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Normal tissue reactions to radiation therapy vary in severity among patients and cannot be accurately predicted, limiting treatment
doses. The existence of heritable radiosensitivity syndromes suggests that normal tissue reaction severity is determined, at least in
part, by genetic factors and these may be revealed by differences in gene expression. To test this hypothesis, peripheral blood
lymphocyte cultures from 22 breast cancer patients with either minimal (11) or very severe acute skin reactions (11) have been used
to analyse gene expression. Basal and post-irradiation expression of four radiation-responsive genes (CDKN1A, GADD45A, CCNB1,
and BBC3) was determined by quantitative real-time PCR in T-cell cultures established from the two patient groups before
radiotherapy. Relative expression levels of BBC3, CCNB1, and GADD45A 2 h following 2 Gy X-rays did not discriminate between
groups. However, post-irradiation expression response was significantly reduced for CDKN1A (Po0.002) in severe reactors
compared to normal. Prediction of reaction severity of B91% of individuals sampled was achieved using this end point. Analysis of
TP53 Arg72Pro and CDKN1A Ser31Arg single nucleotide polymorphisms did not show any significant association with reaction
sensitivity. Although these results require confirmation and extension, this study demonstrates the possibility of predicting the severity
of acute skin radiation toxicity in simple tests.
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Radiation therapy is used to treat B50% of all cancer patients.
However, radiation therapy can cause a range of adverse normal
tissue responses, which can limit therapeutic doses delivered. Early
reactions principally affect high turn-over tissues, such as skin,
gastrointestinal tract and bone marrow. During treatment or
within a few weeks of completing a fractionated radiotherapy
course, skin erythema, dry or moist desquamation of the skin,
mucositis, nausea and diarrhoea are typical signs of radiation
toxicity. Prediction of those patients at risk of severe reactions is
difficult. Considerable efforts have been made to correlate normal
tissue toxicity with cellular responses to ionising radiation (IR).
However, no significant relationships have yet been found between
fibroblast or lymphocyte cytotoxicity and acute (Geara et al, 1993;
Brock et al, 1995; Johansen et al, 1996) or late (Russell et al, 1998;
Peacock et al, 2000) normal tissue reactions to IR. However,
normal cell radiosensitivity in some cases may be an important
factor predictive of radiation therapy response as illustrated by

West et al (2001) whose results showed that blood lymphocyte
radiosensitivity (SF2) is a highly significant prognostic factor for
the risk of developing late radiation morbidity. In terms of other
end points, Barber et al (2000) evaluated the predictive value of
lymphocyte chromosome radiosensitivity in patients receiving
radiotherapy for breast cancer and concluded that these assays
perform poorly in predicting normal tissue effects. Wang et al
(2005) and Lopez et al (2005) both failed to find a correlation
between DNA repair capacities in peripheral blood lymphocytes
and acute skin reaction during radiotherapy. To date, no cellular
or molecular assay has been used in clinics to predict the severity
of radiotherapy reactions. It is not clear if this is due to the absence
of a suitable assay or the lack of a suitable indicator cell/tissue.

It is likely that individual radiosensitivity has a heritable
component as demonstrated in syndromes such as ataxia
telangiectasia (AT), Nijmegen breakage syndrome and Fanconi’s
anaemia (Andreassen, 2005). Some evidence suggests that gene
expression patterns are abnormal in radiosensitive conditions such
as AT (Watts et al, 2002); heterozygosity for mutation in ATM
(ataxia telangiectasia mutated) may occur in 1% of individuals and
has been associated with sensitivity to IR in vitro (Smilenov et al,
2001). Furthermore, gene expression can be affected by radiation
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exposure and some of these responses have a heritable component
(Correa and Cheung, 2004). It is, therefore, reasonable to postulate
that genetic variation contributes to determining the severity of
response by irradiated tissues in the body and that this variation is
reflected in gene expression patterns. Rapid and simple predictive
assays of radiation response in easily accessible cells, for example
lymphocytes, would bring clinical benefits (lymphocytes are an
ideal cell population as they can be obtained by a minimally
invasive method combining simplicity and rapidity as well as
reliability, also repeat sampling is easy). Using multigene
classifiers, earlier work showed that lymphoblastoid cell lines
from patients with acute radiation toxicity have abnormal
transcriptional responses to radiation (Rieger et al, 2004).
Svensson et al (2006) also reported that changes of expression in
a specific set of genes after in vitro irradiation of stimulated
peripheral lymphocytes can, to some extent, successfully predict
severe late reaction status. Using subcutaneous fibroblasts
from breast cancer patients, Rodningen et al (2007) identified a
set of 18 radiation-responsive genes, which may provide a
predictive assay for late normal tissue reactions after radiotherapy.
The amount of information available on gene expression responses
to radiation has been increasing considerably in recent years
(Kruse and Stewart, 2007). These studies of altered gene expression
have been useful for elucidating the molecular mechanisms
underlying cellular radiation response and a few have been able
to identify genes as potential indicators of severe reactions to
radiotherapy treatment. Surprisingly, in these studies, the most
pronounced radiation-responsive genes (Rieger and Chu, 2004),
which show high variation in expression between individuals, do
not seem to be predictive of radiation toxicity. Those, which
have been identified as informative, are associated with various
pathways and differ between studies thus complicating the
interpretation of the data; this remains a challenge, particularly
at the level of individual gene expression. Our approach was to
re-examine, in a rigorous quantitative manner, the expression
response of a fewer number of genes associated with relevant
pathways and previously identified as radiation responsive, in
an attempt to correlate expression levels with normal tissue
reaction to IR.

Exposure of cells to IR induces a large range of DNA alterations
and results in complex biological responses. The DNA-damage
response (DDR) network mediates DNA repair, cell cycle
checkpoints and/or apoptosis. In response to DNA double-strand
breaks, the ATM gene with its regulator the MRN (Mre11-Rad50-
NBS1) complex are activated (Lee and Paull, 2005). Ataxia
telangiectasia mutated protein is auto-phosphorylated at
Ser-1981 in response to DNA damage, which causes dissociation
of the inactive dimers (Bakkenist and Kastan, 2003). Ataxia
telangiectasia mutated kinase is essential for activation of cell
cycle checkpoints and DNA repair in response to IR. It acts
upstream of p53 by activating p53 protein through phosphoryla-
tion of Ser-15 (Banin et al, 1998; Canman et al, 1998) leading to
p53 stabilisation.

p53 protein is also activated through a number of other post-
translational modifications, including phosphorylations, acetyla-
tions and methylation (Toledo and Wahl, 2006). After DNA
damage induced by IR, cells enter either cell-cycle arrest or
apoptosis, depending on which of the pathways is predominant in
the specific cell type and environment. p53 functions as a crucial
transcription factor in a well established response through direct
protein binding to target gene promoter elements. Although
cell-cycle arrest depends on the ability of p53 to induce the
transcription of genes such as CDKN1A and GADD45, apoptosis
depends on induction of a distinct class of genes including BBC3
also called PUMA (p53 upregulated modulator of apoptosis) (Yu
et al, 2003). p53 also negatively regulates the expression of cell-
cycle regulator genes such as CYCB1 (Badie et al, 2000; Imbriano
et al, 2005). In this study, we speculated that patients overreacting

to radiotherapy treatment may have abnormal transcriptional
responses in one or more of the genes involved specifically in DDR
pathways. Among a wide range of candidate genes (Rieger and
Chu, 2004), CDKN1A, GADD45A, BBC3 and CCNB1 were selected
for the present work.

It has been established that there are significant correlations
between SNPs (single nucleotide polymorphisms) in genes
related to the biological response to radiation injury (e.g. genes
involved in DNA repair (BRCA1 and 2, XRCC1)) or DNA
damage signalling (e.g. ATM) and the risk of radiation-induced
normal tissue reaction (Andreassen et al, 2003). Very recently,
it has been shown that chromosomal radiosensitivity can be
influenced by genetic polymorphisms and that SNPs in non-
homologous end-joining genes may be associated with breast
cancer risk (Willems et al, 2008). These genetic variations
can affect gene transcription, the stability of the mRNA, the
protein structure or protein–protein interactions. Of particular
interest are the nonsynonymous SNPs that lead to amino-acid
changes in the translated protein, therefore, having the potential to
alter protein function and contribute to variations in response
between patients. It has been suggested that genetic polymorphisms
in TP53 might affect some of its functions. Among the TP53
variants, the common TP53 Arg72Pro has been shown to differ
biochemically and biologically leading to different levels of
apoptotis (Thomas et al, 1999) and exerting different effects on
cell cycle progression (Pim and Banks, 2004). CDKN1A is
transcriptionally activated by TP53 and both genes play a direct
role in G1/S checkpoint control in response to IR. Earlier work
suggested that there is a possible combined effect of polymorphisms
in the two genes. An association between the risk of acute skin
toxicity and TP53 72Pro carriers in those with the CDKN1A 31Ser
genotype in a subset of normal weight patients treated with
radiotherapy for breast cancer has been shown (Tan et al, 2006).
Therefore, to examine the relationship between normal tissue
radiosensitivity and polymorphisms in key genes, we also
genotyped our samples for these two non-synonymous SNPs
TP53 codon 72 Arg/Pro G4C and CDKN1A codon 31 Ser/Arg
C4A, previously associated with radiation sensitivity (Alsbeih
et al, 2007).

MATERIALS AND METHODS

Samples

Lymphocyte samples, separated on Histopaque-1077 (Sigma
Aldrich, Poole, Dorset, UK) and frozen within 24 h of blood
collection from 22 sporadic breast cancer patients 30–72 years old
treated at the Christie Hospital in Manchester, were obtained
between 1993 and 1996 after local excision but before radio-
therapy, in a prospective study of acute skin reactions (Barber
et al, 2000). None of the patients had had a mastectomy or had
received chemotherapy, but most of the patients involved in the
study were taking tamoxifen. The previously published work
demonstrated no significant relationship between chromosomal
radiosensitivity, tamoxifen intake, menopausal status, age or
smoking history (Barber et al, 2000). Consent was obtained from
the patients and South Manchester Medical Research Ethics
Committee approved the study. Radiotherapy was delivered with
a tangent pair of fields at a prescribed dose of 40 Gy to the mid-
plane. Measurements of skin reactions were made on 201 patients,
of which 13 showed severe reactions (sufficient to warrant
premature termination radiotherapy, or where most of the breast
had moist desquamation), the remainder having normal reactions.
The mean age of the patients was 52.6 (normal reactors (NRs)) and
53.6 (severe reactors (SRs)). Lymphocytes for all patients were
screened for homozygous or heterozygous ATM mutations but
none were detected (Appleby et al, 1997).
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Lymphocytes separated from blood samples from two healthy
female donors (PH4B and JM1) were used to produce disease-free
control T-cell lines; in addition, an AT T-cell line (AT58) was used,
originally obtained from Dr C Arlett, University of Sussex (Cole
and Arlett, 1994).

Cell growth

T-lymphocyte cultures were prepared using the method described
previously. Briefly, frozen stocks were thawed and cultured in
10 ml of stimulating medium (SR10) at 2– 3� 105 cells per ml.
Cultures were incubated for about 4 days at 371C, 5% CO2

atmosphere, then disaggregated and counted daily, maintaining
cell density between 0.2 and 1� 106 cells per ml.

Irradiation of lymphocyte cultures

Cells were seeded at a density of 4� 105 cells per ml in GR10
medium and irradiated with 2 Gy using a Siemens Stabilipan
Therapy X-ray set (output 14 mA 250 kVp, 0.7 Gy min�1) at the
MRC Harwell, then incubated in GR10 medium at 371C and 5%
CO2 for 2 h before processing.

RNA extraction and reverse transcription

Cells (2� 106) were collected for each sample point by centrifuga-
tion, re-suspended in RNA Later (Ambion, Applied Biosystems,
Foster City, CA, USA) and stored at �801C. Total RNA was
prepared by using RNAqueouss-4PCR (Ambion) kit. Reverse
transcriptase reactions were performed with 1– 1.5 mg of total RNA
(High Capacity cDNA Archive Kit, Applied Biosystems).

Quantitative real-time PCR

Real-time PCR was performed using iQ5 thermocyclers (Bio-Rad,
Hercules, CA, USA). All reactions including no-template controls
were run in triplicate using primer and probe sets for target genes
(Table 1). FAM, HEX and Texas Red were used as fluorochrome
reporters for the hydrolysis probes analysed in multiplexed
reactions.

Data were collected and analysed by iQ5 Detection System
software. Gene target Ct (cycle threshold) values were normalised
to a Hypoxanthine–Guanine phosphoribosyltransferase 1 human
(HPRT1) internal control. Ct values were converted to transcript
quantity using standard curves obtained by serial dilution of

PCR-amplified DNA fragments of each gene or cDNA. The linear
dynamic range of the standard curves covering five orders of
magnitude (serial dilution from 4.10�2 to 1024.10�7) gave typical
PCR efficiencies 490% for each gene with R240.95. Relative gene
expression levels after irradiation were similarly obtained for
comparison with preirradiation controls.

DNA extraction, amplification, sequencing and data
analysis

The selected SNPs and PCR primers utilised are listed in Table 1.
DNA was extracted using QIAamp DNA Blood Midi Kit (Qiagen,
Hamburg, Germany). Relevant segments of DNA were amplified by
thermal cycling, directly sequenced using the DYEnamic ET Dye
Terminator Cycle Sequencing Kit (GE Heathcare, Piscataway, NJ,
USA) and run on a MegaBase 1000 sequencer (Applied Biosystems).
Sequencing results were aligned to the corresponding reference
sequence and SNPs were genotyped using SeqManII sequence
analysis software (DNASTAR Inc., Madison, WI, USA).

Analysis of variance (ANOVA) was used to compare the means
of gene expression values between normals and overreactors.
When possible, a nested ANOVA method was used to calculate the
variance between experiments and the variance between groups
and to draw comparisons.

The association between severity of acute reactions to radio-
therapy and SNPs genotype was determined from odds ratios,
confidence intervals and significance level or, where not applic-
able, Fisher’s Exact tests. Statistical analyses used Epi Info database
and statistics software for public health professionals (Centers for
Disease Control and Prevention, Atlanta, GA, USA).

RESULTS

To identify suitable genes, develop assays and establish their
sensitivity, tests were carried out comparing responses of cultured
T-lymphocytes from normal controls and an AT case. Cells from
AT patients are defective in the initiation of cell-cycle checkpoints
following DNA damage, as ATM kinase activity is critical for the
appropriate initiation of signalling pathways. Results obtained for
three genes CCNB1, CDKN1A and BBC3 from a healthy control
(PH4b), a breast cancer patient with normal therapy reaction
(NR 11) and an AT (AT58) case are presented in Figure 1. Both the
disease-free control PH4b and NR 11 have strong and similar
radiation-induced decreases in cyclin B1 expression, 2.9- and

Table 1 PCR primers and probes for quantitative analysis of gene expression and primers used for PCR amplification and DNA sequencing of SNPs

Database acc no.

Genes Genebank/dbSNP PCR primers, Fwd, Rev Probes

HPRT1 NM_000194.1 TCAGGCAGTATAATCCAAAGATGGT CGCAAGCTTGCTGGTGAAAAGGACCC
AGTCTGGCTTATATCCAACACTTCG

CCNB1 NM_031966.2 ATAAGGCGAAGATCAACATGGC CGCAAAGCGCGTTCCTACGGCC
TTTGTTACCAATGTCCCCAAGAG

CDKN1A NM_078467.1 GCAGACCAGCATGACAG TTTCTACCACTCCAAACGCCGGCT
TAGGGCTTCCTCTTGGA

GADD45A NM_001924.2 CTGCGAGAACGACATCAAC ATCCTGCGCGTCAGCAACCCG
AGCGTCGGTCTCCAAGAG

BBC3 NM_014417.2 CGGAGACAAGAGGAGCAG CCCTCACCCTGGAGGGTCCTGT
GGAGTCCCATGATGAGATTG

SNPs
CDKN1A rs1801270–codon 31 CGCCATGTCAGAACCGGCT

SNP C/A, Ser/Arg TTCCATCGCTCACGGGCC
TP53 rs1042522–codon 72 TGGTCCTCTGACTGCTCTTTT

SNP G/C, Arg/Pro AACTGACCGTGCAAGTCACA
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3-fold, respectively. AT58 cells showed only a marginal decrease of
cyclin B1 mRNA of 1.2-fold. Both the cell-cycle arrest promoter
CDKN1A and the proapoptotic BBC3 in PH4b and NR 11 cells were
strongly upregulated; AT58 responses were significantly less.

To examine the relationship between acute skin reactions and
gene activation/repression after irradiation in CCNB1, CDKN1,
BBC3 and GADD45A (a well-characterised radiation-responsive
gene; Grace et al, 2002), T-lymphocytes from 22 breast cancer
patients were analysed. The NR and SR patient groups were
comparable in size (11), sex, age and tumour status. Individuals
showed a considerable range in baseline expression for the four
genes (Table 2), although NR and SR groups were statistically
indistinguishable.

After irradiation, there was a wide range of responses in terms of
either repression (CCNB1) or induction (GADD45A, CDKN1A,
BBC3) as shown in Figure 2. Statistical analysis of results is shown
in Table 2, no statistical differences were found between NR and
SR responses for GADD45A (P¼ 0.98), CCNB1 (P¼ 0.55) and BBC3
(P¼ 0.55). By contrast, radiation-induced increases in CDKN1
expression were significantly less in SR than NR (Po0.0021).
Nested ANOVA tests confirmed that replicate experiments
performed consistently without significant differences between
experiments (P¼ 0.308). In Figure 3, the relative CDKN1A
expression for all 22 patients is presented sorted in terms of
increasing magnitude of response. There is an overlap between NR
and SR and it is not possible to predict the normal tissue response
on an individual basis for all samples. However, using a cutoff of
seven-fold increase, reaction status in B91% (20/22) would be

correctly identified with only two false negatives and no false
positives.

To determine whether the CDKN1 response differences between
NR and SR could be related to polymorphisms in TP53 codon 72 or
CDKN1A codon 31, sequencing was performed on DNAs from
lymphocyte cultures of 12 SR patients as described in Materials
and Methods plus two additional SR cultures. No significant
differences in frequency were found between groups for either
polymorphism (Table 3).

DISCUSSION

In this study, QRT-PCR assays have been used to assess the
predictive value of four genes for acute skin reactions to
radiotherapy. The transcripts levels of CCNB1, CDKN1A, BBC3
and GADD45, all identified as radiation responsive in previous
gene expression array studies (Tusher et al, 2001; Jen and Cheung,
2003) and recognised as biomarkers of radiation exposure, have
been analysed. This study, therefore, addresses the hypothesis
that expression differences in genes involved in the DDR network
associate with severity of normal tissue radiation toxicity.
Expression of these genes was analysed in a set of breast cancer
patients with differences in sensitivity to radiation treatment.

Specific genetic variation among populations contributes
appreciably to differences in gene expression phenotypes (Morley
et al, 2004; Spielman et al, 2007). Gene expression signatures
highlighting the molecular characteristics of individual patients
are already useful for personalised cancer therapy (Garman et al,
2007). In this study, it was speculated that intrinsic radiosensitivity
differences in most or all tissues in the body are reflected in the
expression of genes influencing radiation sensitivity.

The DDR network senses genotoxic stress and coordinates a
response, which includes activation of transcription, cell cycle
checkpoints, apoptosis, senescence and DNA repair processes.
This coordination is essential for cell survival.

Results comparing AT and normal cells are in good agreement
with knowledge of the ATM DNA-damage-dependent signal
transduction pathway. Unlike the Rieger et al (2004) study where
microarray data on lymphoblastoid cells failed to predict toxicity
in subjects with defined genetic defects like AT, the present results
with CCNB1, CDKN1A and BBC3 clearly demonstrated differential
responses between a healthy donor and an AT case.

Of the genes studied, only CDKN1A expression allowed
discrimination of NR from SR on average and in B91% of
individuals. Although CDKN1A is a well-known damage response
gene, it was not previously identified in array-based screens for
genes predictive of early (Rieger et al, 2004) or late (Svensson et al,
2006) toxicity. CDKN1A is cyclin-dependent kinase inhibitor-1A
also referred to as p21; this gene codes for a protein, which inhibits
cyclin kinase activity; it is tightly regulated at the transcriptional
level by p53 protein and serves as the effector of TP53 cell cycle
control. CDKN1A is well known as a biological indicator of IR

Table 2 Expression of genes in NR and SR samples

Basal expression Expression 2 h after 2 Gy x-irradiation

Mean (95% conf. interval) Mean (95% conf. interval)

NR SR P-value* NR SR P-value*

CCNB1 2.859 (2.233–3.484) 3.001 (2.341–3.659) 0.7487 2.341 (2.153–2.529) 2.267 (2.093–3.441) 0.552
CDKN1A 0.748 (0.141–1.356) 0.722 (0.573–0.872) 0.9298 11.241 (8.607–13.874) 6.795 (5.5541–8.05) 0.0021**
GADD45A 0.052 (0.014–0.09) 0.088 (0.024–0.151) 0.3256 17.168 (8.961–25.374) 17.062 (9.436–24.688) 0.9832
BBC3 0.045 (0.02–0.069) 0.065 (0.042–0.087) 0.1991 23.045 (11.434–34.817) 10.585 (7.916–13.255) 0.552

Mean values represent the expression level of each gene normalised to the house keeping control HPRT and for irradiated samples, relative to unirradiated controls. *ANOVA
test for heterogeneity between NR and SR groups, P-values **Po0.0021, significant.
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Figure 1 Quantitative PCR analysis of gene expression in cultured
lymphocytes 2 h after 2 Gy X-rays from a healthy donor (PH4B), one breast
cancer case with normal therapy reaction (NR 11) and an AT case (AT58).
Values were normalised using HPRT as standard. The figures represent the
ratio of level of expression after irradiation divided by the mock-treated cell
expression levels. The mean value of 2–3 experiments reproduced at least
twice each with three reactions are shown (error bars, s.e.).
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exposure in humans (Amundson et al, 2003). It is, therefore, not
entirely surprising that CDKN1A expression level may be
predictive of radiation toxicity; a plausible biological explanation
exists in that knockout mouse studies demonstrate CDKN1A,
which plays a role in protecting intestinal epithelial cells from
radiation-induced apoptosis (Wang et al, 1997). Loss of CDKN1A
in a context of ATM deficiency also leads to accelerated kinetics of
acute radiation toxicity in vivo, principally because of effects on
the gut epithelium, suggesting that CDKN1A has a crucial role in
acute normal tissue response to IR (Wang et al, 1997). Amundson
et al (2004) showed that in vivo patterns of stress-gene induction
by IR in blood are similar to those observed ex vivo. They

demonstrated that CDKN1A is induced in vivo in humans
undergoing total body irradiation and was one of the most
promising biomarkers that also showed interindividual variation
in response. The expression level of one gene in lymphocytes in
response to radiation cannot alone explain the response of
complex tissues; the vascular system or cytokines involved in the
inflammation process must contribute as well. Nevertheless, our
results support the concept that gene expression differences,
perhaps reflecting underlying genetic variants, seem to be
associated with radiation toxicity.

At least 40 polymorphisms of CDKN1A have been identified (Li
et al, 2005) of which 35 are intronic. Only seven have an allele
frequency 410%, but they are B1.3 kb upstream of exon 2.
Among the common SNPs, CDKN1A C98A is found in exon 2 and
causes a non-synonymous serine-to-arginine substitution at codon
31. This SNP is located in a highly conserved region of the gene
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Figure 2 Gene expression analysis of CCNB1, GADD45A, CDKN1A and BBC3 by quantitative PCR in 22 cultures of cultured T-lymphocytes from female
breast cancer patients (11 SR and 11 NR). Values were standardised to HPRT expression level. The gene expression level ratio of irradiated/mock-treated
cell is presented. The mean values of triplicate experiments, each with three reactions, are shown.
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Figure 3 Gene expression analysis by quantitative PCR in 22 cultures of
T-lymphocytes from female breast cancer patients (11 SR and 11 NR). The
results presented show the cells response 2 h after 2 Gy X-rays and have
been sorted into ascending magnitude of response (fold increase in
CDKN1A gene expression). Values were standardised to HPRT expression
level. The gene expression level ratio of irradiated/mock-treated cell is
presented. The mean value of triplicate experiments, each with three
reactions, are shown. The dotted line indicates the retrospectively defined
cutoff for predicting radiation toxicity, with two false negatives and no false
positive. Filled diamonds: SR, empty diamonds: NR

Table 3 Genotype and allelic frequencies of two polymorphisms
assessed in 25 breast cancer patients treated with radiotherapy, 11 normal
reactors (NR) and 14 severe reactors (SR)

Radiosensitivity groups n (%)
Odd ratio

Genotype
and allele

Severe
reactors

n¼ 14

Normal
reactors

n¼ 11
(95% conf.
interval)

Significance
level P

CDKN1A (codon 31 C4A Ser/Arg)
Genotypes

C/C 10 (71) 8 (73)
C/A 4 (29) 2 (18) N/A 1.00*
A/A 0 (0) 1 (9) N/A 0.47*

Allelic frequencies
C 24 (86) 18 (82)
A 4 (14) 4 (18) N/A 0.72*

TP53 (codon 72 G4C Arg/Pro)
Genotypes

G/G 9 (64) 6 (55)
G/C 3 (21) 3 (27) N/A 1.00*
C/C 2 (14) 2 (18) N/A 1.00*

Allelic frequencies
G 21 (75) 15 (68)
C 7 (25) 7 (32) 0.71 (0.17–2.92) 0.59

N/A¼ not applicable. *Two-tailed Fisher’s Exact test.
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(Chedid et al, 1994) and, as it is likely to change the properties of
the protein, it is the most widely studied of the CDKN1A SNPs.

In our group of patients, CDKN1A gene expression neither
associated with the CDKN1A C31A SNP nor with the common SNP
in TP53 (G72C). Larger studies would be needed to confirm these
results. However, our results are in line with those obtained by Tan
et al (2006) who examined the impact of these two SNPs on
radiation response using the end point of acute skin toxicity after
radiotherapy for breast cancer, no clear-cut association was found.
In an in vitro study, Alsbeih et al (2007) described a significant
association between cellular clonogenic radiosensitivity and TP53
G72C but not CDKN1A C31A. The discrepancy between these two
sets of data may be due to the presence in vivo of cofactors specific
to each patient that could mask subtle SNP associations.

There are other polymorphic SNPs in CDKN1A, which could be
more relevant to the rate of gene expression, for example, some
SNPs in the first intron containing the promoter with the p53
binding site. These SNPs have wide range of frequency (B0.001 –
0.48) in the population and could influence the rate of gene
expression by modifying the binding affinity of transcription

factors. Therefore, screening of the whole CDKN1A genetic region
would be necessary to determine the influence of all these SNP
variations on gene expression and toxicity to radiation therapy.

To summarise, the data presented here support the hypothesis
that at least some breast cancer patients, who develop severe
reactions to radiotherapy, have an intrinsic radiosensitivity that
can be identified in peripheral blood lymphocytes by quantifying
gene expression response to IR and that CDKN1A is a surrogate
marker for early effects of radiation therapy. Confirmation and
extension of these results may enable development of simple
clinical tests to predict the likely level of radiation toxicity and to
individualise patient treatment.
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