: Common
differentially expressed circRNAs across brain studies and plasma studies. Table S1: CircRNAs from
Figure 3, Table S2: CircRNAs from figure 5A. Table S3: CircRNAs from Figure 5B.
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