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prognostic risk model for
papillary thyroid carcinoma
based on single-cell sequencing
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The papillary thyroid carcinoma (PTC) microenvironment consists of various

cancer and surrounding cells, and the communication between them is mainly

performed through ligand–receptor (LR) interactions. Single-cell RNA

sequencing (scRNA-seq) has been performed to investigate the role of

intercellular communication networks in tumor progression. In addition,

scRNA-seq can accurately identify the characteristics of immune cell subsets,

which is of great significance for predicting the efficacy of immunotherapy. In

this study, the cell–cell communication network was analyzed through LR

pairs, and a new PTC molecular phenotype was developed based on LR pairs.

Furthermore, a risk model was established to predict patient response to PD-1

blockade immunotherapy. The scRNA-seq dataset was obtained from

GSE184362, and the bulk tumor RNA-seq dataset was obtained from The

Cancer Genome Atlas. CellPhoneDB was used for cellular communication

analysis. LR pair correlations were calculated and used to identify molecular

subtypes, and the least absolute shrinkage and selection operator (Lasso) Cox

regression was used to develop a risk model based on LR pairs. The IMvigor210

and GSE78220 cohorts were used as external validations for the LR.score to

predict responses to PD-L1 blockade therapy. A total of 149 LR pairs with

significant expression and prognostic correlation were included, and three PTC

molecular subtypes were obtained from those with significant prognostic

differences. Then, five LR pairs were selected to construct the risk scoring

model, a reliable and independent prognostic factor in the training set, test set,

and whole dataset. Furthermore, two external validation sets confirmed the

predictive efficacy of the LR.score for response to PD-1 blockade therapy.
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Introduction

The incidence of thyroid cancer has continuously increased

and has become the most common carcinoma of the endocrine

system, accounting for 70% of deaths from endocrine tumors

(1). The vast majority of thyroid cancers are papillary thyroid

carcinoma (PTC). Early-stage PTC has a good prognosis after an

operation, 131I radiation, and thyroid-stimulating hormone

suppressive therapy. However, approximately 20% of patients

have recurrence and metastasis postoperatively, in whom the

tumor is commonly poorly differentiated, and the traditional

treatment has limited efficacy, which are the main causes of

death (2, 3).

Multiple kinase inhibitors targeting the key oncogenic and

vascular endothelial growth factor (VEGF) in thyroid cancer can

prolong progression-free survival and are currently used for the

treatment of refractory thyroid cancer (4). However, due to the

rapid development of drug resistance and the occurrence of

adverse reactions, the effectiveness of kinase inhibitors is limited.

Therefore, a safer and more effective treatment is still required to

achieve long-term tumor control. Immunotherapy is known as

the fourth tumor therapy after surgery, radiotherapy, and

chemotherapy and uses the specificity and efficiency of the

patient’s immune system to kill cancer cells (5). Abundant

immune cel l s are observed in the thyroid cancer

microenvironment; thus, immunotherapy is a promising

option (6). Previous studies have carried out relevant

preclinical experiments, and clinical studies on thyroid cancer

immunotherapy have made some progress (7).

The tumor microenvironment consists of tumor cells and

surrounding immune cells, fibroblasts, and interstitial cells (8).

Cellular heterogeneity due to mutation is manifested at the

genomic, transcriptomic, and proteomic levels, which act as

markers for further cell subtyping. The presence of multiple

types of stromal cells can drive the occurrence, proliferation, and

invasion of cancer cells through paracrine signals (9); thereby,

studying the subtype of various cells in the tumor

microenvironment can provide oncogenic clues different from

those of innate cancer cells (10).

Currently, conventional next-generation transcriptome

sequencing only aims at mixed multiple cell samples, and the

unique characteristics of specific cells are often overlooked (11).

The single-cell RNA sequencing (scRNA-seq) technology can

identify the expression profile of each cell type and even rare cell

subgroups in tissues that have not been previously discovered. In

the highly complicated tumor microenvironment, the scRNA-

seq technology can explore the more detailed role of intercellular

communication networks in tumor progression (12).

Therefore, this study used the scRNA-seq dataset for

intercellular communication analysis based on ligand–receptor

(LR) pairs in patients with PTC, and a new PTC molecular

phenotype and mapping of the immune cell infiltration
Frontiers in Immunology 02
landscape are developed, thereby establishing a risk model as a

reference for the intercellular LR pairs mechanism in PTC

prognosis and immunotherapeutic response.
Methods

Data source and preprocessing

The scRNA-seq dataset GSE184362 from the Gene Expression

Omnibus (GEO) database contains 23 samples from 11 patients

with PTC, of which seven “primary tumor” samples were used for

subsequent analysis (13). The bulk tumor RNA-seq and clinical

data of patients with PTC as of January 2022 were downloaded

from The Cancer Genome Atlas (TCGA) database, with the

following exclusion criteria: 1) incomplete RNA-seq data, 2)

incomplete clinical data, and 3) follow-up time of <30 days.

Finally, 483 samples were included after screening, and the

Ensembl ids were converted to gene symbols. The gene

expression level was measured using the RMA correction of the R

package “limma”. Fragments per kilobase per million was converted

to trans per kilobase of exon model per million mapped reads for

scRNA-seq data consistency. In general, enumeration data were

expressed as percentages, and the chi-square test was used for

between-group comparisons. Continuous data were expressed as

the mean and standard deviation for normally distributed data and

as median and interquartile ranges for non-normally distributed

data. The t-test was used when comparing two groups with a

normal distribution and homogeneity of variance. The corrected t-

test was used when the normal distribution did not meet the

homogeneity of variance, whereas the Mann–Whitney test was

used when it did not meet the normal distribution. One-way

ANOVA was used to compare multiple groups that conformed

to the normal distribution and homogeneity of variance, whereas

the Kruskal–Wallis test was used for non-normally distributed data.

Statistical significance was determined using a two-tailed p-value

of <0.05.
Single-cell RNA sequencing data analysis

The R (version 3.6.3) was utilized for subsequent analysis.

The function CreateSeuratObject in the R package “Seurat” was

used to create a Seurat object for each sample and generate a

gene count matrix. Cells with gene counts of <500 or

mitochondrial genome content of >10% were removed, and

then doublets in each sample were deleted using

DoubletFinder. Data normalization and batch correction were

performed using the R package “scTransform” and “Harmony”,

respectively. After the top 1,000 highly variable genes (HVGs)

were screened from the normalized matrix, significant principal

components were identified using the jackstraw function, and
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principal component analysis (PCA) was performed. Cell

projections were visualized using a two-dimensional map with

unified manifold approximation and projection and were

clustered using the FindClusters function. The FindAllMarkers

were used to screen differentially expressed genes (DEGs) for

each cell group. The screening criteria were adjusted p-value of

<0.05 and an average fold change of >0.1.
Cell subgroup definition and cell–cell
communication analysis

Canonical markers for cell subgroup definition were

obtained from a previous study, manually annotated based on

their expressions, and acquired six cell subgroups (14), which

can be referred to in Table 1. For a systematic analysis of cell–cell

interaction, cellular communication analysis was performed

based on CellPhoneDB (15), a public database involving

ligands, receptors, and their interactions, and by annotating

the membrane, secreted, and peripheral proteins of each cell

subgroup at different time points. Cell–cell communication was

predicted by the receptor expression on a cell subgroup and the

corresponding ligand on another cell subgroup. The cluster

labels of all cells were randomly permuted 1,000 times to

determine the mean average receptor and ligand expression

levels of interacting clusters, which resulted in a null

distribution for each LR pair. p-Values can be obtained by

determining the proportion of means that were higher than

the actual one, which represents the cell type-specific likelihood

of the corresponding receptor–ligand complexes.
Calculation of ligand–receptor pair
correlations and identification of
molecular subtypes

As the ligand and their corresponding receptor co-

expressions are necessary for intercellular communication, the

correlation between LR pairs of gene expression was calculated

through Pearson’s correlation coefficient of LR pairs and

performed using consistent cluster analysis with a Pearson’s
Frontiers in Immunology 03
correlation coefficient of >0.3 (adjusted p of <0.05) to identify

molecular subtypes (16). Briefly, after a consistent matrix was

generated through the R package “ConensusClusterPlus” and

PAM algorithm, in which “Canberra” was used as the metric

distance, 500 bootstraps were performed, with each bootstrap

sampling comprising 80% of patients. The number of clusters

was set from two to 10, with the optimal number of clusters

determined by calculating the consistent matrix and cumulative

distribution function (CDF).
Gene set enrichment analysis and
functional annotation

To explore the pathways involved in different molecular

subtypes, all candidate gene sets in the Molecular Signature

Database (MSigDB) (17) were utilized for Gene Set Enrichment

Analysis (GSEA). The R package “ClusterProfiler” was used for

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) analysis of DEGs. The GO analysis includes

mo l e cu l a r f un c t i on s , c e l l u l a r c omponen t s , a nd

biological processes.
Tumor immune infiltration analysis

The assessment matrix of relevant tissues from the Estimation

of STromal and Immune cells in MAlignant tumors using the

expression data (ESTIMATE) (18) platform was downloaded to

calculate the proportion of immune cells. In addition, the R package

“e1071” and “parallel” and CIBERSORT platform (19) were used to

profile immune cell infiltration by immune-related cell markers of

each cell type and set the screening criteria as 1,000 random

operations and a p-value of <0.05 to quantify the relative

abundance of immune cells in PTC.
Establishment of the risk model

The “sample” function in the R was used to randomly split

TCGA dataset into training and test sets in a 1:1 ratio, and the R
TABLE 1 Six cell subgroups and corresponding canonical markers.

Cell subgroups Markers

T/natural killer (NK) cells CD3D, CD3E, CD3G, CD247

B cells CD79A, CD79B, IGHM, IGHD

Thyrocytes TG, EPCAM, KRT18, KRT19

Myeloid cells LYZ, S100A8, S100A9, CD14

Fibroblasts COL1A1, COL1A2, COL3A1, ACTA2

Endothelial cells PECAM1, CD34, CDH5, VWF
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package “glmnet” was used to perform the least absolute shrinkage

and selection operator (Lasso) Cox regression and predict the

prognosis for patients based on LR pairs. First, the change

trajectory of each independent variable was analyzed. The tuning

parameter l is chosen by cross validation. When lambda is small,

the result is essentially the least squares estimates. With the gradual

increase of l, the number of variable coefficients tends to gradually

increase by 0. Subsequently, 10-fold CIBERSORT validation was

used to develop the model, the CI under each l was analyzed, and

the l at which the model is optimal was determined. To assess the

variability and repeatability of the estimates produced by the Lasso

Cox regression model, in the R package “survival”, the cox.ph

function was used to develop the Cox proportional hazards model.

Patients were divided into high- and low-expression groups based

on the median score, a Cox proportional hazards model was fitted

with patient death as the endpoint, and a hazard ratio was

calculated based on the exponential coefficient of the model. The

risk score was calculated using the formula LR.Score = ∑betai ×

Expi, where i refers to the LR pair expression level and beta is the

coefficient of the LR pair in the model. Survival curves were drawn

using the Kaplan–Meier method for the prognostic analysis, and the

log-rank test was used to determine significant differences. The R

package “timeROC” was used to generate receiver operating

characteristic (ROC) curves over time and analyze the accuracy of

the 1-, 3-, and 5-year prediction models based on the area under the

curve (AUC). Nomograms were drawn using the “rms” R package.
External validation of the LR.score model
for predicting responses to PD-1
blockade therapy

A total of 348 patients with urothelial carcinoma in the

IMvigor210 cohort (20) and 28 patients with melanoma in the

GSE78220 cohort (21) showed varying degrees of responses to

anti-PD-1 receptor blockers, including complete response (CR),

partial response (PR), stable disease (SD), and progressive

disease (PD). These two cohorts were used as external

validation of the LR.score for predicting responses to PD-1

blockade therapy. Finally, 116 and 27 patients were included
Frontiers in Immunology 04
in the IMvigor210 and GSE78220 cohorts, respectively, for the

next analysis.
Results

The single-cell transcriptome landscape
of papillary thyroid carcinoma

Before the quality control, the correlation between the number

of unique molecular identifiers (UMIs) and mitochondrial genes

and mRNAs was examined. The number of UMIs was not

significantly correlated with mitochondrial genes (Figure S1A) but

positively correlated with mRNAs (Supplementary Figure S1B).

Furthermore, the number of mRNAs, mRNA reads, and

distribution of mitochondrial and nuclear chromosomal genes

were determined as shown in Supplementary Figure 1C. The

number of most genes was distributed between zero and 6,000,

and the percentage of mitochondria was <25%. Further, discrete

cells, cells with >10% mitochondrial genes, cells with <500 genes,

and potential doublets were filtered, and the gene expression

profiles of 46,215 high-quality cells were finally obtained. The

statistics of the number of cells in each sample are shown in

Table 2, and the number of filtered mRNAs, mRNA reads, and

the number distribution of mitochondrial and nuclear chromosome

genes are shown in Supplementary Figure 1D. After the quality

control, the top 5,000 HVGs were identified for subsequent analysis

(Supplementary Figure 1E). Cell features were extracted after batch

correction based on these HVGs, and 15 cell subgroups were

identified using distance matrices (Figures 1A, B, Supplementary

Table 1), where cluster 7 was mainly derived from patient sample

PTC5, and cluster 14 was mainly derived from patient PTC1

(Figure 1C). The Kruskal–Wallis test was further used to identify

differential genes in each cell group (Supplementary Table 2); the

heatmap of the gene expression is shown in Figure 1D, and the

heatmap of six subgroups is shown in Supplementary Figure 2.

Annotation based on classical cell markers resulted in six cell

subgroups (Figure 1E, Table 3). Further, marker genes of each

subgroup were identified, and the KEGG enrichment results of

these marker genes are shown in Figure 1F.
TABLE 2 Cell number statistics before and after sample quality control.

Sample Raw cell count Clean cell count Percent

PTC1 5,917 5,433 91.82

PTC2 5,100 4,716 92.47

PTC3 7,434 6,522 87.73

PTC5 4,475 3,911 87.40

PTC8 10,522 8,775 83.40

PTC9 10,069 8,960 88.99

PTC10 22,390 7,898 35.27
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Intercellular communication networks in
papillary thyroid carcinoma

Results of cell–cell communication analysis show the large-

scale interaction of thyrocytes with other cells, among which the

strongest interactions were with myeloid and endothelial cells.

Furthermore, endothelial cells were found to strongly interact

not only with thyrocytes but also with fibroblasts (Figure 2A).

The interaction network among the six cell subgroups is shown

in Figure 2B. Among them, thyrocytes, myeloid cells, and
Frontiers in Immunology 05
endothelial cells had the most cell interactions (Figure 2C).

Moreover, genes associated with tumor proliferation,

metastasis, and progression pathways, including Hedgehog,

Notch, TGFb, WNT, and EGFR, were selected to explore

whether significant interaction was observed between cell

subgroups. Results suggest that myeloid cells, B cells, and

thyrocytes can engage in a range of functional interactions

mediated by APP, COPA, and MIF signaling involving the

CD74 receptor (Figure 2D). LR pairs that significantly differ

between cell groups can be referred to in Supplementary Table 3.
B

C D

E F

A

FIGURE 1

Overview of identified single cells. (A) UMAP of cell profiles; different color blocks represent related cell clusters. (B) UMAP of cell profiles; different color
blocks represent related sample sources. (C) Sample distribution of 15 cell clusters. (D) Heatmap showing marker genes for each cluster, highlighting
selected marker genes for each cluster. (E) UMAP of cell profiles; different color blocks represent related cell types. (F) Function enrichment of markers
for cell subsets. UMAP, Uniform Manifold Approximation and Projection.
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B

C

D

A

FIGURE 2

(A) LR interactions between different cell subsets. (B) Network overview for the interaction between different cell subsets. (C) Interactions
between each cell subset and other cell subsets. (D) Summary of selected significant LR pairs in each cell subset. LR, ligand–receptor.
TABLE 3 Cell type annotation for 14 cell clusters.

Cell type Cluster Number of cells

Thyrocytes 0 11,933

T and NK cells 1 7,320

Myeloid cells 2 7,089

T and NK cells 3 4,201

T and NK cells 4 3,716

T and NK cells 5 3,051

B cells 6 2,796

Fibroblasts 7 2,373

Endothelial cells 8 1,152

Myeloid cells 9 813

Thyrocytes 10 686

T and NK cells 11 591

Myeloid cells 12 223

Endothelial cells 13 158

Myeloid cells 14 113
Frontiers in Immunology
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Molecular typing based on ligand–
receptor pairs

As cell–cell communication greatly differs in various cell

subgroups, these differences may lead to activation or inhibition

of various pathways, which ultimately result in tumor

development and drug resistance. Therefore, LR pairs with

significant interactions in different cell subgroups were

screened based on Pearson’s correlation coefficient. Here, a

total of 250 LR pairs with significant correlations were

identified (Supplementary Table 4), the total gene expression

values of receptors and ligands were used as the expression level

of LR pairs, and LR pairs with significant prognostic significance

were screened and used for molecular typing. Next, 149 LR pairs

with significant expression and prognostic correlation were

included (Figure 3A), and Cox regression results are shown in

Supplementary Table 5. According to the CDF, the optimal

number of clusters was determined to be three (Figures 3B, C);

hence, three molecular subtypes were finally obtained

(Figure 3D, Supplementary Table 6). Further analysis revealed

significant prognostic differences among these three subtypes

(Figure 3E), with C3 having a better prognosis but C1 having a

poorer prognosis.
Frontiers in Immunology 07
Comparison of clinical information in
different molecular subtypes

Three molecular subtypes showed different clinical

characteristics in TCGA cohort, and patients with the C1

subtype have a poorer prognosis and a higher TNM stage,

with significant differences between C1 and C3 subtypes based

on the T stage, overall stage, and age. That is, the proportion of

patients with stage III and stage IV in the C1 subtype is higher

than that in the C2 and C3 subtypes, and the proportion of

patients aged <50 years in the C3 subtype is higher than that in

the C1 and C2 subtypes (Figure 4).
Mutational characteristics of different
molecular subtypes

Differences in genomic alterations were further explored

among these three molecular subtypes. The C1 subtype

showed a higher tumor mutation burden (Figures 5A–E).

Furthermore, information on immune molecular subtypes of

TCGA-THCA was obtained from a previous pan-cancer study

(14) in which thyroid cancer was classified into six molecular
B C

D E

A

FIGURE 3

(A) Venn diagram of LR pairs with significant expression and prognosis correlation. (B) CDF curve of samples from TCGA cohort. (C) Delta area
curve of samples from TCGA cohort. (D) TCGA clustering heatmap of samples from TCGA cohort when consensus k = 3. (E) Overall survival
curves of molecular subtypes based on LR pairs. LR, ligand–receptor; CDF, cumulative distribution function; TCGA, The Cancer Genome Atlas.
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subtypes based on 160 distinct immune signatures; the

distribution of these six subtypes per patient can be seen in

Supplementary Figure S3. Previous subtypes were compared

with our defined molecular subtypes, showing that the C3

subtype in the immune molecular subtype accounted for more

in our defined C3 subtype, of which Th17 and Th1

characteristics were increasing, and somatic copy number

alteration was at lower levels than in other subtypes.

Furthermore, the C3 subtype showed the best prognosis,

which is consistent with the definition of the molecular C3

subtype in the present study. In addition, the poor prognosis in

C1, C2, C4, and C6 immune molecular subtypes was found to be

more appropriate in our defined C1 molecular subtype, which is

also in line with the poor prognosis in the C1 subtype

(Figure 5F). Furthermore, five additional molecular subtypes

were identified based on consensus clustering in a previous study

(22) and were compared with our three molecular subtypes.

THCA.4 was higher in the C1 subtype, whereas THCA.2 and

THCA.5 were higher in the C3 subtype (Figure 5G). Finally, the

correlation between gene mutation and copy number variation

and molecular subtype was also analyzed, and a significant

correlation was found between subtype and gene mutation.

Mutation frequencies of BRAF, NRAS, and HRAS are

significantly different among subtypes, among which BRAF

has a higher mutation frequency in the C1 subtype, whereas

NRAS and HRAS have a higher mutation frequency in the C2
Frontiers in Immunology 08
subtype. Regarding the copy number variation, the C2 subtype

has a higher copy number amplification, whereas the C3 subtype

has a relatively high copy number deletion (Figure 5H).
Pathway analysis and immune
characterization of different
molecular subtypes

Next, whether activated pathways differ among various

molecular subtypes was analyzed. Thus, nine pathways were

found to be more significantly enriched in the C1 subtype than

in the C3 subtype (Figure 6A). Furthermore, differences in

activated pathways were compared among three molecular

subtypes (Figure 6B), and results showed that some immune-

related pathways were activated in the C1 subtype than in the C2

subtype. Therefore, to further elucidate differences in the

immune microenvironment of various subtypes, the

infiltration degree of immune cells in the three molecular

subtypes was assessed (Figure 7A), and significant differences

were observed in the degree of most immune cell infiltration

among our defined three molecular subtypes. In addition,

ESTIMATE was used to evaluate the proportion of immune

cells (Figures 7B–E). “ImmuneScore” was higher in both C1 and

C3 subtypes than in the C2 subtype. However, C1 had a poor

prognosis, whereas C3 had the opposite.
B C

D E F

A

FIGURE 4

Clinical information of different molecular subtypes. (A): T stage; (B): N stage; (C): M stage; (D): Total stage; (E): Gender; (F): Age.
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Establishment of the risk model based on
the ligand–receptor pair score

First, 242 and 241 samples were obtained from the training and

test sets, respectively. The clinical and sample information in these

two sets is shown in Table 4. The chi-square test results showed no

significant differences between the two sets. Then, the

aforementioned 149 LR pairs with significant expression and

prognostic correlation were selected, using Lasso regression to

further incorporate them in the training set to reduce the number
Frontiers in Immunology 09
of genes for developing the risk model (Supplementary Figure 4A),

and the CI under each l is shown in Supplementary Figure 4B. The

model was considered optimal when l = 0.0218. Thus, five LR pairs

were selected when lambda = 0.0218 as the key LR pairs, namely,

“ACKR2_CCL14”, “CCL3_CCR1”, “EPHA1_EFNA4”, “HLA-

E_KLRC1”, and “LAIR1_LILRB4”; the Cox regression coefficient

of these five LR pairs is shown in Supplementary Figure 4C. Next,

an LR pair score model was created based on these five LR pairs.

The LR.score of the C1 molecular subtype is found to be

significantly higher than that of the C2 and C3 subtypes
B C D

E F G

H

A

FIGURE 5

Mutational features of different molecular subtypes. (A–E) Comparison of aneuploidy score, homologous recombination defects, altered
fraction, number of segments, and tumor mutation burden among different molecular subtypes. (F) Comparison of six molecular subtypes and
three molecular subtypes. (G) Comparison of five molecular subtypes and three molecular subtypes. (H) Somatic mutation and copy number
variation analysis among the three molecular subtypes. ns, Not statistically significant; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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B C D E

A

FIGURE 7

(A) The infiltration degree of immune cells in three molecular subtypes. (B–E) The proportion of immune cells in three molecular subtypes. ns,
Not statistically significant; *p < 0.05; **p < 0.01; ***p < 0.001; and ****p < 0.0001.
BA

FIGURE 6

(A) GSEA of C1 vs. C3 in TCGA cohort. (B) GSEA of different molecular subtypes. GSEA, Gene Set Enrichment Analysis; TCGA, The Cancer
Genome Atlas.
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(Figure 8A). To further evaluate the clinical relevance of the LR pair

score, patients were divided into two groups according to low and

high LR.scores; i.e., an LR.score of >0 indicates that a patient

belongs to the high LR.score group; otherwise, the low LR.score

group. The low LR.score group in the training set shows a

significantly better prognosis (Figure 8B). The AUC values of the

time-dependent ROC curve in the LR.score group are 0.75, 0.75,

and 0.76 for 1-, 3-, and 5-year overall survival, respectively

(Figure 8C). Further, the reliability of the LR.score was validated

using the test set and the entire dataset (Figures 8D, G). Patients

with low LR.scores in both the test set and the entire dataset were

found to have a significant survival benefit (Figures 8E, H). The

AUC of the time-dependent ROC curve is also satisfactory

(Figures 8F, I). To verify whether the LR.score can be used as an

independent prognostic indicator, Cox regression analysis was

performed based on clinical features and LR.score in TCGA-

THCA dataset and found that the LR.score is a reliable and

independent factor to evaluate patient prognosis (Figures 8J, K).
Correlation between the LR.score and
clinical and immune-related features

To examine the correlation between the LR.score and clinical

characteristics of PTC, the differences in the LR.score were analyzed

between various TNM grades and clinical stages in the TCGA-

THCA dataset (Figures 9A–E). Further, we analyzed the infiltration
Frontiers in Immunology 11
of 22 immune cell types in different LR.score groups (Figures 10A,

B). Overall, the enrichment of most immune cells in the high

LR.score group is significantly higher than that in the low LR.score

group. Furthermore, differences in the distribution of immune cell

scores were compared in various LR.score groups, and the

StromalScore, ImmuneScore, and ESTIMATEScore in the high

LR.score group were found to be significantly higher than those

in the low LR.score group (Figure 10C). Moreover, the correlation

between LR.score and 22 immune cell types was explored, and the

LR.score is positively correlated with T_cells_follicular_helper,

T_cells_regulatory_Tregs, and Plasma_cells but negatively

correlated with Monocytes and Mast_cells_resting (Figure 10D).
The LR.score model predicts responses
to PD-1 blockade immunotherapy

To illuminate the relationship between the LR.score and

immunotherapy, we tested its ability to predict responses to

anti-PD-1 therapy. We found that in the IMvigor210 cohort,

patients with SD/PD have a higher LR.score than those with CR/

PR (Figure 11A). The comparison between low and high LR.score

subgroups also showed that patients in the former have

significantly better responses (Figure 11B). Patients with low

LR.scores acquire significant clinical benefits and prolonged

overall survival (Figure 11C). The analysis in different stage

subgroups showed significant differences in overall survival
TABLE 4 Comparison of clinical data in of training set, test set, and the entire dataset. .

Characteristics TCGA-Train (N = 242) TCGA-Test (N = 241) Total (N = 483) p-Value

T stage 0.51

T1 71 (14.76%) 70 (14.55%) 141 (29.31%)

T2 74 (15.38%) 87 (18.09%) 161 (33.47%)

T3 87 (18.09%) 73 (15.18%) 160 (33.26%)

T4 9 (1.87%) 10 (2.08%) 19 (3.95%)

N stage 0.53

N0 109 (25.17%) 114 (26.33%) 223 (51.50%)

N1 110 (25.40%) 100 (23.09%) 210 (48.50%)

M stage 0.88

M0 147 (52.69%) 127 (45.52%) 274 (98.21%)

M1 2 (0.72%) 3 (1.08%) 5 (1.79%)

Stage 0.18

I 146 (30.35%) 132 (27.44%) 278 (57.80%)

II 19 (3.95%) 32 (6.65%) 51 (10.60%)

III 54 (11.23%) 50 (10.40%) 104 (21.62%)

IV 21 (4.37%) 27 (5.61%) 48 (9.98%)

Age 0.34

< 50 141 (29.19%) 129 (26.71%) 270 (55.90%)

≥ 50 101 (20.91%) 112 (23.19%) 213 (44.10%)

Gender 0.25

Female 183 (37.89%) 170 (35.20%) 353 (73.08%)

Male 59 (12.22%) 71 (14.70%) 130 (26.92%)
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among patients with different LR.scores in both the stage I+II and

stage III+IV subgroups (Figures 11D, E). Furthermore, the results

in the GSE78220 cohort are similar to those in the IMvigor210

cohort (Figures 11F–H).
Discussion

Communication between different cells in the tumor

microenvironment is primarily performed through LR

interactions in soluble or membrane-bound forms (23).
Frontiers in Immunology 12
Checkpoint inhibitors based on LR interactions have been

used as powerful tools for disease treatment (24). In recent

years, scRNA-seq has been used to explore intercellular

communication within the thyroid cancer microenvironment.

Pu et al. found extensive interactions between endothelial cells

and a variety of immune cells through scRNA-seq of thyroid

cancer tissues, and their intercellular communication was closely

related to the activation of the VEGF pathway (13). Pan et al.

found a large number of LR interactions between cancer and

immune cells, which may affect tumor progression through

scRNA-seq of tissues from patients with PTC complicated
B C
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FIGURE 8

(A) LR.score differences in different subtypes in the training set. (B) Survival analysis between high and low LR.score groups in the training set.
(C) The predictive value of LR.score in 1-, 3-, and 5-year overall survival in the training set. (D) LR.score differences in different subtypes in the
test set. (E) Survival analysis between high and low LR.score groups in the test set. (F) The predictive value of LR.score in 1-, 3-, and 5-year
overall survival in the test set. (G) LR.score differences in different subtypes in the entire dataset. (H) Survival analysis between high and low
LR.score groups in the entire dataset. (I) The predictive value of LR.score in 1-, 3-, and 5-year overall survival in the entire dataset. (J) Univariate
Cox regression model analysis. (K) Multivariate Cox regression model analysis.
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with Hashimoto’s thyroiditis (25). Peng et al. compared the

scRNA-seq landscape of male and female patients with PTC and

found significant differences in intercellular communication

between different sexes (26). These results suggest that the

intercellular communication network-based scRNA-seq can be

used to molecularly type PTC and predict prognosis and

treatment responses. Hence, we divided PTC patients into

three subtypes by LR pairs, and there are significant

prognostic differences between patients in different subtypes.

Further, we also analyzed the differences in gene mutations

between subtypes to explore the molecular mechanism of PTC

progression. As the types with a poorer prognosis, the C1 and C2

subtypes have higher mutation frequencies of BRAF and RAS

genes. Previous studies have pointed out that the mutations of

BRAF and RAS genes can drive PTC to different subtypes, that

is, BRAF-like and RAS-like PTC (22). In fact, as the total score of

immune cell infiltration in the tumor microenvironment,

ImmuneScore is affected by many factors. Although it is

positively correlated with the survival of patients with various

tumors, there is also some heterogeneity among different

tumors. The most noteworthy is the immunogenicity

alteration caused by gene mutations. As pointed out by the

study by Zhang et al., patients with TP53-mutant breast cancer

have a worse prognosis and higher ImmuneScore. This is

because TP53-mutant breas t cancer has s t ronger

immunogenicity, which also suggests a better response to

immunotherapy (27). The C1 subtype has the highest BRAF
Frontiers in Immunology 13
mutation frequency, and the study by Cen et al. found that BRAF

mutant colorectal cancer exhibited more abundant immune cell

infiltration and lower tumor purity (28). Similarly, Means et al.

also found that BRAF mutation was associated with increased

mast cell (MC) density in PTC (29). These results suggest that

BRAF -mu t an t PTC may h a v e a s p e c ifi c t umo r

microenvironment that alters a patient’s prognosis and

response to immunotherapy, which may also affect cell–cell

communication that is relevant to our study, and provides us

with clues for personalized diagnosis and treatment of PTC

according to LR pairs.

Another major advantage of scRNA-seq is that each subset of

cells can be analyzed to accurately explore the changes in the tumor

microenvironment. Identifying the characteristics of the tumor

microenvironment of PTC, especially the characteristics of

immune cell subsets and functional status, is of great significance

for predicting the immunotherapy efficacy in patients with PTC and

proposing feasible adjuvant therapy. T cells, myeloid-derived

suppressor cells, tumor-associated macrophages, and other cells

play an important role in the dysregulation of the immune

microenvironment of thyroid cancer. T cells are divided into CD4

+ and CD8+ T cells. CD8+ T cells are mainly differentiated into

cytotoxic T lymphocytes, which play a role in the specific killing of

target cells. T regulatory cells (Tregs) and T follicular helper cells

(Tfh) derived from CD4+ T cells are closely related to immune

homeostasis, which not only can maintain peripheral immune

tolerance but also can inhibit T cell-mediated immune responses
B C
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FIGURE 9

Correlation between LR.score and clinical features. (A): T stage; (B): N stage; (C): Total stage; (D): Age; (E):Gender.
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and promote tumor occurrence (30). Moretti et al. reported that

Tregs in peripheral blood of patients with PTC were significantly

higher than those with thyroid adenoma (31). Gogali et al. reported

that Tregs infiltrated more in the PTC tissue than goiter tissue, and

the degree of infiltration was positively correlated with disease

progression (32). Qian et al. found that the distant metastasis of

thyroid cancer was closely related to functionally defective Tfh cells

(33). Our results showed that LR.score was positively correlated

with the degree of Tregs and Tfh infiltration, which was consistent

with the above findings. Similarly, we also found that LR.score was

positively correlated with the degree of plasma cell infiltration.

However, Kwon et al. pointed out that the infiltration of plasma

cells in the thyroid cancer microenvironment indicated a good

prognosis (34), which is in contrast to our findings, suggesting that

the functional status of immune cells in the tumor

microenvironment deserved to be analyzed more precisely.

Furthermore, during PTC development, MCs are recruited

around cancer tissues and can promote the proliferation,

invasion, and metastasis of cancer cells (35). MCs are distributed

to differentiated and undifferentiated thyroid cancers, and their

density is positively correlated with tumor invasiveness (36). MCs

mainly promote cell proliferation through a variety of cytokines

such as histamine, CXCL1, GRO-d, and IP-10 (37). The growth-
Frontiers in Immunology 14
promoting effect ofMCs on PTC cells can be inhibited by drugs that

promote MC degranulation. Our results showed that LR.score was

negatively correlated with MC in the resting phase, suggesting that

the inhibition of MCs and their mediators may be a new approach

to reverse PTC immune escape.

Immunotherapy has not been the routine treatment of

patients with thyroid cancer, and its potential therapeutic

effect is unclear. The immune system not only inhibits the

occurrence and development of tumors but also promotes

tumor growth through the process of immunoediting. The

immune escape mechanism of thyroid cancer is complicated

and mainly involved the downregulation or loss of function of

MHC-1 and upregulation of PD-L1 and BRAF (38). The

combination of PD-1 on the T cells and PD-1 on the thyroid

cancer cells not only inhibits the proliferation of CD4+ T cells

but also induces the apoptosis of CTLs, which plays an

important role in the uncontrolled proliferation of cancer cells

(39, 40). Therefore, PD-1+ PTC is more likely to progress and

relapse (41). The upregulation of BRAF can lead to the high

expression of PD-1 on the cancer cells, thereby promoting tumor

angiogenesis and malignant proliferation (42, 43).

With the in-depth research on the immune microenvironment

of refractory thyroid cancer and its immune escape mechanism,
B

C
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FIGURE 10

(A) Score of 22 immune cell infiltration in different LR.score groups. (B) Proportion of 22 immune cell infiltration in different LR.score groups. (C)
Differences in the distribution of immune cell scores in different LR.score groups. (D) Correlation between LR.score and 22 immune cells.
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PD-1 blockade immunotherapy is becoming a new treatment for

refractory thyroid cancer. Mehnert et al. found that the total efficacy

rate of PD-1 inhibitor pembrolizumab in the treatment of patients

with advanced PTC and follicular thyroid cancer was 9%, 59% of

patients were in stable disease, and 32% of patients were in disease

progression (44). Therefore, the current efficacy of PD-1 blockade

therapy is very limited, and it is urgent to find good biomarkers and

risk models to screen out patients who can benefit from

immunotherapy. Therefore, our study verified the ability of the

LR.score to predict patients’ responses to PD-1 blockade therapy in

IMvigor210 and GSE78220 cohorts. Although additional thyroid

cancer cohorts were required for further validation, it is suggested

that the risk model based on LR.score has a good predictive ability,

providing an important reference for the immunotherapy of

thyroid cancer.
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17. Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P.
The molecular signatures database (Msigdb) hallmark gene set collection. Cell Syst
(2015) 1(6):417–25. doi: 10.1016/j.cels.2015.12.004

18. Yoshihara K, Shahmoradgoli M, Martıńez E, Vegesna R, Kim H, Torres-
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