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Abstract: Electromagnetic tracking is a safe, reliable, and cost-effective method to track medical
instruments in image-guided surgical navigation. However, patient motion and magnetic field
distortions heavily impact the accuracy of tracked position and orientation. The use of redundant
magnetic sensors can help to map and mitigate for patient movements and magnetic field distortions
within the tracking region. We propose a planar inductive sensor design, printed on PCB and
embedded into medical patches. The main advantage is the high repeatability and the cost benefit
of using mass PCB manufacturing processes. The article presents new operative formulas for
electromagnetic tracking of planar coils on the centimetre scale. The full magnetic analytical model is
based on the mutual inductance between coils which can be approximated as being composed by
straight conductive filaments. The full model is used to perform accurate system simulations and to
assess the accuracy of faster simplified magnetic models, which are necessary to achieve real-time
tracking in medical applications.

Keywords: electromagnetic tracking; registration; image-guided surgery; inductive sensor;
mutual inductance

1. Introduction

Electromagnetic Tracking (EMT) is the gold standard technology for image-guided
surgical interventions (Figure 1) without line of sight [1]. Existing applications include
bronchoscopy [2], urology [3], orthopaedic surgery [4], catheter navigation [5,6].

Figure 1. The Monarch robotic endoscopy platform (Auris Health Inc., Redwood City, CA, USA),
as an example of image-guided surgery device.

The working principle behind EMT systems is detailed in Figure 2. Position and
orientation information is based on the coupling between a field generator and a magnetic
sensor. The magnetic model is the function that maps the position and orientation of the
target sensor to the magnetic field measured at that location. The comparison between
the model and the field measurement allows one to reverse the map and find the sensor
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pose in the working space. EMT system update-rate and latency directly depend on
the model accuracy and calculation speed. Field generators are appositely shaped to
generate a field that can be easily modelled (i.e., magnetic dipole [7–9], current sheets [10]
or current filaments [11,12]). When an analytic model is not available, due to the shape of
the transmitter coils or due to the presence of static field distortions, data-driven models
are used which approximate the field values through Look-up Tables [13–15], Neural
Networks [16–18] or multi-variable function interpolation [19–21].

Figure 2. In electromagnetic tracking, a target sensor, attached to the instrument tip, measures the
magnetic field generated by a set of transmitter coils. The signal is analysed by a control unit, which
recovers sensor position and orientation from a known magnetic field model. The instrument is then
visualised on an external monitor to assist the surgical operation. The use of external redundant
sensors can help compensate for patient motion and magnetic field distortions.

This work focuses on the tracking of large inductive sensors on the centimetre scale.
The field generator comprises a set of eight coils, as first presented in [12]. The transmitter
coils are composed of straight filaments and embedded in a printed circuit board (PCB).
Each coil is driven with a sinusoidal current at a different frequency. The pick-up coil
measures a superposition the eight magnetic fields, and frequency-division multiplexing
(FDM) is used to distinguish the eight signals. Based on this information, the five degrees
of freedom (DoF) of the sensor coil are derived. Full system details can be found on the
online project repository [22].

Planar coils integrated into patches and applied on the body of the patient, as shown in
Figure 2, can improve the robustness of EMT for image-guided interventions. For example,
a set of sensors placed around the operative region can track and compensate for respiratory
or cardiac movements [23], or they can evaluate the field at multiple locations and perform
the real-time compensation of field distortions by dynamically correcting the field model.
Another possible application of the methods presented in this article involves the tracking
of the planar transmitter coils of one or more field generators [24,25]. In this scenario,
the reciprocal position between two boards can be determined by tracking the position
of the coils of one board with respect to the other. This allows one to freely place two
boards and enlarge the tracking region, with the ability to automatically determine the
new position.

Inductive sensors measure the variation of the magnetic flux across the sensor area.
While small-diameter sensors can be approximated with a single point without accuracy
loss [26], larger-diameter sensors require the evaluation of the field at more points within
the sensor area [27], in order to numerically integrate the magnetic flux measured by the
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sensor. The more accuracy that is required, the more points may be considered, resulting
in a slower tracking algorithm.

A novel method is proposed which makes the flux calculation faster by the use of
magnetic vector potential integration along the perimeter of the sensor coil.

The model is then compared to the single-point approximation, in terms of speed and
accuracy. This work demonstrates the first EMT method based on the mutual coupling
between straight-filaments, suited to large-area sensor coils.

2. Mutual Inductance between Large-Area Planar Coils

The mutual inductance between two coils is defined by the magnetic flux generated
by one coil—which can be considered the transmitter coil Tx—that is linked to the loop
of the second coil—or receiver coil Rx—per unit current ITx (Equation (1)). In terms of
magnetic vector potential, ATx, the mutual inductance, MTxRx, is also given by Equation (2),
where nRx and tRx are the unit vectors perpendicular to the surface dΣRx and tangential to
the loop ΓRx respectively, and r is the position where BTx or ATx are evaluated:

MTxRx =
1

ITx

∫
ΣRx

BTx(r) · nRx dΣRx (1)

=
1

ITx

∫
ΓRx

ATx(r) · tRx dΓRx. (2)

The two approaches are illustrated in Figure 3.
Magnetic sensors used in EMT systems are usually of tiny dimensions, less than 1 mm

in diameter [28], which allows one to approximate the ΣRx of Equation (1) by a single point.

Figure 3. The mutual inductance between coil Tx and coil Rx can be (a) calculated from Equation (1) and numerically
approximated by evaluation of the magnetic field generated by Tx across the area of Rx or (b) analytically calculated from
Equation (2) as the sum of the partial mutual inductances between the straight filaments of the two coils.

For the tracking of larger-area inductive sensors, such as those studied in this work,
the field may be evaluated at multiple points within the cross-sectional area of the sensor
coil in order to perform a numerical integration, as depicted in Figure 3a. The number of
evaluation points needed to achieve a given accuracy scales quadratically with the diameter
of the receiving coil.

In this case, it becomes numerically more convenient to use Equation (2), where the
integral is performed around the sensor loop and the number of segments that approximate
the perimeter increases linearly with the diameter, as depicted in Figure 3b.

Expressing the Biot–Savart law in terms of magnetic vector potential [29,30],
Equation (2) becomes:

MTxRx =
∫

ΓRx

[
µ0

4π

∫
ΓTx

tTx

|r| dΓTx

]
· tRx dΓRx =

µ0

4π

∫
ΓTx

∫
ΓRx

tTx · tRx

|r| dΓRxdΓTx, (3)

which is referred as the Neumann integral [31,32].
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If both Tx and Rx are composed of straight filaments, the double integral of Equa-
tion (3) can be split into the contributions given by all couples of two filaments [33]:

MTxRx = ∑
i∈Tx

∑
j∈Rx

Mij, (4)

where Mij is defined as the partial mutual inductance between filament i of coil Tx and
filament j of coil Rx, as shown in Figure 3b, and will be analytically evaluated in Section 2.1.

2.1. Partial Mutual Inductance between Straight Wires at Any Angle

The Neumann integral (Equation (3)) performed between two straight filaments
provides the partial mutual inductance between the filaments and can be solved analyti-
cally [34–36]. Analytical solutions presented in this article represent an improvement, in
terms of accuracy and speed, over past works which used numerical integration [11,37].

In accordance to Figure 4, the following notation is defined. Points A and B are the
three-dimensional vectors of the start and end points of the transmitting filament AB,
respectively. It will be clear in Section 2.2 that A and B could be 3 × n matrices of n
transmitting vectors, such as the filaments composing a coil or a set of coils, allowing for
fast vectorial implementation. Analogously, the receiving filament is defined by points a
and b. The distances between the end-points of segments AB and ab are R1, R2, R3, R4, as
indicated in Figure 4a.

Figure 4. (a) Two straight filaments at any angle. For convenience, l is considered the transmitting filament which generates
a magnetic field, m is the receiving filament, where a voltage is induced by the variable field. (b) A change in coordinates is
performed in order to calculate the mutual inductance between the two wires.

Two direction vectors are found:

#»

D = B− A;
#»

d = b− a. (5)

The lengths of the two filaments are l = ‖ #»

D‖ and m = ‖ #»

d ‖.
For any two straight lines in the space, two planes exist which are parallel and contain

these lines. The distance between the planes, s, corresponds to the minimum distance
between the straight lines. The position of minimal distance is identified by point P. When
projecting the filaments on the same parallel plane, the angle between the projections is θ.

The quantities α and β are the lengths of the prolongations of the filaments to the
intersection point of minimal distance P, as indicated in Figure 4b.
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Equation (6) gives the mutual inductance between two filamentary wires at any angle
and not on the same plane [35,36]. The quantity Ω has the dimension of a solid angle and
is given by Equation (7).

Mij =
µ0
2π

cos(θ)
[
(β + m) tanh−1

(
l

R1 + R4

)
− β tanh−1

(
l

R2 + R3

)
+

+(α + l) tanh−1
(

m
R1 + R2

)
− α tanh−1

(
m

R4 + R3

)
− Ω s

2 sin(θ)

]
,

(6)

Ω = tan−1

(
s2 cos θ + (α + l)(β + m) sin2 θ

sR1 sin θ

)
− tan−1

(
s2 cos θ + (α + l)β sin2 θ

sR2 sin θ

)
+

+ tan−1

(
s2 cos θ + αβ sin2 θ

sR3 sin θ

)
− tan−1

(
s2 cos θ + α(β + m) sin2 θ

sR4 sin θ

)
.

(7)

In order to generalise Equation (6), α and β may be defined with a positive sign if the
prolongation towards point P is directed as the filament, negative otherwise [38].

2.2. Novel Implementation of the Formula

In this section, a new way to implement formula Equation (6) is described which
considers the coordinates of the end-points of the filaments. The procedure is neat and
it is well suited to vectorial input for the simultaneous calculation of the partial mutual
inductances between one filament and many others.

As depicted in Figure 4, a change in coordinates is performed, to a reference system
where the quantities required by Equations (6) and (7) can be easily computed. The new X-
axis is defined to be aligned to the receiving filament. The unit direction vector is identified
by

#»

d , following normalisation:

uX =
#»
d/‖ #»

d ‖ =
#»
d/m. (8)

Axis Z is chosen to be perpendicular to both the filaments, i.e., perpendicular to the
uniquely identified parallel planes containing the filaments, and axis Y is consequently
found to complete the triplet:

uZ =
#»
D× #»

d/‖ #»
D× #»

d ‖; uY = uZ × uX. (9)

It should be noted that uZ and uY change for each transmitting filament and are ma-
trices if multiple transmitting filaments AB are considered at the same time. Vectorisation
is still possible for Equation (9) if the three vector components are computed by separate
equations. The change in coordinates of the quantities of Figure 4 is performed by dot
product with the new directions, e.g., for point A = [Ax Ay Az], the new component AX is
found as:

AX = uXx Ax + uXy Ay + uXz Az. (10)

In the new reference system XYZ, the distance between the straight lines is given by
the Z-components:

s = |AZ − aZ|. (11)

The sine and cosine of the angle θ are:

sin θ =
DY

l
; cos θ =

DX
l

. (12)
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Considering X and Y components only, the straight lines lay on the same plane and
point P is their intersection:

PX =
DX
DY

(aY − AY) + AX ,

PY = aY.
(13)

Finally, α and β, defined with a sign, as in [38], are:

α =
1
l
[(AX − PX) DX + (AY − PY) DY],

β = aX − PX .
(14)

3. Sensor Manufacturing

In order to experimentally validate the formula proposed in this article, Section 2.2,
a set of planar coils were manufactured on PCB. This section details the sensor coil design
optimisation and the resulting sensor parameters.

3.1. Planar Sensor Coil Design

Two parameters are of primary importance for a coil used as an inductive sensor:
the sensitivity (or sensor gain) and the Signal-to-Noise Ratio (SNR). Another important
parameter is the frequency of resonance, related to the parasitic capacitance between the
winding turns.

Sensor sensitivity is proportional to the total area enclosed by every turn of the coil.
Sources of noise are thermal noise and the noise added by the signal amplifier. In particular,
thermal noise is a function of the coil resistance, which is linear with the winding length.

The coil total length and area are calculated as follows, for a hexagonal planar coil.
Similar formulas apply for other planar shapes. The winding is approximated by concentric
hexagons, as shown in Figure 5.

Figure 5. To calculate the cross-sectional area and the total length of a hexagonal planar coil, the spiral
is approximated as a set of concentric hexagons. (a) The edge length, ln, of the nth inner turn depends
on the external edge, ledge, and the trace width, w, and spacing, s. In the box (b), formulae for the
equilateral hexagon perimeter Ln and area An.

If ledge is the edge length of the external turn and w and s are the trace width and
spacing, respectively, the edge length of the nth inner turn is computed as:

ln = ledge −
2√
3
(w + s)(n− 1), (15)
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where n starts from n = 1 for the external turn.
Total winding length Lc and area Ac are:

Lc = Nlayers ·
Nturns

∑
n=1

6
[

ledge −
2√
3
(w + s)(n− 1)

]
= Nlayers · 6Nturns

[
ledge −

1√
3
(Nturns − 1)(w + s)

]
, (16)

and

Ac = Nlayers ·
Nturns

∑
n=1

6

√
3

4

[
ledge −

2√
3
(w + s)(n− 1)

]2

= Nlayers · 6
√

3
4

Nturns

[
l2
edge −

2√
3
(Nturns − 1)ledge(w + s) +

2
9
(Nturns − 1)(2Nturns − 1)(w + s)2

]
,

(17)

where Nturns is the total number of turns and Nlayers is the number of PCB layers, assuming
the same coil design is used for all the layers.

In Equations (16) and (17), the series sums are derived from the following identities:

N

∑
n=1

n =
N(N + 1)

2
;

N

∑
n=1

n2 =
N(N + 1)(2N + 1)

6
. (18)

A copper coil is considered, with resistivity of ρCu = 1.74× 10−8 Ωm and trace thick-
ness t = 34.79 µm, corresponding to 1 oz per square foot, as a standard PCB manufacturing
specification. Coil ohmic resistance is:

Rc = ρCu
Lc

wt
. (19)

Thermal noise RMS density is given by Equation (20):

Unt =
√

4KBTRc

[
nV√
Hz

]
, (20)

where KB = 1.38× 10−23 J/K is the Boltzmann constant and T is the ambient temperature,
T = 300 K.

The inductive sensor signal requires amplification before sampling. A low-noise
instrumentation amplifier INA163 (Texas Instruments, Dallas, TX, USA) is used in the
system [26]. The INA163 introduces an input stage noise of Unin = 1 nV/

√
Hz and an output

stage noise of Unout = 60 nV/
√

Hz. In addition, an input noise current density of 0.8 pA/
√

Hz

is declared, which was multiplied by the coil resistance, given by Equation (19), to get the
noise density as a voltage. The amplifier was configured with a gain of Gamp = 500.

Total noise magnitude depends on the signal bandwidth, ∆ f . The system uses FDM
to demodulate the eight magnetic field measurements from the eight transmitter coils. The
measured voltage was sampled at Fs = 100 kHz, and 1000 samples were used to perform
the frequency analysis [26]. Considering one of the eight frequencies, the target signal
frequency is contained in a bin width of ∆ f = Fs/1000 = 100 Hz, which is the bandwidth of
the noise added to the signal of interest.

Noise contributions sum quadratically, and the total noise is then computed as:

Un =
√

∆ f ·
√
(Gamp ·Unt)2 + (Gamp ·Unin)2 + (Gamp · Rc Inin)2 + U2

nout [V]. (21)

The voltage induced on the sensor is equal to the time derivative of the magnetic flux
enclosed by the sensor coil. Assuming the magnetic field to be constant across the sensor
area Ac, the magnitude of the signal measured is given by Equation (22), after amplification:

Us = Gamp · 2π f AcBn [V]. (22)

where f is the signal frequency and Bn is the magnetic field normal component.
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In the system configuration used in the following experiments, the eight sinusoidal
fields have frequencies above f = 20 kHz, and a typical magnitude of the magnetic field
normal component is above Bn = 0.1µT. As the fields frequencies can be configured in
a range between 20 and 50 kHz [26], and the signal magnitude depends on the sensor
position and orientation, the values considered for f and Bn are just a reference used for
the coil geometry optimisation and design process.

Finally, SNR is calculated from Equations (21) and (22):

SNR = 20 log10
Us

Un
[dB]. (23)

It can be seen that, in Equation (23), the coil area Ac only appears in the numerator,
and the winding length Lc is only present in the denominator. As the ratio Ac/Lc increases
with the coil dimension, it follows that larger coils always provide larger SNR and signal
Us. Coil dimension is limited by the spatial constraints of the final application.

3.2. Coil Design Optimisation

In the optimisation process, the sensor coils external dimension, Dout, was fixed to
3 cm and SNR was optimised for the number of turns Nturns, trace width w and spac-
ing s. The parameters w and s were constrained to a minimum value of t = 0.127 mm,
corresponding to 5 mil, as it is a common PCB limit for standard production, while the
maximum Nturns was limited by what is physically manufacturable on a planar spiral of
Dout = 3 cm, for a given w and s.

The Matlab function f mincon was used to solve the constrained optimisation problem.
For these constraints, the higher gain and SNR are obtained when trace width and spacing
are minimised, w = s = 0.127 mm, and the number of turns is maximised.

It should be noted that this is not always the case, as for larger coil dimensions it
would be more convenient to select a wider trace width, in order to reduce coil resistance
and thermal noise, and to avoid filling all the space available, because inner turns could
contribute more to noise than signal. In particular, when the signal is so large that the
amplifier noise can be neglected, thermal noise would dominate in the coil design for SNR
optimisation.

Three coil shapes were compared: a hexagonal coil with a diagonal of 3 cm, and a
circular and square planar coils with the diameter and the edge, respectively, defined to
give the same footprint area as the hexagonal coil. SNR calculated from Equation (23) is
plotted in Figure 6, with variation in turn count.

The circular shape provides higher SNR for two reasons: (1) when more turns are
added, the cross-sectional area increases more for a circular winding than for a hexagonal
or square winding, yielding a higher signal magnitude; (2) a circular coil has the maximum
enclosed area for a given winding length, minimising the resistance and the thermal noise.

The parasitic capacitance of planar coils is mainly due to the electrical coupling
between overlapping traces of different layers [39,40]. To decrease the parasitic capacitance
of the coil and maximise the self resonance frequency, the footprints of subsequent layers
were designed with shifted traces, as illustrated in Figure 7.
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Figure 6. SNR predicted from Equation (23). Circular, hexagonal and square planar coil shapes are
compared, with variation in turn count. The three planar coils have the same footprint area (5.85 cm2)
of a hexagon with a diagonal of 3 cm.

Figure 7. Optimisation provided the same value for trace width and spacing, for PCB planar coils on
the centimetres scale. To minimise the parasitic capacitance of the winding, it is convenient to shift
the footprints of subsequent layers, so that the traces do not overlap.

3.3. Coil Measured Parameters

In order to experimentally validate Equation (6), which applies to coils composed of
straight filaments, the hexagonal planar coil of Figure 8a was PCB manufactured. A hexago-
nal shape provides higher SNR than a square coil (Figure 6) and can be entirely modelled by
six filaments per turn. Coil parameters are: w = s = 0.127 mm, Nturns = 30, Dout = 3 cm,
Nlayers = 4. Two other coils were used for comparison, the first (Figure 8b) having less turns,
Nturns = 15, and the second (Figure 8c) with a smaller diagonal dimension, Dout = 2 cm.

Coil resistance was calculated with Equation (19). The self inductance can by estimated
by Equation (4), if the transmitting and receiving filaments are taken from the same coil.
For the three coils of Figure 8, predicted ohmic resistance and self inductance are:

Ra = 30.47 Ω; Rb = 18.36 Ω; Rc = 16.30 Ω.

La = 304.2 µH; Lb = 133.3 µH; Lc = 111.2 µH
(24)
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Figure 8. Three hexagonal sensors were manufactured on a 4-layer PCB. (a) The reference coil a has a diagonal, Dout, of 3 cm
and 30 turns per layer. (b) Another version with 15 turns, and (c) a smaller coil with Dout = 2 cm, were manufactured to
validate the formulas used in the coil design procedure.

Coil resistance and self inductance were measured at 1 kHz. Experimental values for
coils a, b and c of Figure 8 are:

Ra = 37.0 Ω; Rb = 22.8 Ω; Rc = 18.6 Ω;

La = 289.4 µH; Lb = 121.2 µH; Lc = 98.2 µH,
(25)

to be compared with Equation (24).
Inductive sensor theoretical sensitivity to a sinusoidal magnetic field is:

ks = 2πAc

[
V

THz

]
(26)

where the coil area is calculated as per Equation (17). For a reference, commercial sensors
typical sensitivity is on the order of 0.1 V/THz [41]. The sensitivity of the three sensors under
analysis was not directly measured, but the variation in the output sensor voltage was
measured for coil b and c relative to coil a. Results are summarised in Table 1.

Table 1. Coil resistance and self inductance predicted and measured at 1 kHz, for the three coils
of Figure 8. Sensitivity predicted by Equation (26) and signal variation experimentally measured
between the three coils.

Coil a Coil b Coil c

Coil dimension Dout = 3 cm, Dout = 3 cm, Dout = 2 cm,
30 turns 15 turns 30 turns

Resistance (Equation (24)) [Ω] 30.47 18.36 16.3
Resistance meas. [Ω] 37 22.8 18.6

Inductance (Equation (6)) [µH] 304.2 133.3 111.2
Inductance meas. [µH] 289.4 121.2 98.2

Sensitivity (Equation (26))
[

V
THz

]
0.239 0.166 (69.4%) 0.077 (32.4%)

Sensitivity meas. [%] — 66.4% 30.3%

4. Mutual Inductance Measurement

Coil a of Table 1, shown in Figure 8a, was selected as preferred sensor model for the
other experiments presented in the next sections of this article.
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A set of mutual inductances were measured between coil a and the eight transmitter
coils of the field generator, shown in Figure 9.

The receiving coil was positioned on a grid of 7× 7 test points laying on a horizontal
plane. The experiment was repeated for two distances from the planar transmitter board,
10 cm and 20 cm, and for two sensor orientations, vertically oriented and with an angle of
30◦ from the vertical axis, as shown in Figure 10a.

Duplo blocks (The Lego Company, Billund, Denmark) were used to precisely locate
the sensor in known positions (Figure 10b). At every test position, 100 measurements were
collected and the average was considered, in order to reduce random error.

Figure 9. The field generator comprises a set of eight planar transmitter coils, as first presented
in [12]. Each coil is driven with a sinusoidal current at a different frequency and the sensor coil uses
frequency-division multiplexing (FDM) to distinguish the eight signals.

For each sensor position and orientation, the eight mutual inductances between
sensor and the transmitter coils of the field generator were measured, leading to a total of
1568 mutual inductance values experimentally collected, for the 98 different positions and
two sensor orientations.

Mutual inductances at test-points were also simulated with the analytical model
proposed in Section 2. PCB traces of the transmitting and the receiving planar coils
were approximated as 0-radius straight filaments. Previous works demonstrated that this
assumption is true almost everywhere apart from the close proximity (approximately less
than five times the trace width) to the conductor [42,43].

The model takes into account all the filaments composing the square transmitter
coil and all the filaments of the hexagonal sensor coil, to compute the mutual inductance
between the two coils as the sum of the contributions given by every pair of filaments.

Figure 11 shows the mutual inductance between the sensor coil a and transmitter
coil 7, as defined in Figure 10a, for the grid of points at z = 10 cm and the two sensor
orientations. The values experimentally measured are compared to the values predicted by
the formula proposed in this article, Section 2.

Results of the four tests performed are summarised in Table 2. Each of the four cases
includes 49 × 8 = 392 inductance values. The average measured mutual inductance,
Mavg, the root-mean-square error (RMSE) and the maximum error (MAXE) between the
measurement and the model are reported.



Sensors 2021, 21, 2822 12 of 20

Table 2. Each test includes 392 mutual inductance values, with average Mavg. RMSE and MAXE are
calculated between the measurement and the model proposed in Section 2.

Test Mavg [nH] RMSE [nH] MAXE [nH]

z = 10 cm, theta = 0◦ 85.808 1.354 6.585
z = 10 cm, theta = 30◦ 78.061 0.979 4.343
z = 20 cm, theta = 0◦ 30.428 0.174 0.549
z = 20 cm, theta = 30◦ 26.990 0.144 0.490

Figure 10. (a,b) The mutual inductance was measured on a grid of 7× 7 points at 10 cm and 20 cm from the planar field
generator, for two sensor orientations: pitch angle θ = 0◦ and θ = 30◦. At every test point, the eight mutual inductances
between the sensor coil and the eight transmitter coils are considered, leading to a total of 49× 4× 8 = 1568 mutual
inductances experimentally evaluated.

Figure 11. Mutual inductance between coil a of Figure 8a, and transmitter coil 7 of the field generator, as defined in
Figure 10a. Experimental values are compared to those predicted by the analytical model of Section 2. (a) Test points at
10 cm from the planar field generator, pitch angle θ = 0◦. (b) Test points at 10 cm from the planar field generator, pitch angle
θ = 30◦.
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5. System Simulation

Mutual inductance calculation provides the mutual inductance between transmitter
and receiver coils, based on the relative position between the two coils.

The positioning algorithm aims to solve the inverse problem: finding the sensor
position and orientation, given the set of mutual inductances measured between the eight
transmitter coils of the field generator, Figure 9, and the sensor coil, Figure 8a.

The problem was solved in a least-squares sense, with cost function:

x̂ = arg min
x

8

∑
i=1

(Vmeas,i −Vmodel,i(x))
2 (27)

where x̂ = [x̂ ŷ ẑ]T is the estimated sensor position, Vmeas,i is the voltage measurement,
related to transmitter coil i, and Vmodel,i is the signal predicted by the magnetic model.

5.1. Magnetic Model

The transmitter board comprises eight square planar coils of 25 turns, for a total of
8× 4× 25 = 800 filaments, as shown in Figure 9. The receiving sensor is a hexagonal
planar coil of 30 turns, composed by 6 × 30 = 180 filaments, as shown in Figure 8a.
The full magnetic model accounts for the magnetic mutual coupling between all the pairs
of transmitting and receiving filaments, which is given by Equation (6). Vectorisation is of
massive importance for speed, because a total of 800× 180 = 144,000 filament couples has
to be considered.

The optimisation algorithm was implemented on Matlab, (Mathworks, Natick, MA,
USA), running on an HP EliteBook 840 G3 (HP Inc., Palo Alto, CA, USA) with a Core
i7-6500U 2.5 GHz processor and 8 Gb of RAM. Matlab function lsqnonlin was used to solve
Equation (27), resulting on an average solution time on the order of seconds. Therefore,
the full model is not suitable to real-time tracking applications, which require update-rates
at least on the order of tens of Hz [44].

Two simplified but faster models are proposed and analysed. The first model considers
only one turn for the receiving coil, or six filaments. A further simplification does not take
into account the receiving coil area, and evaluates the magnetic field at a single point at the
middle. In both the cases, the transmitter coils are not simplified and all the 800 filaments
are considered.

5.2. Dependence on Distance

The Accuracy of the simplified 6-filament and single-point models was tested for the
mutual inductance calculation between two coils, with variation in the distance, using the
full model as a ground-truth reference.

Two hexagonal planar coils of 3 cm diagonal were considered. Mutual inductance
was calculated at increasing distance, for different reciprocal orientations, as drawn in
Figure 12a. The yellow dot indicates the position of the point of evaluation for the
single-point model and the green hexagon highlights the single turn considered in the
6-filament model.

Mutual inductances calculated with the full, 6-filament and single-point models are
plotted in Figure 12b, on a per-unit axis, relative to the hexagonal coil diagonal. Figure 12c
shows the relative percentage error of the two simplified models against the exact model
reference.

As expected, relative error decreases with distance, as model approximations become
less important. The error depends on coil orientation, but some general observations are
true for all three orientation cases considered.

For the single-point model, the relative error becomes smaller than 1% at a distance of
approximately five times the coil diagonal. For a coil of 3 cm, such as coil a under analysis,
it corresponds to 15 cm.
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For the 6-filament model, the relative error maintains almost constantly five times
smaller than the single-point error, becoming less than 1% below a distance of 2 p.u.

Figure 12. (a) A transmitter coil, Tx, and a receiver coil, Rx, at increasing distance, for three orientation configurations.
Plots are on a per unit (p.u.) scale, referring to the coil diameter. (b) The mutual inductance was calculated with the full
model, 6-filament and single-point approximations. (c) The relative error falls below 1% at a distance of larger than 2 p.u. and
5 p.u. for the 6-filament and single-point models, respectively, for all the three orientations considered.

5.3. Static Tracking Simulation

Virtual tracking simulations can be used to validate magnetic models for EMT [45].
The sensor is positioned at a number of locations within the tracking region, where the
magnetic field is given by an accurate field simulation. The magnetic model being tested is
used to infer the sensor position, starting from the simulated magnetic measurement.

With reference to Equation (27), the voltage measurement Vmeas,i was simulated using
the full model described in Section 5.1, while Vmodel,i is the signal predicted by the magnetic
model being tested.

To compare the 6-filament and the single-point models, two virtual static tracking
accuracy tests were performed. In the first test, position errors due to model approximations
were studied. The magnetic sensor was virtually placed at 512 random positions between
1 and 11 cm from the transmitter board.

In the second test, random white noise was added to the simulated signal, to analyse
the robustness of the two models. The sensor was placed at 512 random locations in a cube
of 30× 30× 30 cm. The simulated noise magnitude was considered fixed, not dependent
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on the signal, representing an external noise source, meaning that SNR is not constant
and depends on the signal magnitude. Test points further from the field generator have a
smaller signal and, thus, present a smaller SNR.

The test was repeated using two different Gaussian noise magnitudes, in order to
evaluate the influence of noise on tracking error. For the two cases, the SNR values
computed as an average on all the test points are 65 dB and 50 dB respectively.

5.4. Static Tracking Simulation Results

The position error is computed as the Euclidean distance between the test position
x = [x y z]T , used to simulate the magnetic measurement, and the position solved by the
tracking algorithm, x̂ = [x̂ ŷ ẑ]T :

E =
√
(x− x̂)2 + (y− ŷ)2 + (z− ẑ)2. (28)

Scatter plot of the error is shown in Figure 13, where it can be seen that the single-point
approximation is not accurate in the proximity of the field generator. However, it can be
used for large-area coils, such as the one under analysis, at distances above 6 cm, with
sub-millimetre errors.

Figure 13. Static accuracy test simulation with no added noise. Position errors are due to model
approximations. The two simplified models presented in Section 5.1 are compared.

For more accurate tracking near the field generator, the 6-filament model can be used,
but as reported in Table 3, it takes more time for computation on average.

Table 3. Speed and accuracy of the 6-filament and the single-point models used in a simulated
electromagnetic tracking experiment. Scatter plot of the error is shown in Figure 13. Computation
time is calculated as the average solution time for 512 random test points.

Model Time [s] Distance from Board [cm] RMSE [mm] ME [mm]

6-filament 0.052 1–6 0.2615 0.1903
6–11 0.0754 0.0733

single-point 0.007 1–6 1.4083 1.1024
6–11 0.4485 0.4357
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Computation time is calculated as the average time for the solution of each of the
512 test points. Average solution time, root-mean-square error (RMSE) and mean error
(ME) are detailed in Table 3, for the two models described.

For the results of Figure 14, Gaussian noise was added to the simulated signal, Vmeas
of Equation (27). Compared to the no-noise simulation of Figure 13, average tracking error
increases, as the noisy measured signal deviates from the magnetic model.

Error is plotted in Figure 14a. Test points at higher distance have a lower signal and
SNR, resulting in higher position error. It can be noticed that, for the compared 6-filament
and the single-point models, solutions are similar for positions far from the transmitter board,
where SNR is low and the error is mainly due to the externally added noise. On the other
hand, for positions near the transmitter board different noise levels have less influence,
while the source of error is due to the model approximations.

The cumulative distribution function of the error is plotted in Figure 14b and shows
that, in the lower noise case, with an average SNR of 65 dB, almost all the points obtained
with the 6-filament model and approximately 90 % of the points for the single-point model
exhibit sub-millimetre errors. If the external noise is increased, with an average SNR of
50 dB, the percentages of the points with sub-millimetre errors decrease to approximately
70 % and 60 % respectively.

Figure 14. (a) Static accuracy test simulation with noisy data, two noise levels are compared. Position errors depend on
model approximations and on noise magnitude. (b) Cumulative distribution function of the position error, for the two
magnetic models considered and average noise levels of 50 and 65 dB.

6. Experimental Tracking Accuracy Test

A real electromagnetic tracking test was performed to estimate the static positional
accuracy of planar coil a, using the magnetic model proposed in this article.

The four test cases described in Section 4 and visualised in Figure 10 were repeated,
where in this case the real field measurements, Vmeas, were used to estimate the position
of the sensor, from Equation (27). The 6-filament and the single-point magnetic models,
previously presented, are compared in terms of tracking accuracy and speed.

Electromagnetic tracking test results are presented separately in Figure 15 for the two
sensor orientation cases, θ = 0◦ and θ = 30◦. The first row of Figure 15 shows the two
grids of 49 points at z = 10 cm and z = 20 cm, together with the positions estimated by the
single-point model.
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Figure 15. Static accuracy test with real data. In the first row, test points and positions solved using the single-point model.
In the second row, scatter plot of the position error, for the 6-filament and single-point models. Columns (a,b) show the results
for different sensor orientations, θ = 0◦ and θ = 30◦, respectively.

The second row of Figure 15 shows the scatter plot of the total position error, computed
as for Equation (28), against the distance from the centre of the field generator. It can be
seen that the 6-filament model yielded better accuracy than the single-point model, with
errors below 1 mm for almost all the test points. Errors of the single-point model are below
5 mm. Positions further from the centre-point show, on average, larger errors, due to signal
attenuation and decreased SNR.

Average solution time, root-mean-square error (RMSE) and mean error (ME) are
detailed in Table 4, for the four test cases and the two magnetic models described.

Table 4. Speed and accuracy of the 6-filament and the single-point models used in a real electromagnetic
tracking experiment. Scatter plot of the error is shown in Figure 15. Computation time is calculated
as the average solution time for the 49 test points.

Test Model Time [s] RMSE [mm] ME [mm]

z = 10 cm, θ = 0◦ 6-filament 0.1420 0.54 0.49
single-point 0.0091 1.54 1.31

z = 10 cm, θ = 30◦ 6-filament 0.1483 0.63 0.52
single-point 0.0094 1.92 1.57

z = 20 cm, θ = 0◦ 6-filament 0.1541 0.58 0.52
single-point 0.0098 2.47 2.23

z = 20 cm, θ = 30◦ 6-filament 0.1488 0.57 0.48
single-point 0.0097 2.29 2.07

7. Discussion

A method for the calculation of the mutual inductance between coils composed of
straight filaments was presented, and a new formulation for the partial mutual inductance
between arbitrarily oriented straight filaments was proposed.
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Coil design demonstrated that planar coils on the centimetre scale are optimised when
the minimum track width and spacing are chosen, and the number of turns is maximised.
The circular shape is optimal for SNR optimisation, Figure 6, but a hexagonal coil shape
was selected, because it can be entirely modelled by straight filaments. In Table 1, measured
coil resistance, inductance and sensitivity variation are compared with the values predicted
in the design stage.

A hexagonal planar coil with a diameter of 3 cm was PCB manufactured. A set of
mutual inductances was measured between the sensor coil and the eight transmitter coils
of the field generator. Experimental values validated the model proposed in Section 2.
A selection of the results is plotted in Figure 11, and the average error is reported in Table 2.

The tracking algorithm was implemented in Matlab, (Mathworks, Natick, MA, USA),
with an average solution time in the order of seconds, when all the pairs of transmitting and
receiving filaments were considered. To allow for real-time EMT, two simplified models
were introduced, where the sensor coil was approximated by six filaments or by a single
point respectively.

Virtual tracking error is plotted in Figure 13, where it can be seen that the single-point
model provides sub-millimetre positioning errors at distances larger than 6 cm from the
transmitter board, while the 6-filament model reaches the same level of accuracy even for
closer positions.

Four EMT static tests were performed, varying the sensor orientation and distance
from the field generator. As reported in Table 4, using the 6-filament model the position error
is three to four times smaller than using the single-point model, but the average solution
time is approximately 0.15 s, compared to 0.01 s for the single-point model.

8. Conclusions

Magnetic sensors are commonly used for electromagnetic tracking in image-guided
interventions. The use of redundant sensors can help to detect and minimise the effect
of magnetic distortions. One additional application is the surface tracking of breathing
motion to compensate for registration errors.

Large-area planar sensors show high sensitivity, even in the absence of a magnetic core.
They can be printed on flexible PCB, and embedded in adhesive patches, with reduced
costs and high precision manufacturing and repeatability.

This paper analyses the tracking performances of planar coils on the centimetre scale.
An accurate magnetic model is proposed and experimentally validated. While the model
was too slow for effective real-time EMT, it proved useful to perform sensor design and
calibration and to run tracking simulations.

The introduction of model simplifications increased the calculation speed, and the
real-time tracking of large-area planar sensors was demonstrated with sub-millimetre
positioning errors.

Future work will investigate the use of PCB printed planar sensors to record the
registration volume deformation and compensate the target sensor position for patient
movements. In another study, the sensors will collect real-time measurements of the mag-
netic field at known positions, in order to recognise and compensate for metallic distortions.
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