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Abstract: Profiling a propolis sample from Papua New Guinea (PNG) using high-resolution mass
spectrometry indicated that it contained several triterpenoids. Further fractionation by column
chromatography and medium-pressure liquid chromatography (MPLC) followed by nuclear magnetic
resonance spectroscopy (NMR) identified 12 triterpenoids. Five of these were obtained pure and
the others as mixtures of two or three compounds. The compounds identified were: mangiferonic
acid, ambonic acid, isomangiferolic acid, ambolic acid, 27-hydroxyisomangiferolic acid, cycloartenol,
cycloeucalenol, 24-methylenecycloartenol, 20-hydroxybetulin, betulin, betulinic acid and madecassic
acid. The fractions from the propolis and the purified compounds were tested in vitro against Crithidia
fasciculata, Trypanosoma congolense, drug-resistant Trypanosoma congolense, Trypanosoma b. brucei and
multidrug-resistant Trypanosoma b. brucei (B48). They were also assayed for their toxicity against
U947 cells. The compounds and fractions displayed moderate to high activity against parasitic
protozoa but only low cytotoxicity against the mammalian cells. The most active isolated compound,
20-hydroxybetulin, was found to be trypanostatic when different concentrations were tested against
T. b. brucei growth.

Keywords: triterpenes; T. brucei; T. congolense; Papua New Guinea; propolis; U947 cells

1. Introduction

Bees gather propolis from the buds, exudates and barks of a variety of plants, leading
to wide chemical diversity. Since propolis contains a multitude of chemical components in
a complex mixture, its biological activity and pharmacological properties might similarly
be broad [1,2]. Propolis has been observed to have promising activity against a number
of protozoal species, particularly Trypanosoma and Leishmania species [3–9]. Studies of
the antiprotozoal activity of propolis have recently been reviewed [10]. Diseases caused
by parasitic protozoa remain a problem worldwide and these diseases include human
African trypanosomiasis (HAT) and animal African trypanosomiasis (AAT), which occur in
Africa, and Chagas disease; these are all caused by Trypanosoma species. In addition, the
closely related Leishmania parasites cause a variety of diseases throughout the world [11,12].
Chemotherapy is still important for the control of most parasitic diseases, such as trypanoso-
miasis and leishmaniasis, as no vaccines are available. The current treatment of human
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African trypanosomiasis (HAT) or animal African trypanosomiasis (AAT) is based on a
few drugs which were developed decades ago. However, the current frontline drugs are
quite toxic and in most cases require intravenous administration. Furthermore, resistance
to current drugs by trypanosomes is another threat to effective chemotherapy [12,13].

Thus, there is a need for new treatment approaches; the progress in discovering new
and effective anti-parasitic drugs has been very poor [12]. Propolis seems to be a good
lead candidate as a starting point for drug discovery in view of the fact that it has been
frequently found to be toxic to protozoa [10].

In the current paper, we report on the chemical profiling and antiprotozoal assay
of a propolis sample from Papua New Guinea (PNG), which as far as we know has not
been investigated before. We focused on activity against trypanosomatids, which cause
fatal disease in humans and other animals as well as insects. Trypanosoma species are
the most common organisms within the Trypanosomatidae class that has many different
subspecies, including Trypanosoma b. gambiense and Trypanosoma b. rhodesiense, which are
transmitted by the tsetse fly and cause HAT, also known as African sleeping sickness. Other
trypanosome species cause AAT, including T. b. brucei, T. congolense and T. vivax [14]. The
genus Crithidia contains a number of species with a wide host range, depending upon the
species of the parasite. C. fasciculata has been widely used as a model organism in research
of trypanosomatid biology that may then be applied to understanding the biology of the
human infective species [15]. Crithidia species parasitise several species of insects including
bees and have been reported as a possible cause of winter colony collapse in Europe [16].
Activity against C. fasciculata was also tested in order to assess the importance of propolis
for preventing these types of protozoal infections in bees.

2. Results
2.1. LC-MS Profiling of the Crude PNG Propolis Sample

Approximately 38.4 g of raw PNG propolis was extracted with ethanol to obtain a
crude extract weighing 29.2 g. Profiling of the PNG propolis sample by high-resolution
LC-MS indicated a clear set of molecular formulae (Table 1) consistent with a series of
triterpenes with various degrees of oxygenation, including some highly oxygenated com-
pounds such as C29H48O6 and C30H48O6 and some with a high degree of unsaturation such
as C30H46O4. The most abundant compounds from the LC-MS data were C30H48O4 and
C30H50O3. To date, there have been no data published on PNG propolis in the literature
with which this sample could be compared. Generally, these triterpenes appear to be
different from the ones isolated from some PNG plant species such as Terminalia spp., in
which trihydroxylated triterpene acids such as arjunolic and asiatic acids were found [17].

Table 1. Profiling a crude PNG propolis extract using the negative ion masses in LC-MS
(RDB = degree of unsaturation).

RT
Min. [M − H]− Formula RDB Delta ppm Intensity

9.4 431.3374 C24H48O6 1.5 0.887 44.3 × 106

10.1 405.2645 C24H38O5 6.5 −0.216 6.58 × 106

14.6 503.3375 C30H48O6 13 −0.432 4.86 × 106

14.9 487.3425 C30H48O5 13 −0.744 6.31 × 106

15.8 489.3218 C29H48O6 7.5 −0.659 1.03 × 106

21.4 485.3265 C30H46O5 8.5 −1.396 1.12 × 107

21.8 471.3473 C30H48O4 7.5 −1.280 2.18 × 106

23.0 473.3630
453.3373

C30H50O4
C30H46O3

7.0
8.5

1.182
−0.237

2.02 × 106

1.10 × 106

25.5 469.3318
453.3374

C30H46O4
C30H47O3

8.5
8.5

−1.029
0.4355

6.8 × 105

7.3 × 105
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Table 1. Cont.

RT
Min. [M − H]− Formula RDB Delta ppm Intensity

26.2 469.3317
455.3527

C30H46O4
C30H48O3

8.5
7.5

−1.285
−0.760

1.60 × 106

26.9 471.3473 C30H48O4 7.5 −1.343 4.55 × 106

27.9 455.3525 C30H48O3 7.5 −1.095 9.49 × 105

28.7 471.3471 C30H48O4 7.5 −1.653 4.83 × 106

29.1 471.3473
453.3371

C30H48O4
C30H46O3

7.5
8.5

−1.280
−0.641

3.41 × 106

30.3 471.3473 C30H48O4 7.5 −1.343 2.99 × 106

32.9 457.3682 C30H50O3 6.5 −1.003 1.52 × 10 6

35.6 457.3682 C30H50O3 6.5 −0.937 8.5 × 105

36.7 457.3684 C30H50O3 6.5 −0.544 6.63 × 106

38.3 457.3683 C30H50O3 6.5 −0.740 5.33 × 106

2.2. Fractionation of the PNG Extract Using Open Column Chromatography (OCC)

A portion of the crude PNG extract (3 g) was fractionated using OCC to obtain the
fractions PNG F1 to PNG F10. The masses of the different fractions collected are presented
in Table 2. The two fractions with the greatest weights (PNG-F1 and PNG-F6) were chosen
for further separation by medium-pressure liquid chromatography (MPLC).

Table 2. Weights of the fractions obtained from OCC.

Fraction Code Mass of Fraction (mg)

PNG-F1 934
PNG-F2 301.4
PNG-F3 227.2
PNG-F4 141.8
PNG-F5 54
PNG-F6 307.3
PNG-F7 172.6
PNG-F8 98.3
PNG-F9 52.2

PNG-F10 32.8

2.3. In Vitro Testing of Compounds and Fractions Derived from PNG Propolis against T. b. brucei,
T. congolense and C. fasciculata

Alamar blue (resazurin) assays were used to obtain the EC50 values for PNG and its
fractions in at least three independent determinations. Table 3 shows the results obtained
from the assay for antitrypanosomal effects of the PNG sample and its fractions, using
wild-type T. b. brucei s427 and the derived multidrug-resistant cell line T. b. brucei B48. The
most active fractions were fractions F4, F5 and F6. A notable observation was that none of
the fractions and purified compounds showed reduced activity against the drug-resistant
strain B48 (i.e., RF < 1 and therefore not cross-resistant with first-line trypanosomiasis
drugs such as dimamidines, including pentamidine, used in these assays as control, or
melaminophenyl arsenicals) [18–20]. Indeed, the trypanocidal activity of most PNG frac-
tions was significantly higher (p < 0.05) against B48, often around two-fold. In contrast, the
resistance factor (RF) for pentamidine was 210.8, with a p value of 0.00001.
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Table 3. EC50 values of PNG propolis and its fractions on T. b. brucei. S427 wild-type and B48
(pentamidine-resistant) (n = 3).

Samples

T. b. brucei S427WT T. b. brucei B48

EC50 (µg/mL) EC50 (µg/mL)

AVG SD RSD AVG SD RSD RF t-Test

PNG crude 4.0 0.095 2.40 3.85 0.37 9.52 0.96 0.50
PNG-F1 10.2 2.50 24.4 5.90 1.28 21.7 0.58 0.06
PNG-F2 14.9 1.27 8.52 9.82 2.61 26.6 0.66 0.040
PNG-F3 8.2 0.73 8.93 5.82 1.38 23.6 0.71 0.05
PNG-F4 4.1 0.27 6.66 2.15 0.51 23.7 0.53 0.005
PNG-F5 2.04 0.11 5.49 2.09 0.11 11.6 0.47 0.003
PNG-F6 4.8 0.60 12.4 2.13 0.50 23.5 0.44 0.004
PNG-F7 15.5 0.98 6.36 7.84 0.70 9.02 0.51 0.0004
PNG-F8 15.8 1.40 8.87 9.16 1.76 19.2 0.58 0.007
PNG-F9 7.9 1.01 12.9 6.55 1.50 22.9 0.83 0.28

PNG-F10 15.8 1.72 9.21 12.1 2.63 21.8 0.76 0.090
Pentamidine 1 0.0034 0.0008 22.2 0.721 0.050 6.75 210 0.00001

Abbreviations: AVG EC50 = average of half maximal effective concentration, average of at least 3 independent de-
terminations. SD = standard deviation of all determinations. RSD = relative standard deviation = (SD/Avg.) × 100.
RF = resistance factor ((EC50 B48/EC50) WT). Statistical significance was determined using an unpaired two-tailed
Student’s t-test comparing EC50 value of the resistant strain with that of the same sample for the control strain
S427. 1 values of EC50 and SD in µM.

2.4. Testing of the Cytotoxicity of PNG Extract and Its Fractions against U937 Cells

The cytotoxicity of the crude extract and ten fractions was assessed against U937 cells.
The results show that toxicity of PNG propolis was low (Table 4), as is generally observed
for propolis extracts [3–6].

Table 4. IC50 values of crude PNG propolis extract and its fractions against U937 cells (n = 3).

Samples

AVG EC50 (µg/mL)

SD RSD
(%)

PNG crude 116.3 5.7 4.90
PNG-F1 83.3 11.1 13.3
PNG-F2 135.1 20.1 14.9
PNG-F3 84.9 5.0 5.8
PNG-F4 40.1 1.5 3.7
PNG-F5 47.0 9.63 20.5
PNG-F6 84.4 9.5 11.3
PNG-F7 57.0 6.8 11.8
PNG-F8 95.6 2.3 2.4
PNG-F9 45.9 2.0 4.4

PNG-F10 53.4 5.2 9.8
SD = standard deviation; RSD (%) = relative standard deviation = (SD/Avg.) × 100.

2.5. Characterisation of MPLC Subfractions Derived from OCC Fractions

Figure S1 shows workflows for the extraction and fractionation of the PNG propolis
sample. In addition, PNG-F4 was selected for further fractionation in view of its high
activity against T. brucei (Table 3) and good weight of material; it was separated into
subfractions by a repeat of OCC.

2.5.1. Identification of MPLC Fraction PNG-F1-5 as a Mixture of Cycloartenol,
24 (28)-Methylenecycloartenol and Cycloeucalenol

Gas chromatography-mass spectrometry (GC-MS) analysis of PNG-F1-5B indicated
a mixture of three components (Figure S2). The high-resolution LC-MS analysis of PNG-
F1-5B showed three peaks: at 27.4 min having an [M + H]− ion at m/z 425.3426 with an
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elemental composition C30H49O; at 30.4 min having an [M + H]− ion at m/z 439.3034
with an elemental composition C31H51O; and at 34.0 min having an [M + H]− ion at m/z
425.3424 with an elemental composition C30H49O. The three components in the mixture
were identified as cycloartenol (Figure S3), 28-methylenecycloartenol (Figure S4) and
cycloeucalenol (Figure S5). Details of the NMR results are given in Figures S6–S9. The
chemical shifts for the compounds (Table S1) were confirmed using literature reports [21,22].

2.5.2. Characterisation of PNG-F4-11 as Betulin

The compound had an [M + H]+ ion at m/z 443.3884, corresponding with the molecular
formula C30H51O2. The NMR data are shown in Table S2 and the structure of betulin
(Figure S10) was confirmed by comparison with the literature [23]. The 1H NMR and 13C
NMR spectra are shown in Figures S11 and S12.

2.5.3. Characterisation of PNG-F4-13 as Betulinic Acid

The compound had an [M + H]+ ion at m/z 457.3675, corresponding with the molecular
formula C30H49O3. The NMR data (Table S3) for betulinic acid (Figure S13) were confirmed
by comparison with the literature [24–26]. The 1H NMR and 13C NMR spectra are shown
in Figures S14 and S15.

2.5.4. Characterisation of PNG-F4-18 as Madecassic Acid

The compound had an [M − H]− ion at m/z 503.3378 corresponding to the molecular
formula C30H47O6 (Figure S16). The NMR data (Table S4) for madecassic acid were con-
firmed by comparison with the literature [24–26]. The 1H NMR and 13C NMR spectra are
shown in Figures S17 and S18.

2.5.5. Identification of F5 as 20-Hydroxybetulin

The compound had an [M − H]− ion at m/z 459.3850 corresponding to the molecular
formula C30H51O3. Comparison of the NMR data (Table S5) with the literature [23] con-
firmed the structure as 20-hydroxybetulin (Figure S19). The 1H NMR and 13C NMR spectra
are shown in Figures S20 and S21.

2.5.6. Characterisation of PNG-F6-S12 as a Mixture of Mangiferonic Acid and
Ambonic Acid

High-resolution LC-MS analysis of PNG-F6-12 showed two peaks at 25.1 min having
an [M + H]+ ion at m/z 455.3508 with elemental composition C30H47O3, and at 28.6 min
having an [M + H]+ ion at m/z 469.3666 with elemental composition C31H49O3. The 1H
NMR and 13C NMR spectra (Table S6) were compared with the literature [27,28] and were
consistent with the sample being a mixture of mangiferonic (Figure S22) and ambonic acid
(Figure S23). The 1H NMR and 13C NMR spectra are shown in Figures S24 and S25.

2.5.7. Characterisation of PNG-F6-S15 as a Mixture of Isomangiferolic Acid and
Ambolic Acid

High-resolution LC-MS analysis of PNG-F6-15 showed two peaks at 23.0 min having
an [M + H]− ion at m/z 469.3681 with elemental composition C31H49O3, and at 30.0 min
having an [M + H]− ion at m/z 455.3526 with elemental composition C30H47O3. The 1H
NMR and 13C NMR spectra (Table S7) were compared with the literature [27,28] and were
consistent with the sample being a mixture of mangiferonic (Figure S26) and ambolic acid
(Figure S27). The 1H NMR and 13C NMR spectra are shown in Figures S28 and S29.

2.5.8. Characterisation of PNG-S17 as 27-Hydroxyisomangiferolic Acid

High-resolution LC-MS analysis of PNG-S17 showed a peak at 26.6 min (Figure S28)
having an [M − H]− ion at m/z 471.3475 with elemental composition C30H47O4. The 1H
NMR and 13C NMR spectra (Table S8) were compared with the literature [27,28] and were
consistent with the sample being 27-hydroxyisomangiferolic acid (Figure S30). The 1H
NMR and 13C NMR spectra are shown in Figures S31 and S32.
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2.6. In Vitro Testing of Compounds of PNG Propolis against T. b. brucei, T. congolense
and C. fasciculata

The purified compounds/mixtures derived from PNG propolis were tested against
wild-type T. b. brucei s427 and the derived multidrug-resistant cell line T. b. brucei B48
(Table 5). Of the purified compounds, betulin and hydroxybetulin showed significantly
higher activity against B48, and hydroxybetulin was by far the most active compound
against T. b. brucei, with an EC50 of just 2.0 ± 0.1 µg/mL.

Table 5. EC50 values of purified compounds isolated from PNG propolis on T. b. brucei s427 WT and
T. b. brucei B48 (n = 3).

Samples

T. b. brucei S427WT T. b. brucei B48

AVG EC50 AVG EC50

µg/mL µM SD RSD µg/mL µM SD RSD RF t-Test

Hydroxybetulin 2.04 4.44 0.11 5.49 0.97 2.09 0.11 11.6 0.47 0.0003
PNG-F6-S12 16.0 - 1.47 9.21 11.3 - 2.54 22.5 0.71 0.051
PNG-F6-S15 13.5 - 0.84 6.22 12.4 - 0.62 5.02 0.91 0.12

Hydroxymangi-
ferolic acid 13.6 28.8 1.45 10.7 11.8 25.0 2.46 20.8 0.87 0.33

PNG-F1-5B 18.5 - 0.72 3.90 17.6 - 0.68 3.84 0.95 0.21
Betulin 26.6 60.1 2.69 6.26 22.3 50.5 2.39 11.8 0.84 0.13

Betulinic acid 24.2 53.1 2.64 12.7 19.6 42.9 1.66 8.50 0.81 0.0610
Madecassic acid 18.1 36.0 1.81 9.45 16.0 31.7 0.91 10.4 0.88 0.23

Pentamidine - 0.0043 0.0020 47.3 - 0.62 0.10 16.5 145 0.0005

2.6.1. Testing of Compounds and Fractions Derived from PNG Propolis against a
Drug-Sensitive (IL3000) and a Diminazene-Resistant Strain (6C3) of T. congolense

In much of sub-Saharan Africa, trypanosomiasis in (domesticated) animals is caused
primarily by infection with T. congolense; the condition is treated predominantly with dimi-
nazene aceturate but resistance to this drug is widespread [11]. Both the primary fractions
of PNG propolis and the isolated compounds were tested on a standard drug-sensitive
strain of T. congolense, IL3000, and the derived diminazene-resistant cell line 6C3 [29]. The
crude extract displayed promising activity against T. congolense (Tables 6 and 7), includ-
ing the resistant line, very close to the value obtained against T. b. brucei (Table 3), but
none of the individual fractions matched this. Of the isolated compounds, hydroxybetulin
again displayed the most potent activity, at 5.8 ± 1.3 µg/mL, and was, as for T. b. brucei,
significantly more active against the resistant strain (p = 0.017).

Table 6. EC50 values of PNG propolis and its fractions on T. congolense IL3000, and T. congolense
resistant to diminazene (n = 3).

Samples

T. congolense IL3000 T. congolense 6C3

AVG EC50 AVG EC50

µg/mL SD RSD µg/mL SD RSD RF t-Test

PNG crude 3.39 0.41 12.3 4.4 0.37 8.52 1.29 0.039
PNG-F1 13.5 3.26 24.3 13.3 3.40 25.6 0.99 0.95
PNG-F2 11.4 2.49 21.8 12.0 2.34 19.5 1.05 0.79
PNG-F3 11.5 2.93 25.6 12.8 2.65 20.7 1.11 0.59
PNG-F4 10.5 2.41 23.0 9.3 0.79 8.6 0.89 0.46
PNG-F5 5.77 1.28 22.2 6.09 0.33 11.8 0.48 0.017
PNG-F6 9.30 1.64 17.7 7.8 0.69 8.88 0.84 0.017
PNG-F7 12.6 1.42 11.2 12.4 2.55 20.5 0.98 0.22
PNG-F8 15.6 3.10 19.9 14.6 2.64 18.1 0.93 0.90
PNG-F9 18.1 2.14 11.8 20.5 3.05 14.9 1.13 0.69

PNG-F10 18.2 3.94 21.7 21.2 4.17 19.6 1.17 0.34
Diminazene 1 0.26 0.028 11.0 1.54 0.22 14.2 5.90 0.0005

1 EC50 and SD given in µM.
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Table 7. EC50 values of purified compounds isolated from PNG propolis against drug-sensitive
T. congolense IL3000, and diminazene-resistant T. congolense 6C3 (n = 3).

Samples

T. congolense IL3000 T. congolense 6C3

AVG EC50 AVG EC50

µg/mL µM SD RSD µg/mL µM SD RSD RF t-Test

Hydroxybetulin 5.77 14.4 1.28 22.2 2.77 6.09 0.33 11.8 0.48 0.017
PNG-F6-S12 14.2 - 2.75 19.4 16.9 - 4.00 23.5 1.18 0.40
PNG-F6-S15 13.7 - 2.75 20.1 13.2 - 2.83 21.4 0.96 0.83

Hydroxymangi-
ferolic acid 16.7 35.3 3.49 20.9 15.7 33.2 3.62 23.1 0.94 0.75

PNG-F1-5 18.9 2.90 15.3 19.5 4.00 20.5 1.03 0.85
Betulin 21.5 70.1 3.15 14.7 22.1 49.9 3.46 15.7 1.03 0.84

Betulinic acid 17.2 44.5 2.93 17.0 18.1 28.5 3.73 20.6 1.05 0.75
Madecassic acid 22.6 67.6 3.25 14.4 19.8 59.1 5.37 27.1 0.88 0.48

Diminazene - 0.28 0.019 6.9 - 1.55 0.22 14.2 5.5 0.0006

2.6.2. Testing of PNG Fractions and Isolated Compounds against U937 Cells

The purified compounds were tested for their effects on human cell line U937 and
to determine whether the antiprotozoal activity is the result of general toxicity or is more
specifically antiprotozoal. The toxicity of the purified compounds and fractions was found
to be low against the mammalian cells (Table 8).

Table 8. IC50 of cytotoxicity of isolated purified compounds from PNG propolis against U937 cells
(n = 3).

Samples

U937 Cells

AVG EC50

µg/mL µM SD RSD SI 1

Hydroxybetulin 47.0 102.0 9.63 20.50 23.0
PNG-F6-S12 >100 N/A 9.55 8.92 >6.3
PNG-F6-S15 >100 N/A 12.30 8.44 >7.4

Hydroxymangiferolic acid >100 260.1 7.42 6.04 >7.4
PNGF1-5 92.7 N/A 6.24 6.73 5.0
Betulin 55.8 126.0 4.34 7.78 2.1

Betulinic acid 51.7 113.1 4.85 9.38 2.1
Madecassic acid 90.7 179.8 5.50 6.06 5.0

1 SI, selectivity index relative to T. b. brucei WT: EC50(U937)/EC50(TbbWT).

2.6.3. Activity of PNG Propolis and Its Fractions against C. fasciculata

The OCC fractions derived from PNG propolis were tested against C. fasciculata
(Table 9). Most of the fractions were more potent against Trypanosoma spp. than against C. fas-
ciculata. All the fractions exhibited similar EC50 values against C. fasciculata (20 < EC50 < 54).
As such, the purified compounds were not retested against this species.

Table 9. EC50 of PNG propolis and its fractions on C. fasciculata.

Exp Code AVG EC50 (µg/mL) SD RSD

PNG crude 20.8 1.3 6.0
PNG-F1 22.1 4.44 20.1
PNG-F2 34.3 2.80 8.15
PNG-F3 28.1 1.96 7.00
PNG-F4 20.8 2.73 13.1
PNG-F5 23.4 3.15 13.5
PNG-F6 53.1 4.35 8.20
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Table 9. Cont.

Exp Code AVG EC50 (µg/mL) SD RSD

PNG-F7 38.5 5.67 14.7
PNG-F8 31.3 5.87 18.8
PNG-F9 24.7 1.17 4.74

PNG-F10 32.2 2.29 7.10
PAO (µM) 3.06 0.08 2.47

2.6.4. The Effect of 20-Hydroxybetulin on In Vitro Growth of T. b. brucei

In order to verify whether or not the most active compound isolated, 20-hydroxybetulin,
acted as a trypanocidal or trypanostatic agent, its effect over time on the log phase culture
of drug-resistant T. b. brucei B48 was tested. A sample of 2 × 105 cells/mL was exposed to
concentrations equivalent to 1×, 2× and 4× EC50. As a positive control for trypanocidal
activity, cells were grown with pentamidine at 1×, 2× and 4× EC50; the negative control
was a culture grown in the absence of drug. The cell density was determined by counting
using a haemocytometer at several time points in triplicate and the average values obtained
were plotted against time. The cultures incubated with pentamidine at both 2× and 4×
EC50 had their growth suppressed and parasites were almost completely eliminated from
the media after 32 h. Hydroxybetulin, conversely, had a more trypanostatic effect, as
cultures incubated with it at 4 × EC50 were still able to grow, although the growth rate was
found to be reduced (Figure 1).
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concentration was 12 h, after which the cells were not detectable by haemocytometer. The results
shown are the average and SD of three determinations. When error bars are not shown they fall
inside the symbol.

3. Discussion

In this work, six compounds, two 2-component mixtures and a 3-component mixture
were isolated from a propolis sample from the Eastern Highlands of Papua New Guinea.
All of the compounds identified were triterpenoids. Profiling of the crude sample by
high-resolution LC-MS suggested that it contained many compounds in the triterpenoid
class. To our knowledge, there appears to have been no previous investigation of propolis
from Papua New Guinea. The abundance of triterpenoids in the sample appears to be
typical of samples from other tropical and subtropical regions that we have previously
investigated [5,6,25]. The presence of triterpenoids such as mangiferonic and isoferonic
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acid suggests that one of the sources of the propolis may be mango [5,25]. The crude extract,
fractions and isolated compounds and mixtures were tested against T. b. brucei WT and
a multidrug-resistant strain of T. b. brucei, B48. The compounds and mixtures were also
tested against T. congolense WT and a diminazene-resistant strain [26–28]. All the isolated
compounds exhibited EC50 values of <100 µM against the standard and resistant strains of
T. b. brucei and T. congolense. The most active compound isolated was 20-hydroxybetulin,
but the crude extract was more active than any of the isolated compounds apart from
20-hydroxybetulin, suggesting that either the most active compounds were not isolated
or there was synergy between the components in the mixture. For all compounds and
fractions there was a high degree of selective toxicity against Trypanosoma spp. compared
to the level of cytotoxicity against a mammalian cell line. The most active compound,
hydroxybetulin, had selectivity indices of 23.0 and 48.5 against WT and resistant T. brucei,
respectively, and 8.1 and 17.0 against WT and resistant T. congolense, respectively. Although
it was marginally the most toxic compound against mammalian cells, it had by far the
highest of the compounds and fractions tested, which justifies its selection as the most
promising antiprotozoal compound identified in PNG propolis.

In addition, the crude extract, isolated compounds and fractions were tested against
C. fasciculata which is a close relative of Crithidia mellificae which is a parasite of the honey
bee and has been implicated in winter colony collapse [16]. The compounds and fractions
were also found to have activity against C. fasciculata, although at a lower level than against
Trypanosoma spp.

Looking at the structures of the isolated compounds in relation to their activity, 20-
hydroxybetulin was the most active compound against T. b. brucei. It was nearly 19-fold
more active than betulin, from which it differs only by the presence of an additional
hydroxyl group, and it was 15-fold more active than betulinic acid, where one of the
hydroxyl groups in betulin has been converted into a carboxyl group. It was also the
most active compound against T. congolense—about four times more active than betulin
and three-fold more active than betulinic acid. Thus, this suggests that there may be an
optimal hydrophilic lipophilic balance for activity, with betulin being insufficiently polar
and betulinic acid being too polar for optimal activity. However, this view is slightly
confounded by madecassic acid having higher activity against T. b. brucei than betulinic
acid despite being more polar. There remain many triterpenoids to be isolated from the
PNG propolis sample and there may be more active compounds present in the mixture
given that its activity was higher than most of the isolated compounds. Importantly, 20-
hydroxybetulin was significantly (>2-fold) active against drug-resistant strains of T. b. brucei
and T. congolense, despite the drug resistance mechanisms being very different in the two
species [29,30]. Overall, it would seem that 20-hydroxybetulin, which displayed low toxicity
against mammalian cell lines, could be a promising lead compound to systematically
explore the SAR against African drug-resistant trypanosomiasis.

It is apparent that bees collect propolis to ward off microbial infections and activity
has been found against a variety of bee diseases including Varroa mite [31], Paenibacillus
larvae [32] and Nosema ceranae [33]. Although bees are not known to ingest propolis, many
of the flavonoids present in temperate propolis are found in honey and may originate
from propolis gathered by the bees [34]. The presence of a propolis envelope in the bee
hive has been found to stabilise and improve the honeybee microbiome [35]. There have
been no direct studies on the efficacy of propolis in reducing the burden of protozoa in bee
hives. It is well established that the trypanosomatid Lotmarium passim is widespread in bee
hives [36–39]. Propolis is frequently antiprotozoal [10] but the extent to which protozoal
infection is a threat to bee health has not been established, although the major pathogen N.
ceranae was once classified as a protozoan.

Recently, compounds isolated from Brazilian propolis have demonstrated activity
in vitro against Leishmania greater than that shown by the accepted treatment [8]. The
bioavailability of propolis in humans is not well established, although there have been
some limited studies of temperate propolis where the flavonoids, which are abundant in
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this type of propolis, appear to be well absorbed but are extensively metabolised [40,41].
However, it might not be necessary for propolis to be absorbed in order to treat protozoal
infections such as giardiasis and amoebiasis which infect the gastrointestinal tract [42].

The wide variety of propolis types makes it an attractive source of phytochemicals,
particularly since the bee has done much of the work of collecting them in a sustainable
way, concentrating them into a solid mass. A recent review identified 578 compounds
as having been isolated from honey bee and stingless bee propolis, representing a wide
variety of chemical types [43,44]. There are many more compounds, even in the widely
studied temperate propolis, left to be fully characterised, and this is even more the case in
the variety of tropical propolis samples. Propolis can be collected in large quantities if traps
are used in bee hives, and stingless bees can collect very large amounts of propolis [44].
Thus, propolis presents a sustainable source of natural products for drug discovery. The
presence of consistent antiprotozoal activity in propolis indicates that it is a promising
source of new antiprotozoal drugs. It is still not clear to what extent natural selection plays
a part in bees targeting plants with antiprotozoal compounds for propolis collection.

The PNG propolis is typical of some tropical propolis samples, generally from drier
and higher regions of the tropics [6]. We tested many of these types of propolis in an earlier
paper and found them to be devoid of antioxidant activity [45].

4. Materials and Methods
4.1. General

The propolis sample was obtained from a collection of samples obtained by Bee Vital,
Whitby (Yorkshire, UK). Solvents, reagents and other consumables were obtained from
Sigma Aldrich, Fisher Scientific, BioWhittaker or Merck.

4.2. Extraction

Approximately 30 g of the propolis sample was extracted thrice under sonication
(Clifton ultrasonic bath, Fisher Scientific, Loughborough, UK), with 150 mL of ethanol at
room temperature for 60 min. The extracts were combined, and the solvent was evaporated
using a rotary evaporator (Buchi, VWR, Leicestershire, UK), and the residue was weighed.

4.3. Column Chromatography

About 3 g of the extract was dissolved in 5 mL of ethyl acetate and mixed with
6 g of silica gel in a beaker and allowed to dry in a fume hood. A glass column was
packed with 60 g of silica gel 60 (0.063–0.2 mm, Sigma Aldrich) in hexane. The dry
adsorbed sample extract was placed directly onto the column and eluted using 200 mL
of hexane, ethyl acetate and methanol mixtures as follows: hexane:ethyl acetate (80:20),
hexane/ethyl acetate (60:40), hexane/ethyl acetate (40:60), hexane:ethyl acetate (20:80),
ethyl acetate and then ethyl acetate/methanol (80:20), ethyl acetate/methanol (60:40),
ethyl acetate:methanol (40:60), ethyl acetate:methanol (20:80) and finally methanol to yield
fractions F1–F10, respectively.

4.4. Purification

Further purification of the column fractions was carried out using MPLC on silica
gel using a Grace Reveleris flash chromatography system (Alltech Ltd., Stamford, UK)
equipped with evaporative light-scattering detector (ELSD) and UV detector. Fractions
F1 and F6 were separately adsorbed onto Celite (1.5 g Sigma Aldrich, UK) and packed
into dry loading cartridges. The Reveleris MPLC was set up with a 12 g silica Reveleris
column (VWR, Poole, Dorset UK). Fraction 1 (F1) was eluted using the following gradient:
100% hexane 10 min, hexane: ethyl acetate (90:10) 30 min, hexane: ethyl acetate (80:20)
20 min, hexane: ethyl acetate (70:30) 20 min and 100% ethyl acetate for 10 min at a flow
rate of 17 mL/min for F1. Fraction F6 was eluted using the following gradient: 100%
hexane 10 min, hexane: ethyl acetate (40:60) 30 min, hexane: ethyl acetate (80:20) 20 min,
100% ethyl acetate for 10 min, ethyl acetate: methanol (90:10) 20 min and ethyl acetate:
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methanol (30:70) for 30 min. Fractions were collected automatically when triggered by
the ELSD response. The fractions associated with the same peak according to the ELSD
chromatogram were combined, and the solvent was removed and weighed. Fraction F4
was further purified using column chromatography as described above, while F5 was
pure and did not require further purification. The purity of the isolated compounds was
confirmed by reversed-phase HPLC with ELSD and then characterised by GC–MS, LC–MS
and NMR.

4.5. HPLC–ELSD and LC-MS Analysis

All samples and fractions were dissolved in methanol to give a concentration of
1 mg/mL and were analysed using an Agilent 1100 HPLC linked to a Shodex ELSD. An
ACE C-18 column (150 × 3 mm, 3 µm) with a mobile phase of water (A) and acetonitrile (B)
and a flow rate of 0.3 mL/min was used with the following gradient: 25% B for 30 min,
5 min 100% B and 5 min 25% B, injecting 10 µL of sample solution. The high-resolution
mass spectra were obtained by running the samples in duplicate using a Dionex 3000 HPLC
connected to an Orbitrap Exactive mass spectrometer (ThermoFisher, Hemel Hempstead,
UK); the MS detection range was from 100 to 1200 m/z and the scanning was performed
under electrospray ionisation polarity switching mode. The needle voltages were set
at −4.0 kV (negative) and 4.5 kV (positive) and sheath and auxiliary gases were at 50
and 17 arbitrary units, respectively. Separation was performed on an ACE C18 column
(150 × 3 mm, 3 µm) with 0.1% v/v formic acid in water as mobile phase A and 0.1% v/v
formic acid in acetonitrile as B at flow rate of 0.300 mL/min using the gradient described
for HPLC–ELSD.

4.6. GC-MS Analysis

A portion of the extracts and fractions (2 mg) was dissolved in 1 mL of ethyl acetate
and 1 µL of each prepared sample was injected in splitless mode at 280 ◦C into the GC–MS
(Focus GC-DSQ2, Thermo Fisher Scientific, Hemel Hempstead, UK) system equipped with
a 30 m × 0.25 mm i.d., with 0.25 µm film thickness InertCap 1 MS capillary column from
HiChrom (Reading, UK). The temperature gradient was programmed as follows: 100 ◦C
for 2 min, linearly increasing to 280 ◦C at the rate of 5 ◦C/min, holding at 280 ◦C for 15 min
and linearly increasing to 320 ◦C at the rate of 10 ◦C/min and holding for 10 min. The
source temperature was 250 ◦C and the ionisation voltage was 70 eV for EI–MS.

4.7. Nuclear Magnetic Resonance Spectroscopy

About 5–10 mg of the fractions obtained from MPLC purification was dissolved in
CDCl3 and spectra were acquired using a Bruker AVIII-HD-500 NMR.

4.8. Determination of Cytotoxic Effect of PNG Extract and Its Purified Compounds on U937
Mammalian Cells

U937 cells (European Collection of Cell Cultures Cat. No. 85011440, supplied by Sigma
Aldrich, Dorset, UK) were cultured as described previously [46]. U937 cells were grown to
log phase at 37 ◦C and harvested at a density of 1 × 105 cells/mL in a 96-well plate (TPP,
Trasadingen, Switzerland). Aliquots of 100 µL/well of the cells were added and the plate
was incubated for 24 h at 37 ◦C, 5% CO2, 100% humidity. A 2-fold serial dilution of the test
compound was carried out in growth medium, in another 96-well plate, and 100 µL of each
dilution was then transferred to the cultured cells using a multichannel pipette, followed
by another incubation for 24 h. Resazurin dye was then added at a final concentration
of 10% (v/v) and the plates were incubated for a further 24 h, after which fluorescence
was measured using a Wallac Victor 2 microplate reader (λ Ex/Em: 560/590 nm). The
compounds and fractions were tested in triplicate, and cell viability was expressed as a
percentage of the drug-free control. The resulting data were analysed using GraphPad
Prism 8 to obtain dose-response curves and corresponding mean inhibitory concentration
(EC50) values.
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4.9. Antiprotozoal Assay

The extract and the purified compounds were cultured and tested against T. b. brucei,
T. congolense and C. fasciculata as described previously [6,7]. The T. b. brucei strains were
a standard drug-sensitive lab strain, Lister 427 (wild-type) [47] and the derived cell line
B48 was developed from the wild-type by gene deletion of the drug transporter TbAT1
followed by in vitro adaptation to pentamidine [28], leading to the further loss of the gene
encoding TbAQP2 [48], rendering it highly resistant to the diamidine and melaminophenyl
arsenical classes of trypanocides. The T. congolense strains were the lab strain IL3000 and its
diminazene-adapted clone 6C3 [29]. The C. fasciculata strain HS6 was a gift of Prof. Terry
Smith (University of St Andrews, UK).

4.10. Drug Sensitivity Using Cell Count

Different concentrations of hydroxybetulin were tested on the drug-resistant B48
trypanosomes by monitoring in vitro cell growth by using cell count following exposure
for different lengths of time. Trypanosomes were taken from cultures at the late logarithmic
phase of growth and cell density was determined using a haemocytometer. Cell density
was adjusted to the desired concentration of 2 × 105 cells/mL with fresh complete HMI-9
medium. The cell count was taken in triplicate at several time points (0, 4, 8, 12, 16, 24,
32 and 48 h) for different concentrations of the compound and pentamidine, as well as
drug-free cells, to serve as a positive control. The experiment was repeated twice and the
counts of the three independent determinations were averaged and used for plotting the
growth curve.
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