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Abstract
Modeling of signal transduction pathways is instrumental for understanding cells’ function.

People have been tackling modeling of signaling pathways in order to accurately represent

the signaling events inside cells’ biochemical microenvironment in a way meaningful for sci-

entists in a biological field. In this article, we propose a method to interrogate such pathways

in order to produce cell-specific signaling models. We integrate available prior knowledge of

protein connectivity, in a form of a Prior Knowledge Network (PKN) with phosphoproteomic

data to construct predictive models of the protein connectivity of the interrogated cell type.

Several computational methodologies focusing on pathways’ logic modeling using optimi-

zation formulations or machine learning algorithms have been published on this front over

the past few years. Here, we introduce a light and fast approach that uses a breadth-first tra-

versal of the graph to identify the shortest pathways and score proteins in the PKN, fitting

the dependencies extracted from the experimental design. The pathways are then com-

bined through a heuristic formulation to produce a final topology handling inconsistencies

between the PKN and the experimental scenarios. Our results show that the algorithm we

developed is efficient and accurate for the construction of medium and large scale signaling

networks. We demonstrate the applicability of the proposed approach by interrogating a

manually curated interaction graph model of EGF/TNFA stimulation against made up exper-

imental data. To avoid the possibility of erroneous predictions, we performed a cross-valida-

tion analysis. Finally, we validate that the introduced approach generates predictive

topologies, comparable to the ILP formulation. Overall, an efficient approach based on

graph theory is presented herein to interrogate protein–protein interaction networks and to

provide meaningful biological insights.
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Introduction
Signaling pathways are of the utmost importance for understanding cellular function and pre-
dicting response to environmental perturbations [1–7]. Extensive collections of signaling path-
ways have been made available to online databases, obtained either from dedicated
experiments, computational predictions or obtained manually from research articles. However,
most of these interactions lack biological context (cell type, treatments etc.). Thus, even with all
these resources available, compiling a context specific network is a tedious and challenging task
[8]. On this front computational methodologies have been proposed that combine prior knowl-
edge of protein interactions with experimental data in an attempt to uncover signaling path-
ways that appear to be functional in the interrogated cell/tissue type.

Most of the computational methodologies for reconstructing signaling pathways based on
proteomic data, first employ a modeling methodology to describe formally how signal propa-
gates from one protein to the next in the pathway, and then employ a parameter estimation ap-
proach to identify optimal values of the model parameters, in an attempt to make the model
best fit the measured data. Common approaches for modeling signal transduction include
modeling via Ordinary Differential Equations (ODEs) [9–11], probabilistic/bayesian methods
[12], and the various forms of logic modeling such as Boolean and constrained fuzzy logic [13–
18]. Deciding on the optimal modeling formalism is not trivial and depends on the prior
knowledge available in the literature, the experimental data available for training the model,
and the scope of the analysis. For example, ODEs are best used for the quantitative modeling of
small scale pathways, when there is available data for all signaling molecules and the protein
connectivities are known with a great degree of confidence. Then the pathway reconstruction
problem is formulated as the optimal identification of the kinetic constants to minimize the de-
viation of model predictions and experimental measurements. On the other hand, logic model-
ing is best used in medium to large scale networks, when there is great ambiguity on the
protein connectivities, and data is available for only a subset of the included proteins. Then the
pathway reconstruction problem is formulated as the identification of optimal subsets of the
prior knowledge network, conserving in the solution only the reactions that appear to be func-
tional based on the data at hand.

Depending on the modeling formalism used, different parameter estimation methods are
best employed for identifying the model parameters. Typically, ODE modeling is best coupled
with sensitivity analysis methods, while logic modeling is best coupled with optimization meth-
ods. In sensitivity analysis, first bibliographic values for the kinetic constants are used, and
then the model is simulated under small variations of these parameters providing an estimate
of the parameter values that best reproduce the experimental data [19]. A form of “top-down”
sensitivity analysis to quantify the input-output relations and molecular interactions in regula-
tory networks, is presented in [20], where the control of the input signal over the output target
is quantified as the ratio of the input-to-output changes at steady state. Such a top-down analy-
sis can be applied to any cellular network despite its complexity. In optimization based meth-
ods an objective function is introduced representing the deviation of model predictions from
the experimental data, and formal algorithms such as particle swarm optimization, Linear Pro-
gramming formulations, and Genetic Algorithm are used to identify optimal values of model
parameters, minimizing the objective function and thus, best fitting the data at hand.

These mechanistic methodologies, can be implemented without the incorporation of experi-
mental data. Nevertheless, their predictive efficiency is limited due to constraints imposed by
the accuracy of the proteins’s connectivity in the pathways used as a scaffold [21, 22]. As a re-
sult, if the initial topology, as adopted from literature, represents the protein’s connectivity in-
accurately, then the extracted topology will yield significant error in the final model. To avoid
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this particularity, experimental data are usually combined with a training algorithm, to cali-
brate the model to best fit the experimental design [23–25].

The approach described herein, is based on graph theory, which serves as a powerful mathe-
matical modeling tool for the analysis of biochemical networks. Such networks consist of enti-
ties that represent several type of biomolecules, as proteins and genes [26–32]. Over the past
decade, several computational approaches have been published investigating how extracellular
signals, propagated through cell’s biochemical microenvironment, regulate cellular responses
[33]. Some of them utilize Floyd-Warshall algorithm [34] to compute shortest paths between
network’s components, with the aim of representing the underlying molecular mechanisms of
genetic interactions [28]. Other approaches, such as the SST algorithm described in [29], focus
on calculating Spanning Trees to model significant quantities in biochemical networks. While
these approaches address different problems, ours addresses the network reconstruction based
on proteomic data and prior knowledge of protein connectivity. However, both these ap-
proaches and ours use the same formalism to model signal transduction. Additional graph the-
ory tools can further enhance computational approaches on pathway construction.

Our approach constitutes a novel methodology for modeling medium and large scale signal-
ing pathways based on experimental data and is meant to serve as an alternative to the logic
modeling-optimization pipeline. More specifically, we start with a set of dependencies between
signaling molecules as extracted from the experimental data and then using a breadth-first
transversal of the graph, we compute the shortest paths of the prior knowledge network that fit
these dependencies. Moreover, using several algorithmic approaches, we are able to handle
conflicts in the dependencies to extract the most meaningful (biologically) pathways.

Instead of an optimization algorithm or a sensitivity analysis approach, using a breadth-first
transversal approach does not force the user to decide on a mathematical formalism, since
most of the pathways are obtained in a graph form. Thus, adopting a mathematical formalism
is a logic leap. Furthermore, since optimization algorithms are typically NP-hard problems, to
impose the experimental dependencies, we take advantage of the breadth-first transversal com-
plexity of O(V + E), let V stand for the total number of the vertices in the graph and E for the
total number of the edges. As a downside, we cannot guarantee global optimum, but using heu-
ristic algorithms, we are able to identify the minimum supersets of the graph, where the opti-
mum solution lies in.

Materials and Methods
This section presents the methodology used to develop the algorithm based on the fundamen-
tals of graph theory. First, we describe the basic principles, on top of which, we build our signal-
ing topologies. Next, we analyse the reasoning we employ to set the dependencies of our
problem, as extracted from the experimental design. Finally, we illustrate the major algorithmic
steps of our formulation via a toy model demonstration, as an oversimplification of realistic
signaling scenarios.

Basic Definitions
Graphs are mathematical structures consisted of entities (formally called vertices and less for-
mally nodes or compounds) and relations between them (formally termed edges). When it
comes to modeling of biochemical networks, these entities typically represent proteins, genes
or other type of biomolecules [27, 35]. In our case, we focus on proteomic analysis and we as-
sume that we are given a directed graph G = (V, E) capturing our prior knowledge on the sig-
naling topology and a set of experimental scenarios coupled with a set of measurements. The
graph nodes constitute the variables of our formulation, indicating the state of a protein. A
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protein can be in one of the two states: state 0, where the protein is inactive and can’t transduce
signal and state 1 where the protein is active/phosphorylated and can transduce signal down-
stream. These nodes are indexed by i 2 IV, IV = {1, . . ., nV}. The graph edges constitute the net-
work reactions indexed by j 2 IE, IE = {1, . . ., nE}. Each reaction is associated with a reactant Rj
and a product Pj. A pathway is defined as a set of reactions IR � IE and species Iv � IV. While
typically the set of species, included in the signal process, is well known from the experimental
scenarios, the set of reactions in the final network is uncertain. Thus, the goal of the proposed
formulation is to find a subset of reactions and nodes out of all the possible candidates, that
best describes the data at hand. We perceive the initial topology as an edge list, e.g., Rj ! Pj.

In our framework, an experiment is defined as a set of experimental scenarios coupled with
a set of measurements for each scenario and is represented as a data matrix, where each row (r)
correspond to a stimulus used to perturb the cells and each column (c) to a measured signal.
Each matrix element xrc represents a Boolean variable signifying the measured state of the sig-
nal c upon stimulation with molecule r, where 0 indicates unchanged phosphorylation level
and 1 activated phosphorylation level. Note that the proposed approach manages a qualitative
description of the experiments and handles single treatment data (no stimuli combination). In
Table 1 we present an example of an experimental data matrix, to indicate how we set the ex-
perimental dependencies of our problem.

For every phosphorylation event observed (xrc = 1) in the data matrix, we infer a causal rela-
tionship or dependency between rth signaling molecule and cth signal. All the dependencies are
collected, as a list of subordinate relationships between a source node (stimulus) and a target
node (signal) and are indexed by k. The symbol! implies a desired intermediate pathway. Ac-
cording to Table 1, we set the fourteen dependencies presented in Table 2.

The goal of the proposed methodology is to infer a network that best describes the depen-
dencies indicated by the experimental data. An intuitive approach would be to connect each
stimulus used to perturb the cells, with the activated signals, through the shortest path possible.
If such a path exists and it doesn’t include a node that has been measured as inactive, i.e. it
doesn’t contradict the data, then we imply that we have a Direct Path from the stimulus to the
measured signals. However, if there is no shortest path, free of conflict nodes, connecting the
stimulus to the active signal, then we employ an heuristic process to handle these cases and
come up with alternative paths.

Algorithmic procedure
Having introduced the fundamental concepts of our approach, we proceed to describe the
major algorithmic steps, using in parallel an imaginary, but biologically plausible example, as

Table 1. Data matrix of 2 considered experimental scenarios.

RAF-1 ERK AP1 GSK-3 P38 NFKB IKK MAP3K1 MAP3K7 PI3K

EGF 1 1 1 1 1 1 1 1 1 1

TNFA 0 0 1 1 1 1 0 0 0 0

Herein, we present fictitious signaling events for 10 signals downstream of EGF and TNFA stimulation. Each row corresponds to one experimental

scenario and each column contains the measured state changes of the readout species. If a node is regulated in the respective scenario, then xrc = 1,

otherwise xrc = 0. For instance, we imply that TNFA stimulus causes an activation of AP1 signal (x23 = 1) and a zero response of IKK measured species

(x27 = 0).

doi:10.1371/journal.pone.0128411.t001
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presented in Fig 1(a) and 1(b). The PKN includes a subset of intracellular signaling networks
known to be activated downstream of EGF and TNF stimulation, and was derived from a larger
network presented in [36]. For this PKN, we developed a fictitious data of 2 stimuli and 10 sig-
nals, presented in Table 1. The readouts chosen (depicted in light green color) are established
downstream events of EGF/TNF stimulation (depicted in blue color). The PKN is a Directed
Acyclic Graph (DAG). Although our method is not limited to that structure.

The first step of our method is to identify the Direct Paths that satisfy the imposed depen-
dencies. To do so, we employ the Floyd-Warshall algorithm, to compute the shortest paths in
the PKN. Floyd-Warshall algorithm is a classic graph analysis algorithm for computing short-
est paths in a weighted graph with positive or negative edge weights (but with no negative cy-
cles) and solves the all-pairs shortest-path problem in O(V3) steps [34], [37]. By executing the
algorithm, we find the lengths (summed weights) of the shortest paths between all pairs of ver-
tices and we store them in a nV × nV matrix. Since we do not use some probabilistic approach,
we attach to each interaction weight equal to +1.

In our toy model, we start with a list of fourteen dependencies, as presented in Table 2. We
notice that, all activation events downstream EGF are equal to 1, so ideally we have to connect
EGF with all the measured signals. However, such an attempt is not possible due to limitations
dictated by the generic topology (i.e., MAP3K7, IKK and NFKB signals are not reachable). Fig
1(a) visualizes the Direct Paths hypothesis. It is apparent, that via Direct Paths, we can satisfy
the remaining EGF dependencies. On the other hand, under TNFA treatment all the activation
events are reachable based on the topology. However, only AP1 is reachable through a Direct
Path, because of inconsistencies detected in the remaining dependencies. To satisfy the remain-
ing dependencies, it is essential to handle these conflicts in the respective Direct Paths, through
Alternative Paths.

To identify Alternative Paths, satisfying the remaining dependencies, we developed a cus-
tom searching method, based on the Breadth-First-Search algorithm. The main idea is to find
alternative starting points through BFS searching method and then to use Floyd-Warshall ma-
trix to find conflict free paths. We begin from the stimuli level, exploring all the neighboring
nodes. Then, for each of those nearest nodes, we explore their unexplored neighbor nodes, and
so on, until we reach the measured signal. At each iteration of BFS, we check the Floyd-War-
shall matrix for conflict free pathways, accessing new shortest paths from the new starting
points towards the measured signals. If such pathways are not identified, we implement a path-
way scoring method to satisfy the remaining dependencies.

Table 2. Setting the dependencies.

k Dependencies

1 EGF ! RAF-1

2 EGF ! ERK

3 EGF ! AP1

. .

. .

. .

14 TNFA ! NFKB

We present the 14 dependencies extracted from the experimental matrix presented in Table 1. The symbol

! signifies the desired intermediate pathway between the two molecules.

doi:10.1371/journal.pone.0128411.t002
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Our scoring method is a systematic way to check and score the paths that can satisfy the
unmet dependencies. For each unmet dependency and for every potential pathway satisfying
this dependency (starting from the shortest and continuing to the Alternative Paths produced
in the previous steps) we check whether the number of dependencies served by a specific path-
way is greater or equal to the number of the conflict nodes introduced to the network. If this is
the case, the path is included in the compressed model and the searching continues to the next
unmet dependency.

Finally, if there is still a list of unmet dependencies, we continue applying the same scoring
methodology, only this time we nullify the detected conflict nodes, which have already been in-
cluded in the pathway reconstruction of previous steps. The main idea underlying this intuition

Fig 1. A simple example network used for illustration purposes—Workflow. (a) The full network adopted from [36], after applying the Direct Paths step.
These Direct Paths are depicted in blue edges, while in dashed we present edges and nodes not yet included in our solution. (b) The compressed model, as
obtained after applying the Alternative Paths step and dealing with conflicts detected in the network. In this compressed version of the network we notice the
appearance of the connection between TNFR and PI3K. The purpose of this new edge is not to link TNFA to P38 phosphorylation, but to satisfy the TNFA!
GSK-3 dependency. The fact that TNFA links to P38 phosphorylation through this connection (i.e. TNFR! PI3K) is coincidental in this case and depends on
the paths derived via the “Direct Paths” procedure (the blue edges have already been included in the final topology from the previous step). The algorithm, in
order to satisfy the TNFA! P38 dependency chooses the shortest path TNFA! TNFR! TRAF2!MAP3K7!MKK4! P38, including two conflicts (i.e.
MAP3K7 and IKK nodes have been measured as inactive under TNFA stimulation). However, this error vanishes due to satisfaction of the two dependencies
(TNFA! P38 and TNFA! NFKB). Consequently, the scoring method assesses this case as a draw case (2 Satisfied Dependencies – 2 Conflicts
Detected = 0). In this work we suggest that the draw cases should be included in the compressed topology, as they add connectivity-topology information.
The algorithmic steps and the experimental design is colour annotated. In blue we present the Direct Paths produced in the previous step, while in red we
present the Alternative ones. The nodes in crimson contours represent the detected inconsistencies (conflicts) between network topology and experimental
measurements. Finally, in dashed we present edges and components excluded from the final solution.

doi:10.1371/journal.pone.0128411.g001
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is that some conflict nodes may not facilitate the satisfaction of a single dependency, but a com-
bination of them, contributing in the cumulative satisfaction of multiple dependencies.

Fig 1(b) visualizes the final compressed network model after the Alternative Paths and scor-
ing method implementation. In this final solution, we notice that extra TNFA dependencies
(TNFA! P38, TNFA! NFKB and TNFA! GSK-3) are satisfied. Considering the experi-
mental scenarios (Table 1), there is no activation of MAP3K7, IKK and PI3K signals down-
stream TNFA stimulation. However, including MAP3K7 signal in the final model, allows the
satisfaction of the TNFA! P38 dependency. Implementing our scoring method in the specific
path: 1 Dependency (TNFA! P38)—1 Conflict detected (MAP3K7) = 0. Same applies to the
case of TNFA!NFKB dependency: 2 Dependencies (TNFA! NFKB, TNFA! P38)—2
Conflicts detected (MAP3K7, IKK) = 0 and to the case of TNFA! GSK-3 dependency (PI3K
only intermediate conflict node detected). The alternative edge TNFR! PI3K creates also ad-
ditional pathways, satisfying already met dependencies (TNFA! P38 and TNFA! AP1). It
enriches the final model with information about the protein connectivity, without affecting the
total goodness of fit, as the error included (TNFA observes MAP3K1, which is not accurate
based on the Table 1) vanishes meeting the dependencies EGF! P38, EGF! AP1, EGF!
MaP3K1 and TNFA! GSK-3.

Having identified the subset of reactions comprising the derived model, we access the quali-
ty of our solution. To do so, we calculate the goodness of fit, as a metric of the quality of our ap-
proach. We compute a compressed model matrix, where each row corresponds to a stimulus
used to perturb the cells and each column to a measured signal. Apparently, this new matrix
and the experimental data matrix have the same size. If the cthmeasured node is reachable
under stimulation of rth perturbed node, based on the compressed model’s topology, we set the
corresponding matrix element xcmrc = 1, otherwise we set xcmrc = 0. For instance, according to the
compressed model of our toy model, presented in Fig 1(b), we set the reachable matrix pre-
sented in Table 3.

Let nst be the total number of stimuli, nsig the total number of the signals and ns the total
number of the experimental measurements, we calculate the percentage error as:

Error ¼
Xnsig
c¼1

Xnst
r¼1

jxcmrc � xrcj
�

ns � 100% ð1Þ

Implementation
We aim to develop a readable and maintainable code that can serve as an entry point into
computational biology. All programming procedures were written in the MatLab environment,

Table 3. Reachable signals matrix according to the compressedmodel’s topology.

RAF-1 ERK AP1 GSK-3 P38 NFKB IKK MAP3K1 MAP3K7 PI3K

EGF 1 1 1 1 1 0 0 1 0 1

TNFA 0 0 1 1 1 1 1 1 1 1

Herein we present the reachable signals matrix for our toy model, according to the compressed model’s topology. We set a matrix of same size as the

experimental matrix presented in Table 1. In this new matrix, each row corresponds to a stimulus used to perturb the cells and each column to a

measured signal. If the cth measured node is reachable under stimulation of rth perturbed node, based on the compressed model’s topology, we set the

corresponding matrix element xcm
rc = 1, otherwise we set xcmrc = 0.

doi:10.1371/journal.pone.0128411.t003
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therefore run in all three most applicable operating systems: GNU/Linux, Microsoft Windows
and Apple Os X. The developed algorithm is very easy to use; the user has to provide four files
to define network training problem: (i) the network topology in a.txt format using a tab perim-
eter between the two components of each reaction, (ii) a.txt file containing the stimuli of the ex-
periment, (iii) a.txt file containing the signals of the experiment, and (iv) a.txt file containing
the experimentally measured state changes for each scenario. The user may then run the imple-
mented code, as described herein, and a.dot file is produced for the visualization of the final so-
lution. Graph visualization, which is a way of representing structural information as diagrams
of abstract graphs and networks, holds a great impact in our approach. Thus, the analysis re-
sults are communicated using the open source graph visualization software Graphviz (http://
www.graphviz.org/), as an overview graph allows users to quickly visualize hypotheses and
shows how they are related to each other. MatLab source code for this method, along with a de-
tailed manual and examples of use, is available at http://ntuabiolab.wikispaces.com/Software.

Results

Medium scale network
In order to demonstrate the performance of the proposed approach in a realistic situation, we
apply it to a published network topology [38], aiming to identify particularities of the signaling
pathways. Network reconstruction was based on signaling reactions reported in literature and
databases. The experimental scenarios consist of 5 stimuli and 16 measured key phosphopro-
teins, as described properly in [4] and presented in Table 4 in discretized format. The initial to-
pology is created around these stimuli and measured phosphoproteins and comprises of 139
reactions. The proposed formulation requires a qualitative view of signal transduction, sup-
porting only two discrete states indicating the variation of the activation state of signaling
nodes (“1” for activation and “0” for unchanged state). Thus, the raw data had to be discretized
first. Several interesting signaling features can be observed simply by inspection of the discre-
tized experimental dataset.

First, the pro-growth stimuli, Tumor Growth Factor alpha (TGFA) and the inflammatory li-
gand IL1B cause several activations, including both stimulation factors implying a P38MAPK,
NFKB and CREB1 activation. On the other hand, both Tumor Necrosis Factor alpha (TNFA)
and Interleukin 6 (IL6) activate only NFKB signal. Additionally, it is likely that PKNs often
lack interactions that are supported by data. Indeed, we observe this particularity in the case of

Table 4. Medium scale network experimental data.

hspb1 akt1 p70s6k shp2 jnk2 ikba gsk3b p38mapk nfkb mp2k6 tor mek1 erk1 rsk1 creb1 rs6

il6 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0

tnfa 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0

il1b 1 0 0 0 0 1 0 1 1 0 0 1 0 0 1 0

tgfa 0 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1

ins 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The experimental scenarios, presented here in discretized format, consist of 5 stimuli and 16 measured key phosphoproteins and is described properly in

[4]. The proposed formulation requires a qualitative view of signal transduction, supporting only two discrete states indicating the variation of the activation

state of signaling nodes (”1” for activation and ”0” for unchanged state.

doi:10.1371/journal.pone.0128411.t004
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the TNFA! SHP2 causal dependency, a pathway not supported by the initial topology. As
stated above (see “Basic Definitions” in “Materials and Methods” section), according to the ex-
perimental data matrix, we reformulate our data to a list of 22 dependencies.

We propose changes in the network structure to improve the agreement between experi-
mental data and PKN. Fig 2 shows the compressed topology as derived through the computa-
tional procedure. The experimental design is represented by color coding: in blue color we
represent the stimulation factors and in green color the measured signals, while the rest of the
intracellular proteins are represented in cyan color. Whereas the Insulin (INS) pathway has
been included because of its major role in liver homeostasis, the experimental data indicate un-
changed states for all the measured key phosphoproteins under conditions of INS stimulation.
In addition, signals TOR and JNK2 remain unaffected in all given scenarios. These particular-
ities are demonstrated in grey signs. In dashed contours and lines are visualized no reachable
compounds, nodes and edges excluded from the final solution.

Our results describe accurately the signaling pathways downstream major players for liver
homeostasis and meet the dependencies imposed by the experimental scenarios. More specifi-
cally, we identified several causal relations well known from the literature via the Direct and Al-
ternative paths procedures. For instance, we validated all dependencies under IL1b stimulation
and all but one under TGFA treatment. The paths MAP3K!MEK1! ERK1!MSK12 and
MAP3K!MKK3! P38MAPK! P38MAPKN!MSK12 constitute two alternative routes
(both present in the final solution) to reach the measured signal CREB1. Additionally, with the
edge MAP3K! IKK, the model structure comprises an activation route from IL6/TGFA sti-
muli to IKBA/NFKB signals. We also observe two alternative routes (SOS! RAS and SHP2
! PI3K! RAC—both present in the final solution) to reach MAP3K node starting from
GRB2 node.

The current approach aims to adapt the network structure to the data in a automatic way in
order to resolve the discrepancies between model and data. Our algorithm was able to detect
such discrepancies in the original topology, such as the measured node SHP2 in the experimen-
tal dependencies IL6! IKBA and IL6! NFKB and IKBA in the dependencies TNFA!
NFKB and TGFA! NFKB. To handle these mismatches, our model applies a ranking method
for the remaining dependencies, as detailed in Methods. For example, for the case of the SHP2
mismatch in the IL6! IKBA/NFKB pathways: 2 dependencies (IL6! IKBA, IL6!NFKB)
served by introducing 1 conflict (SHP2) and for the case of the IKBA mismatch in the TNFA
!NFKB pathway: 1 dependency (TNFA!NFKB) served by introducing 1 conflict (IKBA).
The latter demonstrates that the draw cases are favoured by our approach, since there is limited
evidence to support these causal links. In any case, dedicated experiments are required to sup-
port or prove these suggestions.

Training against data generally wields a model having a substantially better fit than the
PKN, which is also the case with our data and model. The untrained ensemble containing all
possible interactions exhibited a poor fit (59% across the dataset), whereas our trained model
halved the initial error (29%), in a total time of 5 seconds. Exploring possible explanations and
further estimations for a better fit of our trained model, we inspect Table 4 and we observe that
Il6, TNFA and INS stimulations demonstrate significant mismatches with the data, according
to the PKN. We asked how we could improve the correlation of cellular responses to phospho-
protein activity. To achieve that, we attempt a parameter change in our ranking method and
we exclude the solutions acquired due to the draw cases.

A view of this new solution is presented in Fig 2 with the removal of the red edges. We no-
tice that this attempt excludes the TNFA! NFKB pathway from the new final solution as a
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Fig 2. Medium scale network-Compressedmodel. The model structure can be compressed substantially from 90 nodes and 139 edges to 41 nodes and
44 edges. The compressed model reflects the essential dependencies in the original network structure that can be addressed by the given set of measured
nodes. Our solution resulted in a fitting error of 29, which has thus reduced much in comparison to 59 in original model. Several edges are absent due to
conflict with the data. One example is the absence of RSK1! RS6, in order to isolate the RS6 activity from the IL1B stimuli. In a similar manner, several
edges are preserved as MEK1! ERK1 and MEK1!RSK1 to permit the activity of ERK1 and RSK1 under the TGFA treatment. Additionally, MAP3K! IKK
enables the activation of NFKB signal under both IL6 and TGFA stimulation and the activation of IKBAmeasured node from the IL6 stimulus. In red color, we
present the removed edges in the compressed model after a parameter change in our ranking method. This new model structure consists of 38 nodes and 41
edges. The new compressed model reflects essentially the experimental dependencies in the original network structure and provides a final fitting error of 19,
much reduced in comparison to 59 in original model and 29 in the previous solution.

doi:10.1371/journal.pone.0128411.g002
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draw case (IKBA intermediate conflict node). The trained ensemble demonstrated a final
agreement of 19% (in* 5 seconds) with the measured data. Note that all calculations were
done on a PC with a 2.13 GHz Intel double core Pentium P6200 CPU (only a single core was
used) and 2 GB 1333 MHz DDR3 Memory.

To summarize, through our computational framework, we validated essential biological pat-
terns of the network structure, indicating important aspects of the signaling pathways in hepa-
tocytes. For instance: (1) STAT3 is not activated by TGFA; (2) Phosphorylation of the
autocatalytic domain of P70S6 (termed P70S6K in the model) is independent of ERK1; (3) The
activation of CREB1 in response to TGFA is likely to be caused by a MEK1 independent route;
(4) Phosphorylation of AKT1 is regulated to PI3K activity; and (5) The activation of MEK1
and ERK1 is dependent to MAP3K activation. These results, generated in a automated way,
confirm several conjectures formulated in [4]. In addition, by identifying parallel activation
routes that cannot be distinguished with the experimental data at hand, we contribute to in-
crease the robustness of the network’s topology and we suggest further experiments to uncover
the true wiring diagram of the signaling pathways in the considered cell type.

All the connections in the solution are biologically relevant as they have been mined from
literature. However to validate the functionality of the connections in this specific context, fol-
low up experiments are required where key signaling proteins are blocked and the activation of
downstream proteins is monitored to deconvolute their connectivity in the network, in similar
fashion to the validation study performed in [39]. In this paper, the experimental validation is
beyond our scope as we do not address a specific biological problem, and we only score the per-
formance of our algorithm based on its fitness error and the similarity of the constucted topol-
ogy with that of the ILP.

In the “Supporting Information” section we provide additional arguments to support the in-
terpretation of the medium scale network discussed in this section. To evaluate the sensitivity
of our model, we performed a cross-validation analysis, to assess how the results of our method
generalize to independent data sets. We tested our algorithm using 500 randomly generated
datasets emulating actual experimental data. The number of activations in these matrices was
kept constant and equal to the original matrix presented in Table 4. The results are demonstrat-
ed in S1 Fig, in S2 Fig and in S3 Fig. This analysis provided evidence that the developed ap-
proach produces compressed topologies that are directly dependent on the data at hand. For
more information see S1 Text in the “Supporting Information” section.

Next, we evaluate the performance of our methodology in reconstructing large topologies
based on phosphoproteomic data. Large scale networks represent cellular function from a sys-
tems perspective and integrate in full detail all signaling events that determine cellular response
[40]. They typically exhibit increased difficulty compared to the medium scale networks, with
regards to the processing time and the required amount of data [41]. As a case study, we vali-
dated players and their corresponding pathways in primary human bronchial epithelial cells,
by interrogating the signal transduction downstream of 25 stimuli of interest and constructing
a compressed model for the responsive subset of the network comprising 142 species (of which
53 are measured) and 195 reactions. We asked if the computational efficiency of our approach
makes it applicable to construct large topologies. Results of this analysis are presented in more
details in the “Supporting Information” section, S2 Text. We, finally, set out to compare the
performance of our method with that of other predictive optimization methods, such as the
ILP formulation presented in [42]. We focus on the differentiation of the two methods and we
perform a fitness error calculation for the same input data. We, also, demonstrate a short statis-
tical comparison through the Jaccard similarity index. For more information see S3 Text, in the
“Supporting Information” section.
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Discussion
In this article, we introduce a novel approach, based on a graph algorithmic formulation, in
order to construct cell-type specific pathways and to link signaling data to cellular responses.
For the pathway construction, we take some generic networks of different scales and we com-
bine them with experimental data. As a result, we present a new framework for interrogating
and training signaling networks based on measurements from stimulus-signals experiments.

To do so, we investigated the possibility of shortest and alternative pathways finding,
through the fundamental algorithms of graph theory. Applying this approach showed that
through Warshall-Floyd algorithm and a Breadth First Search (BFS) traversal of the network,
our method manages to construct a final topology, which satisfies as many experimental de-
pendencies and achieves a significant fit of the data at hand. We defined the concept of network
conflicts, as the inconsistencies between measurements and prior topologies [43]. Therefore,
we sought an efficient computational formula, which differs from the optimization pipeline, to
handle these mismatches. This computational formula concentrates on enumerating the satis-
fied dependencies and the existing conflicts in each “tested” pathway and accordingly gives a
bonus to specific conflicts for their selection in the solution.

We presented our algorithmic procedure via a toy model demonstration, to make sure of
the accuracy and the consistency of the solutions provided. Then, we combined data from real-
istic biological experiments with initial signaling topologies in order to eventually create net-
works that simulate the cell signaling process. We chose a medium scale and a large scale
network, to evaluate the method’s features and to ascertain its ability to model any scale net-
work. The products of our approach are computable models, which constitute a proof-of-prin-
ciple that the proposed methodology can efficiently interrogate protein expression data.

To assess the computational sensitivity of our approach, we have also applied a cross-valida-
tion statistical analysis, in order to prove that our outputs are in conjuction only with the mea-
surements and, thus, the probability of random solutions is excluded. We reached statistical
distributions of expected forms describing in proper way the behavior and the incidence of the
interrogated network’s reactions. Finally, to demonstrate the power of our approach, we pro-
ceeded to a comparison with the ILP method [42, 44]. Several similarities and differences can
be noted between the two methods. Both approaches model signaling networks as interaction
graphs and can be applied to network topologies stored in many databases, without the need to
convert these graphs into other modeling formalisms. Additionally, they can both detect incon-
sistencies between measurements and network topologies. In contrast to our approach, ILP for-
mulation determines an optimal subgraph of a given network that can reflect a scenario of
measurements at best, using an optimization solver to guarantee the global optimal solution.
This comparison, indicated the capacity of our algorithm to predict topologies similar to the
state-of-the-art optimization pipelines.

To the best of our knowledge, the method introduced here, is the first that uses such an ap-
proach directly on interaction graphs to systematically interrogate and train the wiring dia-
grams of signaling networks. Since our methodology is strictly graph theory based, it displays
limitations of static quality (while entities and relations between them, in biochemical net-
works, change with time, static network modeling can only capture a temporal aspect of experi-
mental information flow [27, 45]). Another limitation is that our approach can handle only
single treatment phosphoprotein activity and qualitative description of the experimental data.
On the bright side, we sought to develop a fast computational technique to train the interrogat-
ed data, dropping significantly the fitness error and although we do not guarantee global opti-
mum, using heuristic algorithms, we are able to identify the minimum supersets of the graph,
where the optimum solution lies in. Avoiding the optimization algorithms that are typically
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NP-hard problems, we take advantage of the breadth-first transversal complexity of O(V + E)
to impose the experimental dependencies. Furthermore, since this approach is only algorith-
mic, it does not require any optimization software (i.e. mathematical optimization-program-
ming solvers) or environment to run and can be executed by any computer in any
programming language implementation.

Signal transduction combines information regarding the activity state-concentration of the
signaling components and the location of these components in the biochemical topologies. In
the Introduction section, we referred to several modeling methodologies (e.g. Ordinary Differ-
ential Equations, Partial Differential Equations, etc.), which are valuable in describing the spa-
tial dynamics of these signaling components and how the spatial signaling information is
transduced from upstream to downstream components, within a known topology. However,
when it comes to signal transduction, the role of the network topology is not easily deduced
from such studies [30]. On the other hand, approaches like ours permit fast and qualitative net-
work topology representation and predict cell-specific signaling pathways from stimulus-sig-
nals experiments. Therefore, our algorithm could assist end-users in the biological field and in
pharmaceutical industry to understand and predict complex cellular regulations and to identify
drug effects [46] by monitoring drug-induced topology alterations as described in [42]. As fur-
ther research, it would also be interesting to pursue several extensions of our approach explor-
ing potential combinations with optimization or probabilistic formulas, in order to achieve
even better fit with the data at hand. Such combinations will present new mathematical and
algorithmic challenges.

Overall, the approach described, successfully addresses the reconstruction of medium and
large-scale signal transduction networks and provides a natural framework to enable the inte-
grated analysis of proteomics. It allows the fast prediction of signaling topologies by combining
the nature of graph theory with the flexibility of the pure programming, providing results com-
parable with the state-of-the-art optimization method ILP.

Supporting Information
S1 Text. Assessment of the model sensitivity–Cross-Validation analysis.
(DOCX)

S2 Text. Performance assessment in a large scale network.
(DOCX)

S3 Text. Comparison to ILP formulation.
(DOCX)

S1 Fig. Illustration of canonical and observable-controllable pathways.Observable-control-
lable part of the original topology. Numbers 57 species, 88 reactions and serves as starting
point for the Cross-Validation analysis described in the “Results” section.
(EPS)

S2 Fig. Medium scale network–Cross-Validation/Results presentation.We present the sta-
tistical analysis for the medium scale network. We ran the Cross-Validation analysis 500 times.
In Y-axis we present the reactions incidence, while in X-axis we present the network reactions
classified from the larger incidence to the smaller. Additionally, in blue we visualize the net-
work reactions incidence after the 100% of the total runs, while in red we visualize the network
reactions incidence after the 50% of the total runs. The main purpose is to demonstrate that
our computational framework is sensitive to changes in experimental design (hence the ran-
dom data generation), preserving the same generic topology and, thus, it does not favor the
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selection of specific network subsets. The inclusion of 50% and 100% cases, held to reach a con-
vergence threshold prediction of these incidences.
(TIFF)

S3 Fig. Medium scale network–Cross-Validation/Results visualization.We present the sta-
tistical analysis for the medium scale network. We ran the Cross-Validation analysis 500 times.
In Y-axis we present the reactions incidence, while in X-axis we present the network reactions
classified from the larger incidence to the smaller. Additionally, in blue we visualize the net-
work reactions incidence after the 100% of the total runs, while in red we visualize the network
reactions incidence after the 50% of the total runs. The main purpose is to demonstrate that
our computational framework is sensitive to changes in experimental design (hence the ran-
dom data generation), preserving the same generic topology and, thus, it does not favor the se-
lection of specific network subsets. The inclusion of 50% and 100% cases, held to reach a
convergence threshold prediction of these incidences.
(EPS)

S4 Fig. Large scale network-Compressed model. The canonical pathway was constructed
from literature. The experimental scenarios consist of 25 stimuli and 88 measured key phos-
phoproteins, as described properly in “The species translation challenge-A systems biology
perspective on human and rat bronchial epithelial cells” [47]. Numbers 210 species, 473 reac-
tions and this generic topology serves as a starting point for the analysis described in this
paper. The model structure can be compressed substantially to 142 nodes and 195 edges. The
compressed model reflects the essential dependencies in the original network structure, that
can be addressed by the given set of the measured signals. Our solution resulted in a fitting
error of 23, which has thus reduced much in comparison to 70 in original model. Our approach
has successfully negotiated the construction of pathways to best fit the characteristics of the in-
terrogated cell line. The pathway was built and visualized using Graphviz (http://www.
graphviz.org/).
(EPS)

Acknowledgments
The authors would like to thank Dr. Dimitris Tzeranis for fruitful conversations and
accurate observations.

Author Contributions
Analyzed the data: VS. Contributed reagents/materials/analysis tools: VS INM. Wrote the
paper: VS INM TS. Provided the intellectual input for this study, designed and approved the
protocols to be followed in the study, performed manuscript correction and proof reading, and
organized the paper reviews and the response to reviewers: LGA.

References
1. Saez-Rodriguez J., Alexopoulos L.G., Stolovitzky G., (2011) Setting the Standards for Signal Transduc-

tion Research,Science Signaling, 4:10.

2. Pandey A., Mann M., (2000) Proteomics to study genes and genomes,Nature, 405(6788):837–846.
doi: 10.1038/35015709 PMID: 10866210

3. Downward J., (2001) The ins and outs of signalling,Nature, 411(6839):759–762. doi: 10.1038/
35081138 PMID: 11459043

An Algorithmic Approach

PLOS ONE | DOI:10.1371/journal.pone.0128411 May 28, 2015 14 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0128411.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0128411.s007
http://www.graphviz.org/
http://www.graphviz.org/
http://dx.doi.org/10.1038/35015709
http://www.ncbi.nlm.nih.gov/pubmed/10866210
http://dx.doi.org/10.1038/35081138
http://dx.doi.org/10.1038/35081138
http://www.ncbi.nlm.nih.gov/pubmed/11459043


4. Melas I.N., Mitsos A., Messinis E.D., Weiss T., Alexopoulos L.G., (2011) Combined logical and data-
driven models for linking signalling pathways to cellular response,BMC Systems Biology, 5:107. doi:
10.1186/1752-0509-5-107 PMID: 21729292

5. Mitsos A., Melas I.N., Morris M.K, Saez-Rodriguez J., Lauffenburger D.A., Alexopoulos L.G., (2012)
Non Linear Programming (NLP) Formulation for Quantitative Modeling of Protein Signal Transduction
Pathways,PLoS ONE, 7(11):e50085. doi: 10.1371/journal.pone.0050085 PMID: 23226239

6. Cusick E.M., Klitgord N., Vidal M., Hill D.E., (2005) Interactome: gateway into systems biology,Human
Molecular Genetics, 14 (suppl 2):171–181. doi: 10.1093/hmg/ddi335

7. Alexopoulos L.G, Saez-Rodriguez J., Cosgrove D.B., Lauffenburger D.A., Sorger K.P., (2010) Net-
works Inferred from Biochemical Data Reveal Profound Differences in Toll-like Receptor and Inflamma-
tory Signaling between Normal and Transformed Hepatocytes, Molecular and Cellular Proteomics, 9
(9):1849–1865. doi: 10.1074/mcp.M110.000406 PMID: 20460255

8. Chu Y., Jayaraman A., Hahn J., (2007) Parameter sensitivity analysis of IL-6 signalling pathways,IET
Systems Biology, 1(6):342–352. doi: 10.1049/iet-syb:20060053 PMID: 18203580

9. Schoeberl B., Eichler-Jonsson C., Gilles E.D., Muller G., (2002) Computational modeling of the dynam-
ics of the MAP kinase cascade activated by surface and internalized EGF receptors,Nat Biotech, 20
(4):370–375. doi: 10.1038/nbt0402-370

10. Quach M., Brunel N., d’Alché-Buc F., (2007) Estimating parameters and hidden variables in non-linear
state-space models based on ODEs for biological networks inference,Bioinformatics, 23(23):3209–
3216. doi: 10.1093/bioinformatics/btm510 PMID: 18042557

11. Qiu P., Plevritis S.K., (2011) Reconstructing Directed Signed Gene Regulatory Network FromMicroar-
ray Data,Biomedical Engineering, IEEE Transactions on, 58(12):3518–3521. doi: 10.1109/TBME.
2011.2163188

12. Sachs K., Perez O., Pe’er D., Lauffenburger D.A., Nolan P.G., (2005) Causal Protein-Signaling Net-
works Derived fromMultiparameter Single-Cell Data,Science, 308(5721):523–529. doi: 10.1126/
science.1105809 PMID: 15845847

13. Klamt S., Saez-Rodriguez J., Lindquist J., Simeoni L., Gilles E.D., (2006) A methodology for the struc-
tural and functional analysis of signaling and regulatory networks, BMC Bioinformatics, 7:56. doi: 10.
1186/1471-2105-7-56 PMID: 16464248

14. Morris M.K., Saez-Rodriguez J., Sorger K.P., Lauffenburger A.D., (2010) Logic-Based Models for the
Analysis of Cell Signaling Networks, Biochemistry, 49(15):3216–3224. doi: 10.1021/bi902202q PMID:
20225868

15. Wang R.S., Saadatpour A., Albert R., (2012) Boolean modeling in systems biology: an overview of
methodology and applications,Physical Biology, 9(5):055001. doi: 10.1088/1478-3975/9/5/055001
PMID: 23011283

16. Bosl J.W., (2007) Systems biology by the rules: hybrid intelligent systems for pathway modeling and
discovery,BMC Systems Biology, 1:13. doi: 10.1186/1752-0509-1-13 PMID: 17408503

17. Morris M.K., Saez-Rodriguez J., Clarke D., Sorger K.P., Lauffenburger D.A., (2011) Training Signaling
Pathway Maps to Biochemical Data with Constrained Fuzzy Logic: Quantitative Analysis of Liver Cell
Responses to Inflammatory Stimuli,PLoS Comput Biol, 7(3):e1001099. doi: 10.1371/journal.pcbi.
1001099 PMID: 21408212

18. Aldridge B.B., Saez-Rodriguez J., Muhlich L.J., Sorger K.P., Lauffenburger D.A., (2009) Fuzzy Logic
Analysis of Kinase Pathway Crosstalk in TNF/EGF/Insulin-Induced Signaling,PLoS Comput Biol, 5(4):
e1000340. doi: 10.1371/journal.pcbi.1000340 PMID: 19343194

19. Zheng Y., Rundell A., (2006) Comparative study of parameter sensitivity analyses of the TCR-activated
erk-MAPK signalling pathway, Systems Biology, IEE Proceedings, 153(4):201–211.

20. Kholodenko N.B., Kiyatkin A., Bruggeman J.F., Sontag E., Westerhoff V.H., Hoek J.B., (2002) Untan-
gling the wires: A strategy to trace functional interactions in signaling and gene networks, Proceedings
of the National Academy of Sciences, 99(20):12841–12846. doi: 10.1073/pnas.192442699

21. Gutierrez-Rios R.M.,Rosenblueth A. D., Loza J.A., Huerta M.A., Glasner D.J., Blattner FR., et al.,
(2003) Regulatory Network of Escherichia coli: Consistency Between Literature Knowledge and Micro-
array Profiles, Genome Research, 13(11):2435–2443. doi: 10.1101/gr.1387003 PMID: 14597655

22. Guziolowski C., Bourde A., Moreews F., Siegel A., (2009) BioQuali Cytoscape plugin: analysing the
global consistency of regulatory networks,BMCGenomics, 10:244. doi: 10.1186/1471-2164-10-244
PMID: 19470162

23. Melas I.N., Kretsos K., Alexopoulos L.G., (2013) Leveraging systems biology approaches in clinical
pharmacology, Pharmaceutics and Drug Disposition, 34(9):477–488. doi: 10.1002/bdd.1859

An Algorithmic Approach

PLOS ONE | DOI:10.1371/journal.pone.0128411 May 28, 2015 15 / 17

http://dx.doi.org/10.1186/1752-0509-5-107
http://www.ncbi.nlm.nih.gov/pubmed/21729292
http://dx.doi.org/10.1371/journal.pone.0050085
http://www.ncbi.nlm.nih.gov/pubmed/23226239
http://dx.doi.org/10.1093/hmg/ddi335
http://dx.doi.org/10.1074/mcp.M110.000406
http://www.ncbi.nlm.nih.gov/pubmed/20460255
http://dx.doi.org/10.1049/iet-syb:20060053
http://www.ncbi.nlm.nih.gov/pubmed/18203580
http://dx.doi.org/10.1038/nbt0402-370
http://dx.doi.org/10.1093/bioinformatics/btm510
http://www.ncbi.nlm.nih.gov/pubmed/18042557
http://dx.doi.org/10.1109/TBME.2011.2163188
http://dx.doi.org/10.1109/TBME.2011.2163188
http://dx.doi.org/10.1126/science.1105809
http://dx.doi.org/10.1126/science.1105809
http://www.ncbi.nlm.nih.gov/pubmed/15845847
http://dx.doi.org/10.1186/1471-2105-7-56
http://dx.doi.org/10.1186/1471-2105-7-56
http://www.ncbi.nlm.nih.gov/pubmed/16464248
http://dx.doi.org/10.1021/bi902202q
http://www.ncbi.nlm.nih.gov/pubmed/20225868
http://dx.doi.org/10.1088/1478-3975/9/5/055001
http://www.ncbi.nlm.nih.gov/pubmed/23011283
http://dx.doi.org/10.1186/1752-0509-1-13
http://www.ncbi.nlm.nih.gov/pubmed/17408503
http://dx.doi.org/10.1371/journal.pcbi.1001099
http://dx.doi.org/10.1371/journal.pcbi.1001099
http://www.ncbi.nlm.nih.gov/pubmed/21408212
http://dx.doi.org/10.1371/journal.pcbi.1000340
http://www.ncbi.nlm.nih.gov/pubmed/19343194
http://dx.doi.org/10.1073/pnas.192442699
http://dx.doi.org/10.1101/gr.1387003
http://www.ncbi.nlm.nih.gov/pubmed/14597655
http://dx.doi.org/10.1186/1471-2164-10-244
http://www.ncbi.nlm.nih.gov/pubmed/19470162
http://dx.doi.org/10.1002/bdd.1859


24. Saez-Rodriguez J., Alexopoulos L.G., Epperlein J., Samaga R., Lauffenburger D.A., Klamt S., et al.,
(2009) Discrete logic modelling as a means to link protein signalling networks with functional analysis
of mammalian signal transduction,Molecular Systems Biology, 5:331. doi: 10.1038/msb.2009.87 PMID:
19953085

25. Siegel A., Radulescu O., Le Borgne M., Veber P., Ouy J., (2006) Qualitative analysis of the relation be-
tween DNAmicroarray data and behavioral models of regulation networks,Biosystems, 84(2):153–174.
doi: 10.1016/j.biosystems.2005.10.006 PMID: 16556482

26. Kim D.H., Shay T., O’Shea E.K., Regev A., (2009) Transcriptional Regulatory Circuits: Predicting Num-
bers from Alphabets,Science, 325(5939):429–432. doi: 10.1126/science.1171347 PMID: 19628860

27. Ma’ayan A., (2009) Insights into the Organization of Biochemical Regulatory Networks Using Graph
Theory Analyses, Journal of Biological Chemistry, 284(9):5451–5455. doi: 10.1074/jbc.R800056200
PMID: 18940806

28. González A., Kageyama R., (2010) Automatic reconstruction of the mouse segmentation network from
an experimental evidence database, Biosystems, 102(1):16–21. doi: 10.1016/j.biosystems.2010.07.
013 PMID: 20682331

29. Vasilyev D. M., Thomson T.M., Frushour B.P., Martin F., Sewer A., (2014). An algorithm for score ag-
gregation over causal biological networks based on randomwalk sampling. BMCResearch Notes, 7
(1), 516. doi: 10.1186/1756-0500-7-516 PMID: 25113603

30. Lipshtat A., Neves S.R., Iyengar R., (2009) Specification of Spatial Relationships in Directed Graphs of
Cell Signaling Networks, Annals of the New York Academy of Sciences, 1158(1):44–56. doi: 10.1111/j.
1749-6632.2008.03748.x PMID: 19348631

31. Eungdamrong N.J., Iyengar R., (2004). Computational approaches for modeling regulatory cellular net-
works. Trends in Cell Biology, 14(12), 661–669. doi: 10.1016/j.tcb.2004.10.007 PMID: 15564042

32. Kramer A., Green J., Pollard J., Tugendreich S., (2014). Causal analysis approaches in Ingenuity Path-
way Analysis. Bioinformatics, 30(4), 523–530. doi: 10.1093/bioinformatics/btt703 PMID: 24336805

33. Klamt S., Saez-Rodriguez J., Gilles E.D., (2007) Structural and functional analysis of cellular networks
with CellNetAnalyzer,BMC Systems Biology, 1:2. doi: 10.1186/1752-0509-1-2 PMID: 17408509

34. Floyd RW, 1962. Algorithm 97: Shortest path. Commun. ACM 5, 6 (June 1962), 345-.

35. Chindelevitch L., Ziemek D., Enayetallah A., Randhawa R., Sidders B., Brockel C., et al. (2012) Causal
reasoning on biological networks: interpreting transcriptional changes, Bioinformatics, 28 (8): 1114–
1121. doi: 10.1093/bioinformatics/bts090 PMID: 22355083

36. MacNamara A., Terfve C., Henriques D., Peñalver Bernabé B., Saez-Rodriguez J., (2012) State–time
spectrum of signal transduction logic models,Physical Biology, 9(4):045003. doi: 10.1088/1478-3975/9/
4/045003 PMID: 22871648

37. Sedgewick R., Graph Algorithms, Algorithms in C, Vol. 1, 2nd edn, Princeton University, New Jersey,
1990, pp. 485–521.

38. Saez-Rodriguez J., Alexopoulos L.G., Zhang M., Morris M.K.,Lauffenburger D.A., Sorger P.K., (2011)
Comparing Signaling Networks between Normal and Transformed Hepatocytes Using Discrete Logical
Models,Cancer Research, 71(16):5400–5411. doi: 10.1158/0008-5472.CAN-10-4453 PMID:
21742771

39. Melas I.N., Chairakaki A.D., Chatzopoulou E.I., Messinis D.E., Katopodi T., Pliaka V., et al., (2014)
Modeling of signaling pathways in chondrocytes based on phosphoproteomic and cytokine release
data, Osteoarthritis and Cartilage, 22(3):509–518. doi: 10.1016/j.joca.2014.01.001 PMID: 24457104

40. Samaga R., Saez-Rodriguez J., Alexopoulos L.G., Sorger K.P., Klamt S., (2009) The Logic of EGFR/
ErbB Signaling: Theoretical Properties and Analysis of High-Throughput Data,PLoS Comput Bio, 5(8):
e1000438. doi: 10.1371/journal.pcbi.1000438

41. Melas I.N., Mitsos A., Messinis D.E., Weiss T.S., Rodriguez J.S. et al., (2012) Construction of large sig-
naling pathways using an adaptive perturbation approach with phosphoproteomic data, Mol. BioSyst.,
8(5): 1571–1584. doi: 10.1039/c2mb05482e PMID: 22446821

42. Mitsos A., Melas I.N., Siminelakis P., Chairakaki D.A.,Saez-Rodriguez J., Alexopoulos L.G., (2009)
Identifying Drug Effects via Pathway Alterations using an Integer Linear Programming Optimization
Formulation on Phosphoproteomic Data,PLoS Comput Biol, 5(12):e1000591. doi: 10.1371/journal.
pcbi.1000591 PMID: 19997482

43. Gebser M., Schaub T., Thiele S., Veber P., (2011) Detecting inconsistencies in large biological net-
works with answer set programming,Theory and Practice of Logic Programming, 11(2–3: ):323–360.
doi: 10.1017/S1471068410000554

An Algorithmic Approach

PLOS ONE | DOI:10.1371/journal.pone.0128411 May 28, 2015 16 / 17

http://dx.doi.org/10.1038/msb.2009.87
http://www.ncbi.nlm.nih.gov/pubmed/19953085
http://dx.doi.org/10.1016/j.biosystems.2005.10.006
http://www.ncbi.nlm.nih.gov/pubmed/16556482
http://dx.doi.org/10.1126/science.1171347
http://www.ncbi.nlm.nih.gov/pubmed/19628860
http://dx.doi.org/10.1074/jbc.R800056200
http://www.ncbi.nlm.nih.gov/pubmed/18940806
http://dx.doi.org/10.1016/j.biosystems.2010.07.013
http://dx.doi.org/10.1016/j.biosystems.2010.07.013
http://www.ncbi.nlm.nih.gov/pubmed/20682331
http://dx.doi.org/10.1186/1756-0500-7-516
http://www.ncbi.nlm.nih.gov/pubmed/25113603
http://dx.doi.org/10.1111/j.1749-6632.2008.03748.x
http://dx.doi.org/10.1111/j.1749-6632.2008.03748.x
http://www.ncbi.nlm.nih.gov/pubmed/19348631
http://dx.doi.org/10.1016/j.tcb.2004.10.007
http://www.ncbi.nlm.nih.gov/pubmed/15564042
http://dx.doi.org/10.1093/bioinformatics/btt703
http://www.ncbi.nlm.nih.gov/pubmed/24336805
http://dx.doi.org/10.1186/1752-0509-1-2
http://www.ncbi.nlm.nih.gov/pubmed/17408509
http://dx.doi.org/10.1093/bioinformatics/bts090
http://www.ncbi.nlm.nih.gov/pubmed/22355083
http://dx.doi.org/10.1088/1478-3975/9/4/045003
http://dx.doi.org/10.1088/1478-3975/9/4/045003
http://www.ncbi.nlm.nih.gov/pubmed/22871648
http://dx.doi.org/10.1158/0008-5472.CAN-10-4453
http://www.ncbi.nlm.nih.gov/pubmed/21742771
http://dx.doi.org/10.1016/j.joca.2014.01.001
http://www.ncbi.nlm.nih.gov/pubmed/24457104
http://dx.doi.org/10.1371/journal.pcbi.1000438
http://dx.doi.org/10.1039/c2mb05482e
http://www.ncbi.nlm.nih.gov/pubmed/22446821
http://dx.doi.org/10.1371/journal.pcbi.1000591
http://dx.doi.org/10.1371/journal.pcbi.1000591
http://www.ncbi.nlm.nih.gov/pubmed/19997482
http://dx.doi.org/10.1017/S1471068410000554


44. Melas I.N., Samaga R., Alexopoulos L.G., Klamt S., (2013) Detecting and Removing Inconsistencies
between Experimental Data and Signaling Network Topologies Using Integer Linear Programming on
Interaction Graphs, PLoS Comput Biol, 9(9):e1003204. doi: 10.1371/journal.pcbi.1003204 PMID:
24039561

45. Feiglin A., Hacohen A., Sarusi A., Fisher J., Unger R., Ofran Y., (2012) Static network structure can be
used to model the phenotypic effects of perturbations in regulatory networks,Bioinformatics, 28
(21):2811–2818. doi: 10.1093/bioinformatics/bts517 PMID: 22923292

46. Butcher E.C. (2005) Can cell systems biology rescue drug discovery?, Nature Reviews Drug Discov-
ery, 4:461–467. doi: 10.1038/nrd1754 PMID: 15915152

47. Poussin C., Mathis C., Alexopoulos l.G., Messinis E.D., Dulize H J.R., Belcastro V., et al., (2014) The
species translation challenge-A systems biology perspective on human and rat bronchial epithelial
cells,Scientific Data, 1:140009. doi: 10.1038/sdata.2014.9

An Algorithmic Approach

PLOS ONE | DOI:10.1371/journal.pone.0128411 May 28, 2015 17 / 17

http://dx.doi.org/10.1371/journal.pcbi.1003204
http://www.ncbi.nlm.nih.gov/pubmed/24039561
http://dx.doi.org/10.1093/bioinformatics/bts517
http://www.ncbi.nlm.nih.gov/pubmed/22923292
http://dx.doi.org/10.1038/nrd1754
http://www.ncbi.nlm.nih.gov/pubmed/15915152
http://dx.doi.org/10.1038/sdata.2014.9

