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IntroductIon

The incidence of melanoma is rising worldwide. The American 
Cancer Society estimates that 76,100 new cases of melanoma 
will be diagnosed in the USA and 9710 people are expected 
to die of metastatic disease.[1] Malignant melanoma (MM) has 
various risk factors; historically, recurrent severe sun exposure, 
however environmental and genetic influences also affect the 
incidence. Dysplastic nevi (DN) may occur sporadically or in a 
familial setting. In the Caucasian population, sporadic DN are 
identified in up to 50% of adults.[2,3] DN in the familial setting 
are estimated around 32,000 in the USA.[4] Patients with DN 
have an increased risk of developing melanoma.[5] Although 
patients with DN are at an increased risk for developing 
melanoma, their role as a precursor lesion is debated. By 
vast majority, melanomas arise de novo. Some studies have 

shown that up to 25% of melanomas may have an associated 
dysplastic nevus present, suggesting progression to become 
melanoma[6,7] although this controversial finding has not been 
fully substantiated in other studies.

Histologically, DN and melanoma are characterized by their 
architectural and cytological features. DN are on an average 
smaller in diameter than melanoma; however, size is not a 
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defining factor to distinguish each entity. By definition, DN 
contain a junctional component, with bridging of adjacent 
rete ridges. The rete ridges can be uniformly or irregularly 
elongated. DN have bridging nests, or shouldering, whereas 
melanoma nests are more coalescent. However, overlapping 
features can be seen in both entities. Diffuse dermal fibroplasia, 
associated with a band‑like lymphocytic infiltrate, is typically 
more identified in melanoma, while DN have a more 
concentric fibroplasia with patchy perivascular lymphocytes. 
Cytologically, DN should exhibit variable (mild to severe) 
atypia of the melanocytic cells at the dermal-epidermal 
junction, while melanoma can show atypia of the dermal 
component and significant pagetoid spread in epidermis. There 
is, however, significant morphological overlap between MM 
and DN, especially in those with severe cytological atypia, 
with substantial differences in patient prognosis. Pagetoid 
spread, increased single and confluent melanocytes at the 
dermal-epidermal junction, and cytological atypia can be 
seen in both severe DN and melanoma. Mitoses are frequently 
associated with melanomas, but can be observed in DN. 
Atypia is defined by nuclear enlargement, irregular nuclear 
membrane, prominent nucleoli, and coarse chromatin. Many 
of these histologic features, while on a spectrum, do overlap, 
which can be difficult to discern each diagnosis.

To complicate matters further, similar genetic mutations 
have been described in both MM and DN. Two 
melanoma-susceptibility genes include CDKN2A and BRAF. 
The presence of DN increases the risk of melanoma in patients 
with germline mutations in CDKN2A, which is the main 
genomic locus of melanoma susceptibility.[8] Familial and 
germline CDKN2A mutations have been reported in DN.[8,9] 
Somatic mutations of BRAF have also been detected in patients 
with DN and primary melanomas.[10] It has been postulated 
that BRAF mutations are the initial step in developing 
melanocytic neoplasia,   but alone cannot develop melanoma 
tumorigenesis.[11]

A lack of consensus between pathologists as well as the 
National Institutes of Health on the presence of cytological 
atypia (and architectural disorder) to establish a diagnosis of 
a dysplastic nevus promotes the need for ancillary tests to aid 
in diagnosis.[12,13] Dermatologists use diagnostic tools such as 
the dermascope. In patients with DN, dermascopes have been 
shown to increase clinical accuracy for diagnosing melanoma. 
However, the accuracy is highly variable and dependent on 
expertise and dermoscopy training.[14] Experiments using 
comparative genomic hybridization (CGH) and fluorescence 
in situ hybridization (FISH) are also being investigated. 
However, these tests are not without significant cost. CGH is 
not widely available and requires a 3-week turnaround time. 
CGH estimates cost between $800 and $2075. FISH studies 
are more widely available, with a shorter turnaround time, but 
cost between $1300 and $1800.[15]

Nucleotyping is based principally on chromatin structural 
changes that are affected by epigenetic changes and DNA 

binding proteins. DNA organization changes as the cell is 
in different states. By viewing nuclei in their interphase 
(and mitotic) state, pixel image data of each nucleus can be 
transmitted and analyzed. Studies have shown that genomic 
status (stable vs. unstable) correlates with prognosis, 
and nucleotyping is being developed to be a potential 
correlate of analyzing genomic instability.[16,17] Recently, 
computational methods have attracted much attention 
toward quantitative analysis of segmented cell or nuclear 
structures[18‑22] and contributed to understanding changes 
in DNA organization and chromatin structure with regard 
to cancer development. Nucleotyping including variation 
in nuclei shape, size, and texture can be analyzed with 
image analysis pipeline consisting of segmentation, feature 
extraction, and classification. Employing nucleotyping of 
textural features uses pixel data derived from the gray-level 
sum and difference histograms (i.e., co-occurrence matrix) 
and gray-level run-length matrix. This analysis uses these 
statistical features to analyze gray levels in the image, 
their pixel distances, and orientation. Markovian features 
quantitative gray-level data between adjacent pixels in an 
image (i.e., run-length, contrast, correlation, difference, 
entropy, peak, symmetry, etc.). Morphometry features to 
be analyzed include nuclear size (area, DNA density) and 
shape (i.e., perimeter, elongation, diameter, cell ferret). 
Fractal-based methods use a fractal dimension and lacunarity 
to measure nuclear complexity.[23,24] These methods have 
been shown to aid in the diagnosis and prognosis of some 
solid tumors. For instance, nucleotyping was used to develop 
a biomarker to measure genetic instability in prostate cancer 
deemed, quantitative nuclear grade (QNG). QNG has been 
used to predict pathologic stage of disease, recurrence risk 
after prostatectomy, and also for differentiation of urothelial 
cell grade in bladder cytology specimens.[25‑28] Using multiple 
morphometric nuclear parameters and retrospective clinical 
recurrence data, a study showed darker maximum nuclear 
gray levels and greater variance related to basal cell carcinoma 
recurrence and worse disease-free survival.[29] Another study 
has identified nuclear textural features to be an independent 
prognostic marker of survival in endometrial carcinoma and 
uterine sarcomas.[30,31] Many studies performing nuclear image 
analysis to discriminate nuclear textural features have been 
reportedly successful, however many have not validated on 
a true independent set of cases. A comprehensive review of 
nuclear texture analysis showed that <20% of studies at that 
time evaluated their classifiers on an independent validation 
set.[32]

In this particular study, we describe a new computational 
method that differentiates DN and melanoma based on cell 
nuclear morphology from histopathology images. Melanocyte 
nuclei in the region of interest (ROI) are manually selected 
under the supervision of pathologists, which are then 
segmented automatically. The morphological characteristics 
for each nucleus are quantified utilizing transport-based 
morphometry,[21,33] which utilizes mathematics of the optimal 
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transport (OT) problem in continuous domain,[33] facilitating 
classification. Figure 1 shows a schematic diagram of the 
method. In addition to serving as a predictive model, the 
approach provides visual representation of distribution 
differences in nuclear morphology between DN and melanoma. 
If successful, it has the potential to develop new diagnostic, 
predictive, and prognostic markers for the diagnosis of 
melanoma, and ultimately advances patient care.

Methods

Case selection and image acquisition
Under an Institutional Review Board approval, hematoxylin 
and eosin (H and E) slides from cases of MM and DN were 
retrieved from the pathology archives. Glass slides of each case 
were reviewed by two board‑certified dermatopathologists. 
A total of 139 cases were included in our study, including 
67 cases diagnosed with MM and 72 cases diagnosed with DN. 
Slides from each case were scanned with an Aperio ScanScope 
XT whole slide scanner at ×40 magnification (0.25 µ/pixel) 
and converted into digital images. The nuclear information 
embedded in the hematoxylin channel was recovered from 
RGB images with color deconvolution.[34]

Nuclei segmentation
Melanocyte nuclei were manually annotated and selected for 
each case. Given nuclei seeds, cell nuclei were segmented 
automatically using an unsupervised method.[35] In brief, the 
nucleus edge map in Cartesian‑coordinated system is first 
transformed into the polar space with nucleus seed being the 
origin. After that, the edge pixels on the nucleus contour are 
optimally selected by the Dijkstra’s algorithm in a constructed 
shortest path problem. Blurring, overlapping, and incorrect 

nuclei segmentations were removed from the dataset by 
manual inspection. Ultimately, 11,542 melanocyte nuclei were 
included in the study with 5184 nuclei in the DN group and 
6358 nuclei in the MM group. Each nucleus was stored in a 
150 × 150 sub image with black background and bright pixels 
indicating the amount of locally concentrated chromatin.

Normalization
The intensity summation for each nucleus image was first 
normalized to be one to minimize the intensity variations in 
slide preparation, staining procedure, and image acquisition. 
Next, nuclei position variations such as rotation, translation, 
and coordinate inversions were eliminated by position 
normalization. As described in the study by Rohde et al.,[36] 
nuclei were relocated to the image centers to remove 
translation, and the major axes for nuclei in the dataset were 
aligned in the same direction to eliminate arbitrary rotation. 
Figure 2 shows some sample melanocyte nuclei from benign 
and malignant groups after normalization.

Transport‑based morphometry for comparing nuclear 
chromatin
We utilize the transport-based method described in the studies 
by Daskalakis et al., Kolouri et al., and Wang et al.[22,33,37] 
for comparing nuclear chromatin. The idea is to use the OT 
distance to measure the morphological differences between 
two nuclei, by utilizing all the intensity values. The method 
consists of two steps: (1) for each nucleus image, compute the 
transport map with respect to a reference image; (2) utilize the 
transport map for describing the nucleus morphometry.

As explained in earlier publications,[22,33,37] the method has the 
advantage that it does not involve information loss, and features 
can be inverted back to a nucleus image. Thus, classifiers 
(or any regression method) can be visualized in image space. 
Here, we provide a brief overview of the method, described 
in continuous domain:

Given a set of segmented nuclei images, I1, I2,…, IN: Ω→R with 
Ω = [0, 1]2, the image intensities are normalized to integrate 
to one as described above so that the images can be treated as 
distributions of fixed amount of intensity. One option for the 

Figure 1: The transport‑based nuclei morphometry analysis pipeline. 
Cell nuclei are first identified by pathologists and segmented from region 
of interest in the whole slide images (a); morphological characteristics 
for each individual cell nucleus are represented by the obtained linear 
embedding utilizing the optimal transport problem (b), which are then 
used to find the discriminative geodesic for classification and visualization 
of nuclear distribution differences between malignant melanoma and 
dysplastic nevi (c)

c
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Figure 2: Sample‑segmented nuclei from dysplastic nevi (a) and 
malignant melanoma (b). Note that the intensity of these nuclei images 
has been inverted (the brighter the pixel, the more chromatin) and the 
contrast has been stretched for better visualization

ba



Journal of Pathology Informatics4

J Pathol Inform 2017, 1:15 http://www.jpathinformatics.org/content/8/1/15

choice of reference image is the average of the nuclei image set: 

I
N

I
0

1
= ∑ ii=1

N  and the OT distance between the reference and 

a given image Ii which is mathematically defined as follows:

d I I f x x I x dxi
f

OT i i

i

( , ) | ( ) | ( )min0

2= −∫
Ω

S. t. det (Dfi [x]) I0 (fi [x]) = Ii (x)

Where, x is the concatenation of image coordinates including 
both horizontal and vertical directions. fi: Ω→Ω is a 
mass-preserving transform from Ii to I0 [Figure 3a]. Dfi is the 
Jacobian matrix of fi. Det (Dfi [x]) is the determinant of the 
Jacobian of fi, as shown in Figure 3b. The transport function 
fi is mathematically proved to uniquely exist and can be used 
to reconstruct Ii from I0 by Ii (x) = Det (Dfi [x]) I0 (fi [x]). The 
morphing process from Ii to I0 controlled by fi can be viewed 
as changing both pixel location and intensity of I0 at the same 
time. The points on geodesic fi connecting I0 and Ii on the OT 
manifold can be interpolated by the following formula:

fρ (x) = (1 – ρ) x + ρ fi (x), ρ ϵ [0, 1]

The morphing process from I0 to Ii can be visualized by 
det (DFρ [x]) I0 (fρ [x]), which is shown in Figure 3c. The 
OT geodesic fi can be further decomposed into the identity 
part x and the OT displacement part ui (x), denoted as fi (x) 
= x + ui (x). As described in the study by Kolouri et al.,[33] 
the function p u I

i i
=

0
 provides a natural isometric linear 

embedding for image Ii, which quantifies the morphological 
characteristics of each nucleus. The linear embedding pi is the 
feature representation which can be used for both classification 
as well as visualization of nuclear distribution differences 
between benign and malignant groups.

The OT metric not only measures the relative amount of 
chromatin in certain local regions compared with the reference 
nucleus image, but also provides a reversible process, where 
one can reconstruct the nucleus image given the corresponding 
linear embedding and the reference image [Figure 3].

Classification
To perform nuclei classification, we utilized the standard 
Fisher linear discriminant analysis (LDA) to construct 
a one-dimensional subspace which is discriminative for 
classification. Mathematically, we want to find a linear 
discriminative vector which can differentiate cell nuclei with 
their linear embedding. The linear optimal transportation (LOT) 
embedding for the training dataset can be transformed into such 
linear subspace, where the class means are well separated, 
measured relative to the summation of data variances within 
each class. Given a set of linear embedding, P p={ }i i =1

N  for 
nuclei images I1,…, IN and their corresponding binary class 
labels, the projection vector can be computed and denoted as. 
W
LDA

*  The projection for nucleus Ii along W
LDA

*  is computed 
as p W

i

T

LDA

* . For any nucleus Ij in the testing set with linear 
embedding pj, the projection is similarly obtained as p W

j

T

LDA

* . 

The class label for Ij can be predicted through the K-nearest 
neighbor (KNN) algorithm. The label for a test patient is 
assigned by the majority voting strategy based on the labels 
of its pertaining nuclei.[38]

Visualization
The obtained linear embedding for each nucleus can be 
viewed as an invertible transform. That is, any point pi in 
the high-dimensional LOT space can be transformed back 
to image space through Ii = det (Dfi [x]) I0 (fi[x]) with the 
mass-preserving map fi. In practice, the number of data points 
is usually less than the dimension of the LOT space. Thus, 
principal component analysis (PCA) is first applied to such 
that the data are represented in a lower dimensional space with 
the size being the number of the data points. Let the S be the 
scatter matrix with element Skl being:

S
N

u x u x u x u x I x dxkkl 1= − −∫
1

0( ( ) ( )) ( ( ) ( ) ( )
Ω

where, u
N

u
i

=
=∑1 1 i

N  is mean displacement filed in the 
dataset.

The corresponding eigenvalues and eigenvectors can be 
computed through:

Sei = γiei, I = 1,…, N

The PCA direction with regard to can be computed as follows:

v
N

e k u
i

i

i kk

N=
=∑1

1
[ ]

The mass-preserving map f d,i along the ith prominent 
direction can be computed through: f d,i = x + (u– + dσivi), 
where, σi is the standard deviation of data projections on vi 
and d is an integer determining the “distance” between the 
current displacement field and the mean displacement field. 
Specially, when d = 0, f 0,i = x + u– = f–. The reconstructed 
image corresponding to f d,i can be obtained through: 
det

d,i d,iDf x I f x( ) ( )( ) ( )0
. In the PCA space, each nucleus 

image Ik is represented by the corresponding linear 
embedding with reduced dimension:

Z i v x u x dx i N z RN
k i x

k
[ ] ( ) ( ) , , , ,= = … ∈ ×∫ 1

1

Ω

Figure 3: Visualization of the mass‑preserving map fi applied to the 
image coordinates (a), the determinant of the Jacobian of fi (b), and the 
morphing process from Ii to I0 by changing the parameter ρϵ [0, 1] (c)

c

ba
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To visualize the discriminative information in the dataset 
with two classes (benign and malignant in our case), we 
apply the method described in the study by Wang et al.,[39] 
namely penalized LDA (pLDA), to a set of linear embedding 
Z Z={ } =i i

N

1
 in the PCA-derived space. Given the class label C 

for each Zi, the pLDA direction WpLDA onto which the data 
projections of different classes are separated is obtained by 
solving the problem below:

W
W S W

W S I WW
W

pLDA

T

T

T
=

+=argmax
( )

|| || 1 

Where, S Z Z Z Z
T i ii

T

= − −∑ ( ) ( )  is the scatter matrix and 
S z z z z
w iZi c

c
c i

c
T= − −

∈∑∑ ( ) ( )  is the within-class scatter 

matrix with Z–c being the center of class c. The penalty weight 
represents the trade-off between the standard LDA and PCA 
directions.[38] In the experiment, was selected by measuring the 
stability of the pLDA subspace.[22] The discriminative direction 
in LOT embedding space is given by: v W k u

pVDA kK

N=
=∑ *[ ]
1

. 
By changing the integer d, the discriminative information along 
VpLDA around the mean displacement field can be visualized by: 
det

pLDA

d

pLDA

dDf x I f x( ) ( )( ) ( )0
, where f x u d v

pLDA

d

pVDA
= + +( )  

and σ is the standard deviation after data projection along 
VpLDA.

results

To evaluate the performance of the proposed method, we 
predicted the class labels (DN or MM) for test patients after the 
computation of linear embedding, representing the morphology 
of segmented nuclei and then compared the predicted labels 
with actual diagnoses. Our experiment utilized the standard 
leave-one-patient-out validation scheme, whereby cell nuclei 
pertaining to one patient were removed from the dataset and 
kept as testing data. In the training stage, the training data 
were further split into training and validation sets to search 
for the optimal k in the KNN algorithm. The one-dimensional 
pLDA subspace was constructed using the LOT embedding and 
class labels in the training data. In our case, the discriminative 
direction was computed and applied to obtain the projections 
of the testing data samples. The binary labels for individual 
testing nucleus were given by the KNN algorithm, and the label 
for any test patient was assigned through the majority voting 
strategy (taking the most common label assignment among 
its pertaining nuclei).

For comparison purpose, we also tested the performance of 
the numerical feature-based method described in a study by 
Basu et al.[21] The morphology of each nucleus was represented 
using a 256‑dimensional numerical feature vector, including 
six morphological features (area, convexity, circularity, 
perimeter, eccentricity, and equivalent diameter), 220 texture 
features (intensity-based features, Haralick features, and 
Gabor features), and thirty wavelet features. Similar to the 
classification procedure for OT-based method, the LDA 

technique was first applied to the derived feature matrix to 
find the discriminative direction, which was then used in label 
prediction for test patients together with the KNN algorithm 
and majority voting strategy. Table 1 shows a summary of 
classification results by our proposed method and the numerical 
feature-based method. As we can see from the confusion 
matrices table, our LOT-based method is clearly superior 
compared with numerical feature‑based method with 6.4% 
gain [Table 1].

Our method enables direct visualization of the discriminant 
information embedded in cell nuclei from benign and 
malignant groups. Visual comparisons of nuclei morphology 
for DN versus MM are shown in Figure 4. The nuclei 
morphological information in the held out data (30% of 
data) was visually plotted along the first pLDA direction, 
computed based on linear embedding in the PCA space and 
corresponding labels in the training set. In Figure 4, the height 
of each histogram bar indicates the proportion of nuclei most 
similar to the representative image beneath it. The row of 
representative images is the visual representation along the 
discriminant geodesic path by pLDA. These representatives 
are generated between every unit of standard deviation from 
the mean image along the derived direction VpLDA. The P value 
for differentiating data points between benign and malignant 
groups after projection is zero within numerical precision, 
indicating that DN and MM are significantly different in nuclei 
morphological distribution [Figure 4].

As far as biological interpolation shown in Figure 4, the most 
important information in discriminating DN and MM is the 
chromatin distribution patterns inside the nuclei as well as the 
nuclei size. In comparison with MM, it is uncommon for DN 

Figure 4: Histograms of nuclei morphological distributions for dysplastic 
nevi (white bars) and malignant melanoma (dark bars). Note that the 
intensity of the representative images beneath the histogram bars has 
been inverted with brighter pixels indicating more locally accumulated 
chromatin

Table 1: Confusion matrices for linear optimal 
transportation‑based method (in bold) and numerical 
feature‑based method

Predicted Diagnosis

DN MM
Actual diagnosis
DN 61/57 11/15
MM 15/20 52/47
Accuracy 81.29%/74.82%
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nuclei to have a chromatin distribution centered at the nuclei 
periphery; on the contrary, nuclei of DN tend to have more 
uniform chromatin distributions. To show this, we measured 
the ratio between mean intensity of pixels around the nuclei 
membrane and mean intensity of the remaining central area 
inside the nuclei and plotted ratio distributions for both DN 
and MM groups in Figure 5. As one can see from the ratio 
distributions, MM nuclei tend to show higher proportions 
in high membrane/center ratios compared to the nuclei in 
DN group, which corresponds with the discriminating nuclei 
patterns between DN and MM in Figure 4. In a study by 
Massi and LeBoit[40] atypical melanocyte nuclei in MM are 
larger and the chromatin is coarser, with an irregular nuclear 
membrane, while stereotypical benign melanocytes have 
evenly distributed chromatin and rounder nuclear membrane. 
From the perspective of cell biology, the DNA exists in the 
nucleus in two forms: heterochromatin and euchromatin, 
reflecting the level of activity of cell. Heterochromatin is 
darkly stained (bright if the intensity is inverted) by H and E 
staining, usually scattered throughout the nucleus or adjacent 
to the nuclear envelope, and is typical of quiescent nuclei. 
Euchromatin, on the contrary, is not readily stainable and 
is prevalent in cells that are active in gene transcription.[41] 
Therefore, our finding agrees with the fact that benign cell 
nuclei appear more heterochromatic and malignant cell nuclei 
appear more euchromatic, and thus the approximately “ring 
shape” nuclear appearance in MM relative to the nuclei in 
DN [Figure 5].

In addition, as observed from Figure 4, a greater number of MM 
nuclei are relatively bigger than the nuclei in DN group. We 
also plotted the histogram of nuclei size distribution for both 
DN and MM groups, as shown in Figure 6. The average nuclei 
size is 647.04 (in pixels) for MM group, compared with the 
average nuclei size of 543.07 in DN group, demonstrating that 
our proposed method can capture and visualize the distribution 
differences in nuclei size between the two classes [Figure 6].

dIscussIon

Melanocytic lesions are among the most challenging areas 
in surgical pathology and are a significant proportion of 
dermatopathology daily case volume. The lack of consensus 
between pathologists, significant morphological overlap as 

well as similar gene mutations between MM and DN make 
clinical diagnosis complicated.

We have described a novel image analysis method to quantify 
the characteristics of nuclei morphology to differentiate 
benign (DN) and MM melanocytic lesions. The cell nuclei 
were segmented from manually located ROI in H and E stained 
WSI. The LOT-based method then describes the characteristics 
of morphology of each nucleus by the linear embedding for 
classification/quantitative analysis. The proposed framework 
is based on the linear OT in continuous domain, together 
with the simple majority voting strategy with individual 
nucleus label predicted by KNN algorithm after discriminative 
projections. With nuclei morphological information alone, 
the method showed an accuracy of 81.3%, an improved 
classification with 6.4% gain in differentiating patients from 
benign or malignant in double cross-validations, compared 
with the commonly used numerical features. In addition, the 
distribution differences in nuclei morphology can be directly 
visualized along the discriminative geodesic generated by the 
penalized version of LDA (pLDA). In the analysis of large 
case samples (139 patients in our study), the proportions of 
representative nuclei along the pLDA direction for DN and 
MM are statistically different with meaningful biological 
interpretations, which agrees well with descriptions in the 
existing literatures and actual morphological measurements.

We also note that the potential reasons behind the improved 
classification accuracy of LOT in our study can be explained 
in two folds: (1) LOT performed in continuous domain is a 
reversible transformation. In other words, theoretically, one can 
reconstruct the original nucleus image without information loss 
given its corresponding linear embedding and the reference 
image. Such property enables the preservation of discriminative 
information when quantifying nuclei morphological 
characteristics for classification. On the contrary, numerical 
feature-based method usually prevents reconstruction of 
the input images from feature space, and the performance 
boosting requires more manually designed discriminative 
features involved to represent the nucleotyping. (2) The 
transformation from image domain to the LOT space is a 
nonlinear operation. As explained in the study by Rohde 

Figure 5: Histograms of membrane/center ratio distributions for dysplastic 
nevi (white bars) and malignant melanoma (black bars)

Figure 6: Histograms of nuclei size distributions for dysplastic nevi 
(white bars) and malignant melanoma (black bars). The mean sizes for 
nuclei from dysplastic nevi and malignant melanoma are 543.07 pixels 
and 647.04 pixels, respectively



Journal of Pathology Informatics 7

J Pathol Inform 2017, 1:15 http://www.jpathinformatics.org/content/8/1/15

et al.,[36] the nonlinearity has the potential to improve linear 
separability, and thus improves the classification accuracy in 
our study. Feature-based method, however, often contains a 
mixture of linear and nonlinear operations depending on the 
type of measurements we are interested in.

In the future, our work can be extended in the following 
aspects: first, fully automated and reliable nuclei detection and 
segmentation algorithms are required when a larger number 
of cases are involved in the study. WSI often constitutes of 
a mosaic of different kinds of cells (e.g., melanocytes and 
keratinocytes in our case) in various tissue types, which 
poses a huge challenge when analyzing a certain kind of 
cells in the nuclei-based cancer detection pipeline. Even if 
the nuclei of interest are located by pathologists, to the best 
of our knowledge, existing segmentation methods produce 
segmentation failures with different degrees, which may 
affect the classification performance when manually screening 
segmentations is impossible for large datasets. Second, 
alternative nonnaive Bayesian models need to be developed 
and applied to predict patient labels. In our experiment, 
patient-level labels are assigned through the majority voting 
strategy after predicting cell nuclei labels individually and 
independently. Though implicitly, such procedure actually 
follows the naive Bayesian model, where there is no assumed 
interdependency among cell nuclei. As shown in a study by 
Huang et al.,[42] neglecting interdependencies between nearby 
nuclei can lead to suboptimal classification results.

Finally, our study shows that nucleotyping alone can obtain 
an accuracy of 81.3%. This suggests a practical, inexpensive 
solution, with similar accuracy like the current clinical 
dermascopes and molecular diagnostics. With further 
development and refined analysis, nucleotyping may be of 
prime use as a screening tool. Large data sets of digital images 
can be automatically screened and flagged for review as 
necessary. Ongoing research of new diagnostic characteristics 
can be used in combination with other modalities for increased 
accuracy in the diagnosis and prognosis of patients.

conclusIons

Our study visually identifies the distribution differences 
between MM and DN based on novel representations of nuclear 
morphology. Using WSI and the proposed LOT-based nuclei 
analysis framework, MM and DN are distinguishable with a 
better accuracy compared with numerical feature-based method. 
Nuclear image analysis in conjunction with next-generation 
sequencing or other feature-rich detection systems may 
increase diagnostic accuracy and has prognostic implications. 
The clinical and functional significance of nuclear chromatin 
morphologies in cancer has yet to be fully realized. Larger 
studies with combinations of other features and survival data are 
needed to draw further diagnostic and prognostic conclusions.
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