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To study Megalobrama amblycephala adaption to water hypoxia, the changes in

physiological levels, innate immune responses, redox balance ofM.amblycephala during

hypoxia were investigated in the present study. When M. amblycephala were exposed

to different dissolved oxygen (DO) including control (DO: 5.5mg/L) and acute hypoxia

(DO: 3.5 and 1.0mg/L, respectively), hemoglobin (Hb), methemoglobin (MetHb), glucose,

Na+, succinatedehydrogenase (SDH), lactate, interferon alpha (IFNα), and lysozyme

(LYZ), except hepatic glycogen and albumin gradually increased with the decrease of

DO level. When M. amblycephala were exposed to different hypoxia time including 0.5

and 6 h (DO: 3.5mg/L), and then reoxygenation for 24 h after 6 h hypoxia, Hb, MetHb,

glucose, lactate, and IFNα, except Na+, SDH, hepatic glycogen, albumin, and LYZ

increased with the extension of hypoxia time, while the above investigated indexes

(except albumin, IFNα, and LYZ) decreased after reoxygenation. On the other hand,

the liver SOD, CAT, hydrogen peroxide (H2O2), and total ROS were all remained at

lower levels under hypoxia stress. Finally, Hif-1α protein in the liver, spleen, and gill

were increased with the decrease of oxygen concentration and prolongation of hypoxia

time. Interestingly, one Hsp70 isoforms mediated by internal ribozyme entry site (IRES)

named junior Hsp70 was only detected in liver, spleen and gill. Taken together, these

results suggest that hypoxia affects M. amblycephala physiology and reduces liver

oxidative stress. Hypoxia-reoxygenation stimulatesM. amblycephala immune parameter

expressions, while Hsp70 response to hypoxia is tissue-specific.
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INTRODUCTION

Oxygen is critical for both terrestrial and aquatic aerobic
organisms. Most of the organisms need molecular oxygen to
support metabolic processes (Chandel and Schumacker, 2000).
Compared with terrestrial environments, aquatic environments
exhibit much wider temporal and spatial variations in oxygen
concentration, and water contains extremely lower oxygen in
the same volume of air at the same atmosphere pressure
(Rytkönen et al., 2007). As a result, aquatic organisms are
frequently exposed to variations in oxygen levels. In most cases,
they will usually respond by escaping to other environments
when encountering hypoxia condition. However, if hypoxia is
unavoidable, aquatic organisms including fish have to make
responses either by increasing oxygen transfer to tissues or
reducing oxygen consumption through metabolic depression to
survive (Moraes et al., 2002; Douxfils et al., 2012).

The earlier studies of fish under hypoxia stress are focused
on tissue changes including blood, heart, gill, and brain. In
rainbow trout, hypoxia markedly decreases the oxygen uptake
effectiveness in blood (Randall et al., 1967), whereas during
progressive hypoxia, the rate of oxygen uptake does not alter
(Holeton and Randall, 1967b). During hypoxia the percentage
saturation of both arterial and venous blood are decreased, while
blood pressure in the dorsal and ventral aortae increases, all
these changes are associated with a marked bradycardia in fish
after hypoxia stress (Holeton and Randall, 1967a). Bradycardia
does not affect fish cardiac output but stroke volume of cardiac
enhanced, and vascular resistance to blood flow correspondingly
increased (Holeton and Randall, 1967b; Butler and Taylor, 1975).
Hypoxia also increases fish Hb-O2 affinity and oxygen capacity,
and directly provides higher and more stable effectiveness of
oxygen uptake in blood; however the total PO2 is till decreased
(Holeton and Randall, 1967b;Wood and Johansen, 1972). During
hypoxia, the ATP concentration and ATP:Hb ratio in the red
cells decreased (Wood et al., 1975), further demonstrate that
the erythrocytic ATP:Hb4 molar ratios declined with increasing
hypoxic stress as did the pH gradient between the erythrocyte
and plasma (Boutilier et al., 1988). Hypoxia leads to the fish
bradycardia, while the cardiac output is regulated by changes
in the stroke volume not heart rate (Hemmingsen et al., 1972).
Long period of hypoxia has no effect on fish heart functions but
leads to the decrease of myocardial glycogen concentration and
the occurrence of mitochondrial necrosis (Leknes, 1985; Lennard
and Huddart, 1992). Primarily, fish moves higher in the water
column, increases gill ventilation and exhibits aquatic surface
respiration during aquatic hypoxia (Urbina et al., 2011). Gills
display protruding lamellae after 1 day of hypoxia and reach
its greatest extent after 7 days, and the changes are completely
reversible after 7 days reoxygenation (Sollid et al., 2003). The
capillary diameter of fish brain increases after hypoxia, and 90
min hypoxia leads to the disappearance of brain pyruvate kinase
(Scheich et al., 1972; Lushchak, 1993). Brain sensitivity to hypoxia
in fish is reflected by changes in extracellular K+ activity, and in
the hypoxia-tolerant fish crucian carp the Na+/K+-ATPase level
in hypoxia crucian carp brain is maintained (Hylland et al., 1997).

The recent studies show that some hematological parameters
including red and white blood cell count, hematocrit and
hemoglobin concentrations are significantly increased after
hypoxia treatment in fish (Petersen and Gamperl, 2011; Richards,
2011; Ni et al., 2014). Meanwhile, the biochemical parameters,
such as blood glucose, lactate, corticosteroids, ATP, and GTP are
also altered under hypoxia (Rees et al., 2009; Omlin and Weber,
2010; Urbina and Glover, 2012; Ni et al., 2014). During hypoxia,
metabolic activity decreases and most of the energy will be used
for the maintenance of primary physiological functions, probably
leading to the changes of the immune defense. It is reported that
in Eurasian perch and Catla, the lysozyme activity is significantly
decreased under hypoxia conditions (Douxfils et al., 2012; Singh
et al., 2016).

During the aerobic metabolism, the negative tetravalent atom
of O2 produces water at the end of the mitochondrial electron
transport chain, while negative monovalent atom of O2 generates
several reactive oxygen species (ROS) such as superoxide anions
(O−•

2 ), hydroxyl anions (OH−•), and hydrogen peroxide (H2O2)
(Turrens, 2003). These ROS have damage effect on organisms
including induction of oxidation of proteins, DNA and steroid
components, and peroxidation of unsaturated lipids in cell
membranes (Chance et al., 1979; Southorn and Powis, 1988). To
minimize the detrimental influence of ROS, aerobic organisms
have evolved enzymatic antioxidant mechanism accompanying
the formation of antioxidant defenses such as superoxide
dismutases (SOD), catalases (CAT), and glutathione (GSH), to
scavenge the superoxide radicals and hydrogen peroxide for
maintaining the homeostasis (Scandalios, 2005; Kobayashi and
Yamamoto, 2006). SOD catalyzes the dismutation of O−•

2 to
H2O2, and CAT and glutathione peroxidases (GSH-Px) reduce
H2O2 to H2O (Scandalios, 2005). When the ROS generation
exceeds their removal, oxidative stress occurs. It has been
reported that hyperoxia or even hypoxia alters cellular ROS levels
in fish (Ross et al., 2001; Cooper et al., 2002; Garcia Sampaio
et al., 2008). In some fish species, hypoxia alone causes elevation
of the activities of enzymes involved in antioxidant defense
(Lushchak et al., 2001, 2005; Lushchak and Bagnyukova, 2007),
while in other fish species the antioxidant enzyme activities are
decreased or/and unchanged in hypoxia stress (Leveelahti et al.,
2014; Huang et al., 2015; Ransberry et al., 2016). Moreover,
ROS-detoxifying enzyme activities rather than direct reactive
intermediate levels are investigated in most experiments to
indicate the altered status of ROS in hypoxia.

Megalobrama amblycephala (Wuchang bream) as an
important freshwater fish has been cultured for half a century,
whereas intensive aquaculture has brought lots of problems,
such as crowding and hypoxia. More seriously, the absence of
oxygen in water usually causes the large-scale suffocation death
of M. amblycephala, thus resulting in great economic losses. In
the present study, M. amblycephala were treated by different
dissolved oxygen (DO) concentration and hypoxia time to
systematically study their responses to hypoxia in physiological
and immune levels by evaluating blood parameters. In addition,
oxidative stress status in hypoxia was studied by analyzing
ROS and related antioxidant enzymes in liver. Finally, the
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distributions of the stress response proteins in different tissues
were also investigated.

MATERIALS AND METHODS

Experimental Fish
JuvenileM. amblycephala (mean weight 50± 10 g) were obtained
from Tuanfeng breeding base in Hubei province, China. The
fish were acclimated for 2 weeks with daily diet under a 14/10 h
day/night photoperiod cycle at 25◦C in one 500 L tank with
circulating water system.

Hypoxia Stress
The DO concentration was maintained by flowing the nitrogen
gas into the 100 L hermetic tank by a self-designed automatic
hypoxia control machine. The DO concentration was set based
on the previous studies (Wang et al., 2015). Fish were randomly
divided into DO level groups (n = 5 for each group): the
control (CTRL-5.5, DO: 5.5 ± 0.2mg/L), acute hypoxia 1 group
(aH1-3.5, DO: 3.5 ± 0.2mg/L for 0.5 h), and acute hypoxia
2 group (aH2-1.0, DO: 1.0 ± 0.2mg/L for 0.5 h); hypoxia
time groups: comparable-acute hypoxia group (cH-0.5h, DO:
3.5 ± 0.2mg/L for 0.5h), comparable-acute hypoxia 1 group
(cH1-6h, DO: 3.5 ± 0.2 mg/L for 6 h), and reoxygenation
group (rH-24h, DO: 3.5mg/L for 6 h and then recovered
to DO: 5.5mg/L for 24 h). The aH1-3.5 (from DO level
groups) and cH-0.5h (from hypoxia time groups) were treated
with same hypoxia conditions and the samples were shared.
Fish were immediately anesthetized with MS-222 (150mg/L),
and sampled at the end of each experimental period when
fish gill ventilation ceased. Fish were not fed during the
experiment.

All investigations were conducted in accordance with the
ethical standards and according to the national and international
guidelines, and this study has been approved by the Institutional
Animal Care and Use Committee (IACUC) of Huazhong
Agricultural University, Wuhan, China.

Blood and Tissue Sampling
Blood samples were taken gently from the caudal vein by 1mL
plastic syringe without heparin sodium. These samples were
incubated at 37◦C for 2 h and clotted at 4◦C, then centrifuged
at 4,000 g for 10 min to obtain the serum.

Tissues including liver, spleen, brain, gill and kidney were
excised and subsequently frozen in liquid nitrogen. The frozen
samples were then thawed and homogenized individually using
TissueLyser

∏
(Qiagen, Germany) at the frequency of 30 Hz for

5 min in ice-cold RIPA lysis buffer at a ratio of 1:10 (Cowin
Biotech, China). The homogenates were further centrifuged at
12,000 g for 10 min at 4◦C, and the supernatant was used for
western blot analysis. Liver was also homogenized in 0.65%
(m/V) brine at a ratio of 1:10, and after centrifugation, the
supernatant was used for enzyme activity assays. All the protein
concentrations were determined by bicinchoninic acid (BCA)
protein determination kit (Dingguo, China) according to the
instructions.

FIGURE 1 | Effect of hypoxia upon hemoglobin (Hb), methemoglobin (MetHb),

and glucose (A), Na+, succinatedehydrogenase (SDH) and lactate (B), and

hepatic glycogen (C) concentrations in Megalobrama amblycephala.

CTRL-5.5, the control; aH1-3.5 and aH2-1.0, acute hypoxia at 1.0 and 3.5

mg/L of DO last for 0.5 h, respectively; cH-0.5h and cH1-6h,

comparable-acute hypoxia (DO: 3.5 mg/L) last for 0.5 and 6 h, respectively;

rH-24h, hypoxia (DO: 3.5 mg/L) last for 6 h and then recover to DO: 5.5 mg/L

for 24 h. Three different DO level groups are individually analyzed and indicated

with capital letters, while three hypoxia time condition groups are also

separately analyzed and showed with lowercase letters. Different letters above

bars represent significant difference (p < 0.05), and the same letters above

bars indicate no significant difference. Values are mean ± S.D.; N = 5 for every

groups.

Hematological and Biochemical Assays
Hemoglobin (Hb) concentration was determined with Drabkin’s
reagent as an absorbance at 540 nm. MetHb was computed
from Hb by double-wavelength spectrophotometry method
(Sakata et al., 1982). Biochemical parameters including Na+,
glucose, lactate, and hepatic glycogen were determined by
commercial kits according to chromogenic ionophore-based
method (Kumar et al., 1988), glucose oxidase/peroxidase method
(Trinder, 1969), p-phenilphenol method (Harrower and Brown,
1972), and modified glycogen method (Bidinotto et al., 1997),
respectively.

ROS and Antioxidant Defense Assays in
Liver
An oxidant-sensing fluorescent probe 2′,7′-
dichlorodihydrofluorescein diacetate (DCFH-DA) was used
to determine the total status of ROS as previously described (Li
et al., 1999; Cash et al., 2007). Other two reactive intermediates,
H2O2 and nitric oxide (NO) were determined by phenol red
(Pick and Mizel, 1981) and hemoglobin methods (Murphy and
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FIGURE 2 | Serum albumin, interferon alpha (IFNα) and lysozyme (LYZ) levels in M. amblycephala after hypoxia treatment. Three different DO level groups are

individually analyzed and indicated with capital letters, while three hypoxia time condition groups are also separately analyzed and showed with lowercase letters.

Different letters above bars represent significant difference (p < 0.05), and the same letters above bars indicate no significant difference. Values are mean ± S.D.;

N = 5 for every groups.

Noack, 1994), respectively. The SOD activity was measured
based on the ability of the enzyme to inhibit the reduction of
nitro blue tetrazolium (NBT) by superoxide radicals (Crouch
et al., 1981). The CAT activity was measured using the catalase
assay kit (Jiancheng, China).

Immune Parameter Detection
Serum albumin was evaluated following the bromcresol green
(BCG) method (Barber and Stanhope, 1992). Serum interferon
alpha (IFNα) protein level was studied with the ELISA
kit (Jiancheng, China). Serum lysozyme (LYZ) activity in
mixing serum sample (20µL) with 200µL Micrococcus luteus
solution was measured for transmittance at 530 nm after 15min
incubation at 37◦C, and assessed by comparing transmittance
values with reference standards.

Western Blot Analysis
Total proteins from M. amblycephala liver, spleen, brain, gill,
and kidney (n = 5 for each group) were quantified and
separated on 8% SDS-PAGE, then transferred to nitrocellulose
membranes. The membranes were incubated for 2 h with
polyclonal antibodies, Hif-1α (1:500) and Hsp70 (1:200) (Boster,
China), respectively, and then anti-rabbit IRDye 800CW-labeled
secondary antibody (1:10,000) at room temperature for 1 h, and
observed using Odyssey Fc machine (Licor Biosciences, USA).
Gray values of every band were further calibrated and measured
by ImageJ 1.46r (NIH, USA).

Statistics
Statistical analysis was performed using SPSS 16.0 software.
Data from each groups were, respectively, analyzed by
the one-way ANOVA test followed by the Duncan’s
new multiple range tests. Data were represented as
mean ± S.D. and p < 0.05 was considered statistically
significant.

RESULTS

Hypoxia Significantly Increased
Hematological and Biochemical
Parameters
Compared with the control, the Hb and MetHb concentrations
increased with the decrease of oxygen concentration and the
prolongation of hypoxia time, however, after 24 h reoxygenation,
their concentrations returned to the normal levels (Figure 1A).
Glucose contents increased in an oxygen concentration-, but not
hypoxia time- dependent manner, and recovered to the normal
levels after reoxygenation (Figure 1A).

Na+ concentration gradually increased with the decrease
of DO concentration, whereas it decreased with the
prolongation of hypoxia time, and recovered to the normal
levels after reoxygenation (Figure 1B). SDH activity showed
the same tendency with Na+ during hypoxia treatment.
Additionally, with the decrease of DO and prolongation
of hypoxia time, lactate concentration increased and
reached the maximum (268.43 mmol/L) at moderate
hypoxia (DO: 3.5mg/L) treatment for 6 h (Figure 1B). On
the other hand, the hepatic glycogen concentration was
continuously decreased during hypoxia and reoxygenation
(Figure 1C).

Hypoxia Stimulated M. amblycephala

Immune Activity
The albumin concentration declined in hypoxia, but returned
to the normal level after reoxygenation. Conversely, the
IFNα content showed an increase tendency with the
decrease of DO concentration and prolongation of hypoxia
time. The LYZ level significantly increased after hypoxia
treatment. It should be emphasized that the albumin, IFNα,
and LYZ concentrations were stayed at higher levels after
hypoxia-reoxygenation compared to the control (∼2.1-
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FIGURE 3 | Hydrogen peroxide (H2O2) concentration, superoxide dismutase

(SOD), and catalases (CAT) activity (A), nitric oxide (NO) concentration (B), and

total reactive oxygen species (ROS) (C) in M. amblycephala liver after hypoxia

treatment. Three different DO level groups are individually analyzed and

indicated with capital letters, while three hypoxia time condition groups are

also separately analyzed and showed with lowercase letters. Different letters

above bars represent significant difference (p < 0.05), and the same letters

above bars indicate no significant difference. Values are mean ± S.D.; N = 5

for every groups.

and 1.8-fold increase for IFNα and LYZ, respectively;
Figure 2).

Hypoxia Generally Decreased Antioxidant
Enzyme Activities and ROS Production
The activities of antioxidant enzymes, SOD, and CAT were
detected in the liver, and the results indicated that both SOD
and CAT activities were declined with the decrease of DO
concentration and reached the minimum level (16.73 and
15.46 U/mg, respectively) under severe acute hypoxia (DO:
1.0mg/L) condition (Figure 3A). Interestingly, the concentration
of H2O2, the CAT substrate, also showed the similar change
tendency with the SOD and CAT activities. After hypoxia-
reoxygenation, SOD and CAT activities increased and were
comparable to the control (T-test: p-values for SOD and CAT
are 0.272 and 0.052, respectively). The NO content increased
with the decrease of DO and prolongation of hypoxia time
(Figure 3B). The total ROS concentration fluctuated under
hypoxia, which decreased at 0.5 h hypoxia (DO: 3.5 mg/L)
treatment, but significantly increased when DO was continually
dropped to 1.0 mg/L (Figure 3C). As shown in Figure 3, these
detected reactive species H2O2 and ROS were all retained a

lower level in hypoxia but a higher level in normoxia or
reoxygenation.

Hypoxia Response in M. amblycephala

Was Tissue-Specific
The key hypoxia response factor, Hif-1α protein was induced
by hypoxia in liver, spleen, brain, gill and kidney (Figure 4).
Hif-1α levels were gradually increased in oxygen concentration-
and hypoxia time-dependent manner in liver, spleen, and
gill, while in brain and kidney, Hif-1α was firstly increased
and then decreased. Meanwhile, the more accumulation of
Hif-1α protein was observed with the prolongation of hypoxia
time in liver, spleen, brain, and especially in gill. However,
after 24 h hypoxia-reoxygenation, Hif-1α was decreased
(Figure 4).

The two Hsp70 isoforms including the junior one generated
by IRES were detected in liver, spleen, brain, gill, and kidney
of M. amblycephala. The two isoforms in liver had similar
expression tendency which remained at higher levels during
hypoxia treatment and decreased after hypoxia-reoxygenation.
In spleen and gill, the senior Hsp70 had higher levels in
normoxia or hypoxia-reoxygenation, while the junior one
increased after hypoxia treatment. In brain and kidney, the
junior Hsp70 was undetectable, but the senior one responded to
hypoxia in oxygen concentration- and time-dependent manner
(Figure 4).

DISCUSSION

In order to provide insight into mechanisms of the hypoxia
adaptation in physiology, immune response and oxidative stress
in M. amblycephala, some well-known hypoxia indicators,
Hb, MetHb, glucose, lactate, glucose, and hepatic glycogen
concentrations were investigated after hypoxia stress, and
showed the consistency with the previous studies, for instance,
Hb and MetHb, functioning in oxygen transport and utilization
are induced when the pressure of oxygen decreases in blood
(Grek et al., 2011). Our results show that Hb and MetHb
are more significantly induced at 6 h for moderate hypoxia
treatment, suggesting that Hb and MetHb may be more
sensitive to hypoxia time rather than oxygen levels in fish.
Na+ influx in fish erythrocytes can indicate the activation
of Na+/H+ exchanger and the increase of the pH value,
inducing a decrease of hemoglobin affinity to oxygen in
fish erythrocytes, as a result the oxygen is delivered into
tissues (Nikinmaa, 1992; Reid and Perry, 1994; Nielsen,
1997). In this study, Na+ stayed at high levels with the
decrease of DO, but decreased at 6 h for hypoxia, indicating
that Na+ probably flows into M. amblycephala erythrocytes
(Figure 1). SDH is involved in both the citric acid cycle and
respiratory electron transfer chain (Rutter et al., 2010), and
its activity under hypoxia stress was obviously increased in
M. amblycephala.

During the hypoxia treatment, glucose increased while the
hepatic glycogen content decreased, which has also been reported
in fish and other species (Routley et al., 2002; Douxfils et al.,
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FIGURE 4 | Western blot analysis of Hif-1α and Hsp70 proteins in different tissues after hypoxia treatment in M. amblycephala. CTRL-5.5, the control; aH1-3.5 and

aH2-1.0, acute hypoxia at 1.0 and 3.5mg/L of DO last for 0.5 h, respectively; cH-0.5h and cH1-6h, comparable-acute hypoxia (DO: 3.5mg/L) last for 0.5 and 6 h,

respectively; rH-24h, hypoxia (DO: 3.5mg/L) last for 6 h and then recover to DO: 5.5mg/L for 24 h. The lower band in liver, spleen and gill is the junior Hsp70 protein

generated by IRES-mediated translation. The left sides are western blot result, while the right sides are corresponding ratio of gray values of Hif-1α and Hsp70 proteins.

2012; Polak et al., 2013). It is suspected that hepatic glycogen
is the primary source of glucose, when animals are subjected to
acute hypoxia, glycogenolysis is enhanced and hepatic glucose
is released to blood to provide sufficient blood glucose and
energy (through anaerobic glycolysis), thus ensure adequate basal
metabolism for organism survival (Chen et al., 2007). Therefore,
glucose homeostasis during the hypoxia treatment depends
primarily on hepatic glucose output (Wahren and Ekberg, 2007).

It is well-known that the ROS increase naturally stimulates
the activities of antioxidant enzymes, SOD, CAT, GSH-Px, GST,
etc. to remove ROS (Niki, 2010). However, the increase of
antioxidant enzyme activities does not mean the ROS generation,
or vice versa, especially under combined-factor conditions.
Additionally, the antioxidant enzyme levels could only reflect
the antioxidant capacity rather than the status of oxidative
stress. Thus, the levels of the reactive intermediates, H2O2

and ROS are analyzed and the results showed that hypoxia
decline H2O2 and ROS levels integrally. However, ROS reaches
the peak after severe acute hypoxia (DO: 1.0 ± 0.2 mg/L)
treatment for 0.5 h, suggesting that anaerobic metabolism has
probably taken the place of aerobic metabolism during this
DO point since M. amblycephala suffocation point ranges from
0.64 to 0.35mg/L (Chen et al., 2012). Meanwhile, the lactate
level representing anaerobic metabolism also reached the peak,
indicating the anaerobic metabolism is occurred (Segura et al.,
1996). The activities of the antioxidant enzymes (SOD, CAT),
and the H2O2 and ROS contents retained at lower levels under
hypoxia conditions, which are consistent with some published

studies in fish, but contrary with others (Table S1). After careful
and scrupulous analysis and comparison, we suggest that the
biomarkers of oxidative stress caused by hypoxia and especially
co-hypoxia factors probably be primarily focused on ROS itself.
Moreover, moderate hypoxia treatment may positively affect M.
amblycephala by driving liver into lower oxidative stress status. It
is reported that chronic hypoxia leads to a marked improvement
in mouse survival, body weight, body temperature, behavior,
and enhancement against mitochondrial toxicity (Jain et al.,
2016).

It has been known that some eukaryotic mRNAs can
be translated via internal initiation by specific mRNA
regions termed internal ribosome entry site (IRES) (Holcik
et al., 1999; Cornelis et al., 2000). Remarkably, many IRES-
containing mRNAs encode proteins that have important roles
in development, differentiation, cell cycle progression, cell
growth, cell apoptosis, and stress response (Holcik et al., 1999;
Henis-Korenblit et al., 2000; Stoneley et al., 2000; Prats and Prats,
2002). The presence of IRES elements allows crucial survival
factors to be transiently translated under stress conditions that
require immediate changes in protein levels (Hellen and Sarnow,
2001; Holcik and Sonenberg, 2005; Komar and Hatzoglou, 2005).
The IRES on 5′-UTR of Hsp70 has been studied to drive cap-
independent Hsp70 protein translation in apoptosis, hypertonic
and thermal stress (Rubtsova et al., 2003; Hernández et al.,
2004; Rocchi et al., 2013; Chen et al., 2014). Our results firstly
indicate that Hsp70 could respond to hypoxia stress through
IRES-mediated manner, moreover, the Hif-1α and junior Hsp70
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expressions in limited tissues indicate that hypoxia stress induce
tissue-specific response.

Taken together, we have performed hypoxia/reoxygenation
treatment in M. amblycephala and systematically studied
their responses to hypoxia in aspect of physiology, oxidative
stress, and immune. The results demonstrate that hypoxia
significantly induces M. amblycephala hematological and
biochemical parameters, and moderate hypoxia drives the
liver into a lower oxidative stress status to protect fish from
oxidative damage. Furthermore, we have firstly observed that
hypoxia-reoxygenation treatment stimulates M. amblycephala
innate immune activity.
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