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Toll-like receptors (TLRs) are recognition molecules for multiple pathogens, including bac-
teria, viruses, fungi, and parasites. TLR2 forms heterodimers with TLR1 and TLR6, which
is the initial step in a cascade of events leading to significant innate immune responses,
development of adaptive immunity to pathogens and protection from immune sequelae
related to infection with these pathogens. This review will discuss the current status of
TLR2 mediated immune responses by recognition of pathogen-associated molecular pat-
terns (PAMPS) on these organisms. We will emphasize both canonical and non-canonical
responses to TLR2 ligands with emphasis on whether the inflammation induced by these
responses contributes to the disease state or to protection from diseases.
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INTRODUCTION
The innate immune system contains germline-encoded pattern
recognition receptors (PRRs) that detect pathogens threat and
trigger prompt responses against them. PRRs recognize micro-
bial components termed pathogen-associated molecular patterns
(PAMPs), which play crucial roles in microbial pathogenesis, sur-
vival and replication. Examples of PAMPs include integral cell
membrane and cell wall components, bacterial toxins, DNA RNA,
etc. A cascade of events occurs following PAMP recognition by
PRRs, which activate host defense mechanisms to prevent or fight
off infections and initiate and enhance a subsequent adaptive
immune response (West et al., 2006). A well-known group of
PRRs discovered in the 1990s are the toll-like receptors (TLR; Gay
and Gangloff, 2007), a family of very similar proteins containing
leucine-rich repeats, that are widely expressed by a variety of cells
in many animal species (Akira et al., 2006). TLRs and TOLLs (in
the fruit fly) are evolutionarily ancient mediators of innate host
defense (Leulier and Lemaitre, 2008). The most recent Nobel Prize
in Medicine and Physiology was partially awarded for this dis-
covery. To date, 13 TLRs have been identified, 10 human TLRs
(TLR1-10), and 12 mouse TLRs (TLR1-9, TLR11, TLR12, mice do
not express TLR10; Beutler, 2009).

TLR2 identification, molecular characterization, and cloning
were first published in 1998, together with TLR1, TLR3, TLR4,
and TLR5 (Rock et al., 1998). More than a decade of extensive
research has demonstrated the importance of TLR2 in the verte-
brate immunity. This receptor is the only TLR described so far
to form functional heterodimers with more than two other types
of TLRs. TLR2 also interacts with a large number of non-TLR
molecules, allowing for recognition of a great number and vari-
ety of PAMPs (Zähringer et al., 2008). This diversity comprises
different types of molecules from all microbial phyla including
viruses, fungus, bacteria, and parasites. TLR2 expression has been
detected in immune cells, endothelial, and epithelial cells (Flo et al.,

2001; Brzezińska-Blaszczyk and Wierzbicki, 2010). This ubiquity
is consistent with the wide range of roles and function of TLR2.

TLR2 LIGANDS FOR PATHOGEN RECOGNITION
Toll-like receptor receptors are type I integral transmembrane gly-
coproteins composed of a conserved intracellular toll–interleukin-
1 receptor (TIR) homology domain, a single transmembrane helix
domain and a solenoid ectodomain (Kumar et al., 2009). The
ectodomain is responsible for pathogen recognition and is com-
posed of 16–28 diverse leucine-rich-repeat (LRR) modules (Akira
et al., 2006). TLRs can be divided into six major families, accord-
ing to the repeat number of LRRs and the motifs of two cysteine
clusters flanking the LRRs. TLR2, together with TLR1, TLR6, and
TLR10, are members of the TLR1 subfamily (Matsushima et al.,
2007).

Ligand specific recognition and signaling through TLR2 occurs
via heterodimerization with TLR1 or TLR6. TLR2/TLR1 and
TLR2/TLR6 heterodimers are thought to be pre-formed on the
cell surface. In the absence of TLR1 and TLR6, TLR2 homod-
imerization was proposed but it has not been observed with
current techniques (Jin et al., 2007). The crystal structure of both
heterodimers where determined, showing that LRR modules con-
fers a horse-shoe shaped structure to the ectodomain and each
heterodimer forms an “m” shaped complex with the ligand, sta-
bilizing the two receptors. Without the ligand, the pre-formed
heterodimers most likely have no interaction between their intra-
cellular moieties and therefore there is no downstream signaling
(Jin et al., 2007; Kang et al., 2009). New studies also describe the
existence of TLR2/TLR10 pre-formed dimers, although their func-
tion is unclear (Guan et al., 2010). TLR1 and TLR10 were described
to form dimers with TLRs from the same subfamily (Hasan et al.,
2005), while TLR6 can form a heterodimer with TLR4 in response
to endogenous ligands, promoting sterile inflammation (Stewart
et al., 2010).
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The wide array of TLR2 ligands includes molecules with dia-
cyl and triacylglycerol moieties, proteins and polysaccharides
(Table 1). The biochemical diversity of such ligand structures
consequently raises questions about receptor specificity. For a
long time the identity of most putative TLR ligands was doubted,
due to potential lipoprotein contamination. A recent study claims
that only lipoproteins/lipopeptides (LPs) are “true” TLR2 ligands,
sensed at physiological concentrations by this receptor (Zähringer
et al., 2008). To assess such potential contamination, treatment
with lipoprotein lipase (Hashimoto et al., 2006, 2007), high tem-
peratures (Liang et al., 2007a), and solvent washes (Ikeda et al.,
2008) have been used, according to the molecular structure and
physicochemical properties of the hypothetical TLR2 ligand. How-
ever, some of these methods were applied in the absence of
proper ligand molecular structure analysis, leading to mistaken
conclusions. An example is the use of lipoprotein lipase to assess
lipoprotein contamination of diacylglycerol preparations, such as
Lipoteichoic Acid (LTA), which are also cleaved by the lipase (Seo
and Nahm, 2009).

Endogenous ligands have also been described for TLR2, known
as “alarmins” and indicating tissue damage, necrosis, or poten-
tial tumor cells. For example, human β-defensin-3, hyaluronan
fragments, heat shock proteins, and high mobility group box 1
protein were identified as TLR2 endogenous ligands (Scheibner
et al., 2006; Funderburg et al., 2007; Curtin et al., 2009; Erridge,
2010). Although it seems plausible that these molecules contribute
to host responses to infections leading to this type of damage,
there is no evidence, thus far, that endogenous ligands that engage
TLR2 can modulate the course of microbial infections. Another
complicating factor regarding studies with these TLR2 “endoge-
nous ligands” is that contamination of the preparations with other
non-endogenous TLR2 ligands was not always ruled out (Tsan and
Gao, 2007).

The major TLR2 ligand characterized thus far are lipopro-
teins, ubiquitous to all bacteria and highly expressed in the outer
membrane of Gram-positive bacteria. They present a unique
NH3-terminal lipo-amino acid, N -acyl-S-diacylglycerol cysteine
and usually three lipid chains (triacyl), except for those found
in mycobacteria that can have two lipid chains (diacyl). These
molecules have a variety of functions and are described in an
extensive database (Babu et al., 2006). Triacyl LPs are recognized
by TLR2/TLR1 while diacyl LPs are recognized by TLR2/TLR6
(Beutler et al., 2006). This has been described in detail by crystal-
lographic techniques, demonstrating that the TLR1 ectodomain
has a channel that binds the amide-bound lipid chain of the tri-
acylated LP (Jin et al., 2007), while the same channel in TLR6 is
obstructed by amino acid residues (Kang et al., 2009). TLR2 has a
hydrophobic pocket that interacts with the remaining lipid chains
in a less specific manner, allowing slight variations in length and
chemical structure of lipid or hydrophobic moieties of its ligands
(Kang et al., 2009). No matter which of the two dimers is acti-
vated, the classical signaling cascade triggered was found to be the
same (Farhat et al., 2008), although the kinetics could be different
depending on the ligands, and lead to different physiological out-
comes (Depaolo et al., 2008; Long et al., 2009). TLR10 appears to
recognize the same ligands as TLR1 and requires the same intra-
cellular adaptor myeloid differentiation primary-response gene

88 (MyD88). However, the activated TLR2/TLR10 dimer could
not trigger the common signaling cascade, suggesting a different
role for this dimer yet to be defined (Guan et al., 2010). Recog-
nition of lipopeptides through TLR2 in the absence of TLR1 or
TLR6 participation was observed using either TLR-knockout mice
or modified ligands (Buwitt-Beckmann, 2005). However, there is
no demonstration that ligand recognition by TLR2 alone actually
occurs at physiological concentrations in the course of an infection
(Buwitt-Beckmann, 2005).

TLR2 RECEPTOR COMPLEXES AND ACCESSORY MOLECULES
TLR2 forms heterodimers with its co-receptors, which increases
the diversity of molecules recognized by the receptor. Recently,
a number of accessory molecules and co-receptors have been
described to concentrate microbial products on the cell surface
or inside phagosomes to facilitate TLR2 responses. A new ligand
complex was just proposed for activation by diacylglycerol ligands,
including lipopeptides: CD36 may bind ligands and transfer them
to the accessory molecule CD14, which, in turn, loads the lig-
and onto TLR2/TLR6 heterodimers (FSL-1, MALP-2, and LTA) or
on TLR2/TLR1 (lipomannan) heterodimers (Jimenez-Dalmaroni
et al., 2009). The ligand delivery occurs within lipid rafts, where
CD14 and CD36 molecules are anchored, resulting in complex
internalization to the Golgi apparatus, and this trafficking may
be dependent on the TLR2 ligand. Despite this finding, activation
does appear to occur at the cell surface and is independent from
internalization (Triantafilou et al., 2006; Jimenez-Dalmaroni et al.,
2009). The ectodomain of CD14 and CD36 is the active receptor
moiety for ligand delivery (Jimenez-Dalmaroni et al., 2009). It is
notable that, even though CD14 and CD36 are not an absolute
requirement (Hoebe et al., 2005; Nakata et al., 2006) for TLR2 sig-
naling, the role of these molecules is to enhance responses, lower
the threshold of the concentrations needed for receptor recog-
nition and signaling. A similar mechanism likely occurs with GPI
anchors from some protozoan parasites, since they also contain the
diacylglycerol moiety and are known to be TLR2 ligands. Accord-
ingly, CD36−/− macrophages have an impaired cytokine response
compared to wild-type macrophages when stimulated with Plas-
modium falciparum GPI (Patel et al., 2007). Trypanosoma cruzi
GPI needs CD14 to fully activate TLR2 (Almeida and Gazzinelli,
2001). However, this function of CD14 cannot be extended to all
GPIs, since CD14 does not participate in Toxoplasma gondii GPI
stimulation of TLR2 and TLR4. Instead, galectin-3 seems to deliver
T. gondii GPIs for these TLRs (Debierre-Grockiego et al., 2010).

Interestingly, vitronectin, an extracellular matrix glycoprotein
also present in the blood, has been reported as essential for triacyl
LP engagement of TLR2. This protein, in its extended confor-
mation, binds to triacyl LPs and is recognized by the integrin
β3 receptor, which is part of the pre-formed TLR2/TLR1 signal-
ing complex in resting monocytes (Gerold et al., 2008). CD14
(but not CD36) also concentrates and delivers triacyl LPs to
TLR2/TLR1, without directly binding to the dimer (Hoebe et al.,
2005; Nakata et al., 2006), and can contribute to the inflamma-
tory response in phagocytes (Drage et al., 2009). Other researchers
identified radioprotective 105 kDa (RP105) as a receptor able to
bind mycobacterial lipoproteins, mostly TLR2/TLR1 agonists, act-
ing as an accessory molecule for the TLR2 receptor complex in
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Table 1 |TLR2 microbial ligands.

Ligand Origin TLRS Ligand delivery Reference

Bacterium

Diacyl lipopeptides

(MALP-2/FSL-1)

Mycoplasma TLR2/TLR6 RP105 (B cells)/

CD14/CD36

Jimenez-Dalmaroni et al. (2009), Blumenthal

et al. (2009)

Heat-labile enterotoxins

(b subunit)

Escherichia coli, Vibrio

cholerae

TLR2/TLR1 CD14/GD1a Liang et al. (2007b), Connell (2007)

Lipomannan/

lipoarabinomannan

Mycobacterium TLR2/TLR1 CD14/CD36 Jimenez-Dalmaroni et al. (2009), Birch et al.

(2010)

Lipoprotein Mycobacterium TLR2/? CD14/CD36/RP105 Jimenez-Dalmaroni et al. (2009)

Lipoteichoic acid (LTA) Gram-positive bacteria TLR2/TLR6 CD14/CD36/MBL Jimenez-Dalmaroni et al. (2009), Ip et al.

(2008), Tawaratsumida et al. (2009)

Peptidoglycan (PG)* Staphylococcus TLR2/? CD14 Natsuka et al. (2008), Müller-Anstett et al.

(2010)

Porins Neisseria, Salmonella,

Shigella

TLR2/TLR1 Unknown Massari et al. (2006), Cervantes-Barragán

et al. (2009), Biswas et al. (2009)

Triacyl lipopeptides (LPs) Bacteria TLR2/TLR1 CD14/vitronectin +
integrin β3

Beutler et al. (2006), Gerold et al. (2008)

Fungus

Glucuronoxylomannan Cryptococcus

neoformans/gaati

TLR2/TLR1–

TLR2/TLR6

CD14/not dectin-1 Fonseca et al. (2010)

Phospholipomannan Candida albicans TLR2/TLR6 CD14/dectin-1 Jouault et al. (2003), Netea et al. (2006)

Unknown Paracoccidioides

brasiliensis

TLR2/? Dectin-1 Bonfim et al. (2009)

Unknown Penicillium marneffei TLR2/? Dectin-1 Nakamura et al. (2008)

Unknown Aspergillus fumigatus TLR2/? Dectin-1

Yeast phase-specific protein

(Yps3p)

Histoplasma capsulatum TLR2/? Dectin-1*** Aravalli et al. (2008)

Zymosan** Saccharomyces cerevisiae TLR2/TLR6 CD14/dectin-1 Ikeda et al. (2008), Beutler et al. (2006),

Gantner et al. (2003)

Protozoan/helminth

Glycosylphosphatidylinositol

(GPI) anchors

Trypanosoma, plasmodium,

toxoplasma (protozoans)

TLR2/TLR1****

and TLR4

CD36/(likely) CD14 Jimenez-Dalmaroni et al. (2009), Debierre-

Grockiego et al. (2007), Gowda (2007)

Lipopeptidophosphoglycan Entamoeba histolytica

(protozoan)

TLR2/TLR6 and

TLR4

Wong-Baeza et al. (2010)

lipophosphoglycan Leishmania (protozoan) TLR2/? Kavoosi et al. (2010)

Lysophosphatidylserine Schistosoma mansoni,

Ascaris lumbricoidis

(helminth)

TLR2/? van Riet et al. (2009)

Virus

EBV-encoded dUTPase Epstein–Barr TLR2/? Not CD14 Ariza et al. (2009)

Glycoprotein B Cytomegalovirus TLR2/TLR6 CD14 Barbalat et al. (2009), Klouwenberg et al.

(2009), Compton et al. (2003)

Hepatitis B capsid***** Hepatitis B TLR2/? CD14 Cooper et al. (2005)

hepatitis C core and NS3

protein

Hepatitis C TLR2/TLR6 Unknown Chang et al. (2007)

Unknown Measles TLR2/TLR6 Unknown Klouwenberg et al. (2009), Bieback et al.

(2002)

Unknown Herpes simplex (1/2) TLR2/TLR6 Unknown Klouwenberg et al. (2009), Sorensen et al.

(2008)

Unknown Vaccinia TLR2/? Unknown Barbalat et al. (2009)

Unknown Lymphocytic

choriomeningitis

TLR2/? CD14 Zhou et al. (2005)

(Continued)
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Table 1 | Continued

Ligand Origin TLRS Ligand delivery Reference

Unknown Yellow fever TLR2/? Unknown Querec et al. (2006)

Unknown Varicella zoster TLR2/? CD14 Wang et al. (2005)

Unknown Respiratory syncytial TLR2/TLR6 Unknown Klouwenberg et al. (2009)

Observation: The question marks “?” presented in the table imply that the co TLR, required for TLR2 ligand recognition, is still undefined.

*Synthetic PGs does not induce TLR2 signaling, and TLR2 activation promoted by the natural ones was attributed to lipopeptide contamination by some authors

(Travassos et al., 2004; Zähringer et al., 2008). Nevertheless, PG extracted from mutant Staphylococcus strain lacking lipopeptides still activated TLR2 and NOD2

(Müller-Anstett et al., 2010).

**Zymosan activation through TLR2 was also attributed to contamination by other authors (Ikeda et al., 2008).

***Dectin-1 recognizes β-glucans from histoplasma, but these molecules are normally shielded by α-glucans in this pathogen (Rappleye et al., 2007).

****Intact GPI are recognized mainly by TLR2/TLR1, but exclusion of its sn-2 fatty-acid portion changes the ligand heterodimer to TLR2/TLR6 (Gowda, 2007).

*****The purity of this preparation is controversial (Vanlandschoot et al., 2005).

macrophages and improving the response against this pathogen.
RP105 has an ectodomain related to the TLRs, but no intracellular
moiety (Blumenthal et al., 2009). Further research is needed to
define if the accessory mechanisms involved with triacyl LPs are
complementary, non-concomitant, or overlapping.

So far, only the ganglioside GD1a has been shown to potentially
have an accessory function in recognition of non-acetylated TLR2
ligands. It binds the β subunit of type IIb heat-labile enterotoxin of
Escherichia coli, enabling this ligand to induce TLR2/TLR1 signal-
ing within lipid rafts. GD1a does not appear to interact with triacyl
molecules (Liang et al., 2007b). Since bacterial porins, which have
been shown to be TLR2 ligands (Massari et al., 2002; Liu et al.,
2008), are also oligomeric pore forming proteins that bind to the
same dimer, there is a possibility that GD1a may also affect or
enhance their signaling, but there is no experimental evidence
supporting this hypothesis (Massari et al., 2006).

In regards to innate immune recognition of whole bacteria
by TLRs, phagocytosis is an important step, forming phagosomes
that could recruit TLRs and form different receptor complexes.
The soluble molecule mannose binding lectin (MBL) was found
to bind Staphylococcus aureus through membrane LTA and to syn-
ergize with TLR2/6, drastically increasing inflammatory responses
upon complex internalization (Ip et al., 2008). The same com-
plex is likely to occur with peptidoglycan, lipoarabinomannan,
and lipophosphoglycan, since they were described to bind to MBL
(Ip et al., 2009). CD36 may possibly maintain its ligand delivery
role inside the phagosomes, because it is required for phagocytosis
of S. aureus (Stuart et al., 2005). Lack of integrin α3β1 impairs
release of IL-6 after Borrelia burgdorferi phagocytosis, due to weak
activation of endosomal TLR2 (Marre et al., 2010). In addition, the
β3 integrin was reported to facilitate host cell invasion by several
bacterial pathogens and could also be linked to TLR2 triggering
inside phagosomes (Gerold et al., 2008).

The only non-TLR molecule found to physically interact with
TLR2 and induce cross-talk signaling was Dectin-1, the main
receptor for β-glucans found on most fungi. Dectin-1 depen-
dent signaling synergizes with both TLR2 and TLR4 for induction
of tumor necrosis factor-α (TNF-α) in human primary periph-
eral blood mononuclear cells (PBMCs), when all three receptors
are engaged and stimulated via their respective ligands (Ferwerda
et al., 2008).

Finally, and of potential clinical importance, the responses
induced by transmembrane TLR2 signaling has recently been
found to be modulated by the presence of soluble TLR2 (Raby
et al., 2009), in human plasma, milk, and amniotic fluid (Dulay
et al., 2009). It is unclear what role this phenomenon may play in
response to pathogens and defense against infections, but it could
be postulated that varying levels of soluble TLR2 may positively
or negatively modulate such responses.

TLR2 INTRACELLULAR SIGNALING NETWORK
Following ligand stimulation, TLR2 heterodimers generally initi-
ate a MyD88-dependent intracellular signaling pathway, common
to all TLRs except TLR3. This pathway induces nuclear translo-
cation of nuclear factor-B (NF-B) to modulate gene transcription
and consequent inflammatory cytokine production (Figure 1).
The cascade also triggers serine/threonine-specific protein kinases
(MAPKs) that can influence both transcription of inflamma-
tory genes and mRNA stability of those transcripts, by activation
protein 1 (AP-1) induction (Watters et al., 2007).

Although the general signaling pathway is not unique, the phos-
phorylation and ubiquitination processes crucial for the cascade
are not completely elucidated, especially the feedback loops. For
example, IL-1 receptor associated kinase 1/4 (IRAK 1/4) were
found to phosphorylate, ubiquitinate, and increase degradation
of TIR domain containing adaptor protein (TIRAP also termed
MyD88 associated ligand, MAL), indicating a possible down-
regulation mechanism for TLR2 and TLR4 activation, in addition
to their role in activating these pathways (Dunne et al., 2010).
Sub-activating doses of TLR2 ligands may tolerize dendritic cells
for TNF-α production, by a mechanism that involves disruption
of signal transduction at the IRAK1 level (Albrecht et al., 2008).
Bruton’s tyrosine kinase (Btk) and PI3 Kinase are likewise able to
modulate TLR2 production of cytokines stimulated by LTA, but
their place in the cascade is not clear (Liljeroos et al., 2007).

Since TLRs, nucleotide binding oligomerization domains
(NODs), and Dectin-1 can induce NF-B translocation and MAPK
p38 activation (O’Neill, 2008), intracellular cross talk for cytokine
production synergy is likely to occur. In this context, Dectin-1 can
synergize with TLR2 and TLR4 through an NF-B non-canonical
pathway and augment cytokine expression induced by the cited
TLRs (Gringhuis et al.,2009). Human PBMCs stimulated with heat
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FIGURE 1 |TLR2 signaling. After ligand recognition and consequent TLR2
dimer rearrangement, the TIR domain of TIRAP binds the TIR domain of TLR2
and recruits the adaptor protein MyD88. IRAKs are then recruited and IRAK 4
phosphorylates (P) IRAK1, which then initiates auto-phosphorylation.
Phosphorylated IRAK1 dissociates from the complex and activates TRAF6.
Since IRAK1 is rapidly degraded, IRAK2 also activates TRAF 6 in latter
responses. Ubiquitinated (U) TRAF6 triggers the activation sequence
TAB2 – TAK1 – IKK complex. IκB phosphorylation and ubiquitination by the IKK
complex leads to its degradation and release of NF-κB translocation to the
nucleus for gene up-regulation. TAK1 also activates MKK6 for subsequent JNK
and p38 activation, leading to AP-1 activation that triggers gene transcription

of cytokines and accessory molecules. Internalized receptor complex
triggered by a viral ligand can activate by an unknown pathway IRF7/3 to IFN-β
gene up-regulation or IRF2/IRF1/STAT1 for IFN-α gene up-regulation (Underhill
et al., 1999; Watters et al., 2007; Liljeroos et al., 2008; Barbalat et al., 2009;
Dietrich et al., 2010; Dunne et al., 2010). MyD88, myeloid differentiation
primary-response gene 88; TIRAP, TIR adaptor protein; IRAK, interleukin-1
receptor associated kinase; TRAF, TNF receptor associated factor; TAK,
transforming growth factor beta-activated kinase 1; TAB, TAK1-binding protein;
MKK/JNK/P38, MAP kinases, NEMO/IKKs, kinase complex; NF-κB, nuclear
factor-κB; IκB, kinase complex; AP, activator protein; IRF, interferon regulatory
factor, STAT, signal transducer and activator of transcription 1.

killed Listeria monocytogenes (recognized through TLR2), plus a
TLR7/8 ligand, demonstrated synergistic up-regulation of IFN-
γ production and, to a minor extent, IFN-α production (Ghosh
et al., 2007). Although with a different TLR2 ligand (Pam3CSK4),
the opposite outcome of IFN-α was reported with human den-
dritic cells. In this case, TLR2 activation restrained the type I IFN
(IFN-α/β) amplification loop used by TLR4 and TLR7/8 ligands
(Wenink et al., 2009). The controversy can be partially explained
by the fact that TLR2 depletes early IFN-α/β release induced by
TLR9/TLR7, due to transient degradation of IRAK 1, but not later
induction of type I IFN (Liu et al., 2012). The urokinase-type
plasminogen activator receptor was recently described as impor-
tant for optimal MAPK p38 activation and consequent inflam-
mation induced by lipopeptides recognized by TLR2 (Liu et al.,
2011). Mutations of the NOD2 gene results in defective release of
Interleukin-10 (IL-10) from PBMC stimulated with TLR2 ligands,
suggesting another avenue of cross-signaling (Netea et al., 2004a).

Type I interferon (IFN-β/α) production was recently found
to be induced through TLR2 engagement. It was then neces-
sary to postulate an additional signaling pathway to account for
this phenomenon, as type I IFN synthesis requires activation of
IFN regulatory factors (IRF), but not NF-B or AP-1, tradition-
ally seen with TLR2 signaling. The stimulation occurs in the

endosomal environment, which requires microbial or ligand endo-
cytosis. In vitro stimulation of phagocytes with vaccinia virus
(VV) and Lactobacillus acidophilus induced IFN-β production,
while LTA from S. aureus stimulated IFN-α production in murine
macrophages (Liljeroos et al., 2008; Dietrich et al., 2010; Weiss
et al., 2010). It is possible that L. acidophilus also stimulates IFN-α
due to LTA presence. Surprisingly, bacteria but not viruses induced
TLR2-dependent production of IFN-β in dendritic cells, suggest-
ing cell specificity related to the type of microbe. Although not yet
elucidated, the newly discovered pathway was described as MyD88-
dependent and requires IRF1/7 for IFN-β and IRF1/2 for IFN-α
release (Figure 1). Activators of transcription 1 (STAT1), STAT 3,
PI3, and Btk were also reported as part of the signaling cascade
required for IFN-α release induced by LTA. TRIF adapter is not
required for TLR2 activation of interferon production, as it is for
TLR4 and TLR3 (Barbalat et al., 2009).

The intracellular cross-talk scenarios are essential for under-
standing host–microbe interactions, since most invaders have
multiple molecules recognized by multiple innate immune recep-
tors. Investigators have still not been able to relate most of what
has been learned about intracellular regulation of pathogens with
infection outcomes in the host, and this must be the focus for
future studies.
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INFECTIOUS DISEASES AND THE ROLE OF TLR2
In order to assess the role for TLR2 in immune protection or patho-
genesis of infections, a number of techniques have been developed.
The vast majority of researchers have used inbred mice as the
in vivo model, limiting individual gene variability and allowing
for examination of knockout or transgenic mice. However, limit-
ing genetic variability also limits immune response variability. In
addition, another important consideration in interpreting results
is the phenotypic divergence between mice and humans, including
the level of TLR2 expression and which cells express TLR2. Com-
parison of murine and human TLR2 sequences has revealed higher
correlation between intracellular domains (84%) than between
extracellular domains (65%; Grabiec et al., 2004), the latter being
involved with ligand recognition. Regarding cellular expression,
one example of the divergence between mice and humans is the
fact that murine T lymphocytes express TLR2 in a constitutive
manner while human T cells do not (Rehli, 2002). These discrep-
ancies may contribute to the differential pathology and immune
response observed in mouse models of infectious diseases as com-
pared to humans. In addition, there is evidence of associations
between human TLR2 polymorphisms with disease course and
susceptibility, but other factors, such as ethnicity, location, envi-
ronmental factors, and exposure to infectious agents contribute
to the conflicting results regarding these associations (Corr and
O’Neill, 2009). Specific descriptions of TLR2 polymorphisms are
included in the following sections. To our knowledge, it is unclear
whether TLR1 or TLR6 can activate host immune response in the
absence of TLR2 involvement. Nevertheless, we cannot assume
that TLR1 or TLR6 polymorphisms that lead to alteration in recep-
tor function are impacting TLR2 recognition and activation. There
is evidence that TLR1 and TLR6 polymorphism do exist in humans
that affect responses to infectious diseases (especially mycobacte-
ria; Kesh et al., 2005; Bhide et al., 2009; Shey et al., 2010). However,
for sake of clarity, this review will not address TLR1 or TLR6
polymorphisms and will only focus on TLR2 polymorphisms.

In vitro models are mostly based on the use of murine cells,
human cells, or cell lines derived from both species, including den-
dritic cells, macrophages, and human PBMCs. The use of human
PBMC is not free of criticism as well, since these cells might not
replicate the responses of tissue resident cells in a specific infected
organ (von Herrath and Nepom, 2005).

All models have discrepancies from true biological responses, so
the conclusions based on these models need to be examined closely
to insure that there is no over-interpretation. We shall examine
the role of TLR2 in infections by pathogen type: viruses, fungi,
protozoan/helminthes, and bacteria.

VIRUSES
Viruses are biological organisms that only replicate inside host
cells. Cell adhesion and entrance usually occurs without specific
PAMP recognition. In fact, almost all viral PAMPs are nucleic acid-
based, which are not exposed until after host cell entry, and TLRs
that recognize these PAMPs are almost exclusively intracellular. For
this reason, host immune recognition of viruses relies mainly on a
complex combination of endosomal TLRs and cytosolic non-TLR
receptors, activated by viral nucleic acids uncommon to the host
(Thompson and Iwasaki, 2008). Type I interferon (IFN) seems

to be a key innate immune factor against viruses since IFN α/β
receptor knockout mice are extremely vulnerable to multiple viral
infections (Müller et al., 1994). For some types of viruses, type
II IFN (IFN-γ) is also essential to assure viral clearance (Zhang
et al., 2008). Type I IFN, mainly produced by dendritic cells, can
prime natural killer (NK) cells, essential for early infection con-
trol (Szomolanyi-Tsuda et al., 2006), and induce maturation of
T helper 1 (Th1) cells (Joffre et al., 2009). The production of
neutralizing antibodies and activation of cytotoxic T lymphocytes
(CTL) are likewise important for a specific and effective antiviral
immune response (Koyama et al., 2008). However, despite these
observations, there is mounting evidence of TLR2 involvement in
responses to viral infections.

IFN-β production by murine monocytes can be triggered
by TLR2 following stimulation with virus particles like VV or
murine Cytomegalovirus (CMV; Barbalat et al., 2009). TLR2 is
also involved in NK cell response, as demonstrated by impaired
NK cell activity and increased murine CMV load in TLR2 knock-
out mice (Szomolanyi-Tsuda et al., 2006). In humans, malfunction
of TLR2 caused by homozygosis for R753Q polymorphism con-
tributes to CMV infection after liver transplantation (Kang et al.,
2012). VV was recently shown to directly stimulate NK cells via the
TLR2–MyD88 signaling pathway (Martinez et al., 2010), in addi-
tion to directly promoting CD8 T cell survival, allowing cloning
expansion and memory cell establishment in mice (Quigley et al.,
2009). TLR2/TLR6 were identified as important murine recep-
tors to control murine respiratory syncytial virus (RSV; Murawski
et al., 2009). Based on these studies, TLR2 seems to have an overall
protective role in VV, CMV, and RSV infections.

Lack of functional viral Hemagglutinin impairs TLR2 response
to measles virus, resulting in diminished IL-6 secretion by murine
monocytes and measles receptor CD150 (Bieback et al., 2002).
Varicella zoster virus (VZV) virulent strain induces IL-6 produc-
tion by human monocytes through TLR2 and CD14, but blocks
TLR2 mediated production of IL-12 in human dendritic cells to
evade the Th1 driven immune response. The attenuated Varicella
strain used for the current vaccine can not block IL-12 production,
which suggests that Th1 driven immune responses are important
for protection against VZV. However, the mechanisms of TLR2
blockade or IL-12 inhibition have not been clarified (Wang et al.,
2005; Gutzeit et al., 2010). dUTPase from Epstein–Barr Virus also
induces IL-6 production through TLR2 in TLR2 over-expressing
HEK293 cells, but CD14 does not act as the co-receptor (Ariza
et al., 2009). Yellow fever-attenuated virus, used as the current
Yellow Fever vaccine, is capable of activating multiple TLRs and
induces a balanced Th1/Th2 response in murine dendritic cells.
However, in TLR2 knockout mice, the Th1 responses are consid-
erably intensified while IL-6 and IL-12 production is decreased
(Querec et al., 2006). Although hepatitis B virus capsid particles
was also found to prime human THP-1 macrophages for pro-
duction of TNF-α, IL-6, and IL-12p40 via TLR2 (Cooper et al.,
2005), the lack of purity of this preparation makes these results
controversial (Vanlandschoot et al., 2005).

Hepatitis C virus (HCV) can be recognized by the host by the
TLR2/TLR6 heterodimer by recognition of the HCV core and NS3
proteins, along with recognition of viral genome by TLR3, 7, and 8
(Chang et al., 2007; Moriyama et al., 2007). HCV TLR2 recognition
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activates human monocytes and macrophages to secrete mainly
IL-10 and TNF-α, but inhibits macrophage-dependent dendritic
cell differentiation and function (Chang et al., 2007). Accordingly,
patients with chronic hepatitis were also found to have increased
expression of TLR2 in PBMC, correlated with augmented circulat-
ing TNF-α and hepatic necroinflammatory activity (Riordan et al.,
2006; Wang et al., 2010). Activation of PBMCs from chronic HCV
patients induced by TLR2/TLR4 ligands resulted in decreased IL-6
production when compared to healthy subjects, probably caused
by TLR2-induced tolerance (Chung et al., 2011). Divergent results
demonstrated that the TLR2 polymorphism R753Q impairs TLR2
recognition of HCV core and NS3 proteins and increases the risk
of allograft failure after liver transplantation for chronic hepatitis
C patients with this mutation (Brown et al., 2010). This is an exam-
ple of the contrasting roles TLR2 may play in infectious processes
in humans.

The ability of viruses to stimulate cells can differ from species
or viral type, but also according to the murine strain, organ, or cell
type infected. TLR2/TLR9 double-knockout mice infected intrav-
aginallly with herpes simplex (HSV) 2 had significant higher viral
loads in the brain than single knockouts or wild-type mice. Viral
loads in the vaginal mucosa or liver, on the other hand, did not dif-
fer between groups of mice. The observations lead to a synergistic
protective role for both TLRs in the brain, benefic for encephalitis
prevention, but not effective for general decrease of HSV2 viral
loads (Sorensen et al., 2008). TLR2/TLR9 were shown to have a
more prominent protective role for HSV1, as TLR2/TLR9 double-
knockout mice all died after intranasal infection with HSV1 EK
strain, as compared to 90% survival of infected wild-type mice or
TLR2 knockout mice and 40% survival of infected TLR9 knockout
mice. Another experiment pointed out a deleterious role for TLR2
in mice infected with HSV1 KOS strain, in which TLR2 knock-
out mice were more resistance to infection as compared to WT
mice. Nevertheless, these apparently contradictory results were
observed using different HSV1 strains and viral loads, inoculated
through different routes (Krug et al., 2004; Lima et al., 2010).
More work is obviously needed to truly dissect the dual property
of TLR2 to be involved in both HSV disease protection and disease
induction. TLR2 may also be involved in inflammation related to
morbidity and mortality caused by lymphocytic choriomeningitis
virus (LCMV); TLR2 is essential for induced monocyte chemo-
tactic protein 1 (MCP-1), RANTES, and TNF-α, in mouse central
nervous system glial cells (Zhou et al., 2008; Lee et al., 2012).

The common immune response measured by most studies
when examining TLR2 function has been increase in IL-6 and
TNF-α production during acute processes, while IL-10 was con-
sistently found in chronic infections. IL-6 secreted by dendritic
cells drives Th2/Th17 T cell differentiation (Wenink et al., 2009).
Considering that type I IFN is released upon virus stimulation and
constrains Th17 differentiation in mice (Guo et al., 2008), IL-6 in
the context of viral infection most likely drives Th2 responses.
When the Th1 phenotype is dominant, TNF-α act as an enhancer
of IFN-γ killing through activation of cellular immune responses.
In contrast, when Th2 or Th0 is dominant, TNF-α causes tis-
sue damage (Hernandez-Pando and Rook, 1994; Rizzardi et al.,
1998). In this context, TLR2 activation may improve viral clear-
ance when the Th1 response is fully functional and dominant,

during the initial stage of infection. TLR2 can also promote Th2
responses, which are important for adequate antibody production
and protect the host by inhibition of exacerbated Th1 response.

To our knowledge, none of the viral particles were tested for
TLR2 induction of regulatory T (Treg) cells or Th17 cell func-
tion or activation, which could help to elucidate outcomes of
TLR2 receptor activation and reveal new information regarding
the Th1/Th2 bias studied so far. It is clear that TLR2 function and
its role in viral immunity are co-dependent on other PRRs and the
subsequent adaptive immune response. Therefore, isolated analy-
ses can be insufficient to determine the true role of TLR2 in each
infection type.

In relation to recognition, the examples of viruses mentioned
above are variable in relation to species, genetic material and dis-
ease outcomes, but all viruses assumed to be recognized by TLR2
are enveloped virus. Some viruses do not have their TLR2 ligands
defined. TLR2/6 was the only TLR2 heterodimer described for
viral ligands, but the heterodimer needed for TLR2 recognition of
many other viral ligands has not been discerned. The involvement
of the TLR2/6 heterodimer is consistent with the cytokine profile
described above, since the same heterodimer has been found to
drive IL-10 production in dendritic cells (Depaolo et al., 2008).
Studies on TLR2 accessory molecules involved with viral recogni-
tion has also been minimal and only revealed a role for CD14.

FUNGI
As opposed to viruses, pathogenic fungi are facultative intra-
cellular or extracellular eukaryotic organisms and therefore do
not depend on the host cell to replicate. Some fungal species
are dimorphic and change between different forms, for exam-
ple, yeast or conidia to hyphae, and consequently modify the way
they are recognized by the host. In addition, cell wall composition
varies among species and serotypes, which can also change the
way these cells are processed by the immune system (McKenzie
et al., 2010). Fungal infections remain generally localized when
controlled by a regular immune response, but systemic dissemina-
tion more often occurs when the host is immunocompromised,has
its physical barriers disrupted or has its microbiota altered (Chai
et al., 2009a). Dendritic cells usually trigger adaptive immune
response against fungal invasion, while direct clearance is per-
formed by neutrophils, monocytes, and macrophages. All of these
cells express dectin-1, TLR2, and TLR4, receptors associated with
fungal recognition (Hohl et al., 2006). Most yeast can be phago-
cytized by macrophages through Dectin-1 receptor recognition,
whereas TLR2 helps initiate the concomitant inflammatory state
(Zak and Aderem, 2009). The two receptors, when stimulated,
mutually synergize their cytokine and immune responses to pro-
mote a consistent pathogen clearance (Zak and Aderem, 2009). In
contrast, phagocytosis of hyphae is believed to occur without inde-
pendent PRR recognition and leads to Th2/Treg cells bias (Romani,
2004).

The role of TLR2 in response to one of the most common
fungi involved in human disease, Candida albicans, is unclear and
results have been somewhat contradictory. The TLR2 ligand phos-
pholipomannan is well defined and present in hyphae and yeast
forms (Li et al., 2009), while the outcomes triggered by it are not
quite clearly understood. Human keratinocytes stimulated with
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phospholipomannan produce IL-6 and IL-8, necessary for activa-
tion and recruitment of neutrophils and macrophages in situ (Li
et al., 2009). Studies with TLR2 knockout mice showed both resis-
tance (Netea et al., 2004b) or susceptibility to primary or secondary
systemic C. albicans infection (Gil et al., 2005; Hise et al., 2009),
while TLR2 knockout macrophages showed impaired fungal clear-
ance (Blasi et al., 2005), with both impairment or enhancement of
pro-inflammatory cytokine production (especially TNF-α; Blasi
et al., 2005; Gil and Gozalbo, 2006). The absence of TLR2 also
decreased chemotaxis rate of murine neutrophils, together with
decreased fungal killing mechanisms and survival of these cells
(Tessarolli et al., 2009). TLR2 is probably not directly involved with
humoral response after secondary C. albicans systemic infection,
since this parameter was not altered in TLR2 knockout mice (Vil-
lamón et al., 2004). On the other hand, Dectin-1 and TLR2 were
directly related with protection against oral candidiasis through an
effect on IL-1 β release, but only when both receptors are engaged
(Hise et al., 2009). Other factors can influence TLR2 mediated
effects and contribute to fluctuations in cytokine levels in candidi-
asis, for example high concentrations of vitamin D3 in mice can
decrease TLR2 surface expression (Khoo et al., 2011).

Similar to C. albicans, Aspergillus fumigatus recognition varies
with morphology. Both conidium and hyphae are recognized by
TLR2 (Chai et al., 2009b), but hyphae are not recognized by TLR4
and result in IL-10 production through TLR2 activation (Netea
et al., 2003). Murine neutrophils, on the other hand, have increased
fungicidal activity and release pro-inflammatory cytokines when
activated by TLR2. It has been shown that TLR2 is essential for pro-
tection in immunocompromised mice but not immunocompetent
mice (Chignard et al., 2007).

Paracoccidioides brasiliensis is recognized by TLR2, and pul-
monary infection of TLR2 knockout mice leads to Th17 skewed
immunity and increased (Loures et al., 2009) or similar (Calich
et al., 2008) lung inflammation as compared to wild-type mice.
Even so, fungal burden is either diminished or the same as wild-
type mice (Calich et al., 2008; Loures et al., 2009), with equal mor-
tality rates demonstrating that overall outcomes are not necessarily
affected by TLR2 signaling.

Cryptococcal recognition by TLR2 occurs through the polysac-
charide glucuronoxylomannan, and the level of NF-κB activation
differs based on polysaccharide effective diameters of the vary-
ing cryptococcal species (Fonseca et al., 2010). Although TLR2
was found to be important for control of Cryptococcus neoformans
murine infection (Yauch et al., 2004), this is still quite contro-
versial (Nakamura et al., 2006). TLR2 was also shown to play
a major role in protection against Penicillium marneffei, due to
stimulation of murine bone marrow-derived dendritic cells to pro-
duce IL-12p40 upon fungal recognition (Nakamura et al., 2008).
Histoplasma capsulatum is recognized by mice TLR2 through the
cell wall protein Yps3p, resulting in activation of NF-κB (Aravalli
et al., 2008). Regardless, TLR2 knockout mice had no alteration in
inflammatory cytokine production induced by this pathogen (Lin
et al., 2010).

Generation of a dominant TH1-cell response is required for
most protective immune responses to fungi (Romani, 2004).
The infection models mentioned above did not evaluate fungal
morphology during the course of infection, which can account for

the varied immune responses and survival rates described. Other
TLRs and Dectin-1 expression were also not measured in par-
allel, and these parameters are able to alter the profile of TLR2
responses. The shielding of β-glucans can impair Dectin-1 recog-
nition and consequent loss of synergy with TLR2, which allows for
a preferential induction of an anti-inflammatory response when
stimulated by fungal particles (Netea et al., 2008). In addition,
it has been shown that different murine strains have different
dectin-1 isoforms, which may impact on TLR2 function (Heins-
broek et al., 2008). However, it is safe to say that the absence of
TLR2 influences macrophage and neutrophil anti-fungal activity,
mainly through an effect on TNF-α production. This cytokine is
important for induction of fungicidal activity (Chignard et al.,
2007). The relevance of this effect varies according to the infec-
tious microenvironment and with Dectin-1 function. When TLR2
responses were found to be detrimental to the host, it was due to
an overwhelming suppression of the early inflammatory response
and consequent increased fungal burden. Since almost all fungi
are recognized to some extent by TLR2 and are recognized by
TLR4 as well, it would be meaningful to evaluate the synergism
between these two TLRs in the context of fungal infections, as
bacterial ligands have been shown to synergistically induce IL-10
when both TLRs are engaged (Hirata et al., 2008). To date, TLR2
polymorphisms have not been shown to be related to susceptibil-
ity or protection to fungal infections, but it is also true that these
studies are scarce in the literature.

PROTOZOAN/HELMINTHS
Protozoa are a group of intracellular or extracellular eukaryotic
organisms that can cause human disease and depending on its
life cycle, may mainly cause chronic infections (Sacks and Sher,
2002). TLR2 is activated by glycosylphosphatidylinositols (GPIs)
present on some of these protozoa. The level of the inflammatory
response induced is directly linked to GPI lipid and carbohy-
drate content (Almeida and Gazzinelli, 2001). P. falciparum, one
of the plasmodia that cause malaria, can trigger TNF-α and IL-
6 production in murine macrophages by means of TLR2/TLR1
or TLR2/TLR6 activation with GPI. This GPI is only recognized
in merozoites, the erythrocyte infective form of the protozoan
(Wong-Baeza et al., 2010; Zhu et al., 2011). GPI can also modu-
late internalization of malaria-parasitized erythrocytes. Still, when
inside the erythrocyte, the parasite does not allow for display
of its TLR ligands to murine and human macrophages, result-
ing in a non-inflammatory phagocytosis of these erythrocytes
and delayed cytokine responses (Erdman et al., 2009). No TLR2
polymorphisms are related with P. falciparum infections (Greene
et al., 2009). However, the presence of human heterozygotes for
a TIRAP polymorphism (TIRAP S180L) has been related to pro-
tection of malaria. This adaptor protein mediates TLR2 and TLR4
signaling whereas its polymorphic variant severely decreases IL-
6 production triggered by these TLRs, suggesting that a normal
TLR2 response would be detrimental to the infected human host
(Khor et al., 2007).

Toxoplasma gondii GPIs from the highly dividing tachyzoite
form, also trigger TLR2 for TNF-α and MCP-1 production. TLR2
knockout mice have increased susceptibility to infection caused
by high doses of T. gondii (Mun et al., 2003). However, the use of
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lower doses leads to an increase parasite burden only in double
TLR2/4 knockout mice (Debierre-Grockiego et al., 2007), suggest-
ing a protective role for TLR2 in synergy with TLR4. Strong IL-12
induction through TLR11 is protective and part of the murine
immune response, but since this gene is not functional in humans,
other TLRs can have a different role in this host (Yarovinsky et al.,
2005). A human embryonic intestinal epithelial cell line recog-
nizes the parasite through TLR2, resulting in production of IL-8
and other chemokines important for neutrophil and phagocyte
recruitment (Ju et al., 2009). TLR2 mediated signaling by GPIs
from T. cruzi infective trypomastigotes results in IL-12, TNF-α,
and nitric oxide production by murine macrophages (Campos
et al., 2004). The T. cruzi protein 52 (Tc52) can induce IL-6 and
IL-8 in a TLR2-dependent manner (Wong-Baeza et al., 2010).
TLR2 stimulation leads to IL-12 and TNF-α production in T. cruzi
infections, in addition to cooperating with TLR9 to enhance this
production. T. gondii infection of TLR2/TLR9 double-knockout
mice had increased susceptibility to T. cruzi infection. The higher
parasite burden of double knockouts was related to low IL-12 and
IFN-γ levels (Bafica et al., 2006). Surprisingly T. cruzi IL-10 mod-
ulation of murine bone marrow-derived dendritic cells was found
to be independent of TLR2 (Poncini et al., 2010). An interesting
cooperation between TLR2 and the bradykinin receptor in T. cruzi
murine subcutaneous infection has been reported, where TLR2
induces leak of plasma that leads to a kininogen accumulation.
This molecule is degraded by T. cruzi proteases to kinins recog-
nizable by the bradykinin receptor, with consequent induction of
IL-12 production by murine dendritic cells (Monteiro et al., 2006).

Entamoeba and Leishmania are protozoa genera that have
lipopeptidophosphoglycans (LPPG) and lipophosphoglycans
(LPG), respectively, which have been identified as TLR2 ligands.
Entamoeba LPPG, also recognized by TLR4, leads to TNF-α, IL-12,
IL-10, and nitric oxide release in phagocytes (Wong-Baeza et al.,
2010). It also stimulates murine NK Cells for production of IFN-
γ through TLR2, which is directly related with protection from
amebic liver abscess (Lotter et al., 2009). Membrane LPG from
Leishmania up-regulates the same cytokine milieu as LPPG in
J774 murine macrophage cell line (Kavoosi et al., 2010). However,
Leishmania brasiliensis infection of TLR2 knockout mice presented
higher levels of IFN-γ and resistance to infection in vivo when
compared to wild-type mice, while DCs from knockout mice had
up-regulated IL-12 secretion in vitro (Vargas-Inchaustegui et al.,
2009). This is likely associated with a diminished Th2 environ-
ment that may be normally induced by TLR2 stimulation, as this
has been shown to be associated with increased protection from
leishmaniasis.

Human parasitic helminths are complex eukaryotic organisms
that mostly live asymptomatically inside the host, with infec-
tion usually associated with tolerogenic responses (Maizels and
Yazdanbakhsh, 2003). TLR2 is known to be activated by lysophos-
phatidylserine of two genera of this group: Schistosoma and
Ascaris. There is no information regarding the relevance of TLR2
in Ascaris infection. S. mansoni eggs fraction containing lysophos-
phatidylserine activate DCs via TLR2 to induce a Th2 response
and regulatory T-cell development (van der Kleij et al., 2002).
Conversely, S. mansoni infection of MyD88−/− mice had a normal
Th2 response while other research has shown that SEA induces

a Th2 bias in a TLR2 independent manner. It is likely that the
SEA used in the latter experiments lacked lysophosphatidylserine
to explain such contradictory results (Kane et al., 2008).

As expected, the effect of TLR2 mediated stimulation is depen-
dent on the cellular environment in which activation occurs.
Parasite clearance is related to early IFN-γ synthesis by NK cells,
which, in turn, is mostly induced by IL-12 produced by den-
dritic cells (Campos et al., 2004; Patel et al., 2007). TLR2 ligands
derived from parasites induce IFN-γ directly in NK cells and IL-
12 in dendritic cells, but production of the latter is more efficient
with concomitant TLR4 or TLR9 stimulation. Nevertheless, lack of
TLR2 does not increase parasite burden or decrease Th1 responses,
suggesting a redundant role in early infection. TNF-α induced
via TLR2, on the other hand, may be involved with pathology
seen with these infections, when induced at later time points dur-
ing the course of disease. This may explain why TLR2 knockout
mice or human TLR2 polymorphism can lead to an attenuated
or resolved infection. Another possibility is that TLR2-driven Th2
responses are involved with a more severe disease state, as com-
monly seen in leishmaniasis (Deak et al., 2010). It is likely that a
defective early IFN-γ response allows for TLR2-induced Th2 skew-
ing and consequent suppression of IL-12 production. Parasites
can infect cells and replicate inside them without TLR recog-
nition, whereas the infected cell is frequently phagocytized in a
non-inflammatory process, which may allow for delayed recogni-
tion and TLR2 mediated responses to these pathogens. Curiously,
TLR2 mediated regulation of IL-10 during parasitic infections has
only been to demonstrated for schistosomiasis, showing that the
Th2 skewing outcome was more relevant than the alteration of the
Th1/Th2 profiles in TLR2 context in this disease.

BACTERIA
Bacteria are prokaryotic unicellular organisms with varying
strategies for energy production, survival, infectivity, and self-
protection. Bacterial cells are limited by a common phospholipid
bilayer membrane with inserted functional proteins, covered by
a peptidoglycan cell wall. Some species have an outer membrane
while others have a capsule or are able to sporulate, which alters the
way they are recognized by the host (Silhavy et al., 2010). Lipopro-
teins, important TLR2 ligands, are produced by all bacteria. Due
to the high number of bacterial pathogenic species, they are ana-
lyzed in the present review by their genera and Gram staining
groups. The genera to be explored are the ones that include the
main human pathogens.

Gram-positive bacteria
The Gram-positive bacterium cell wall contains a thick peptidogly-
can layer, combined with teichoic acids and extracellular proteins.
Lipoteichoic acid (LTA), as well as lipoproteins and peptidoglycan,
can differentially activate TLR2 dependent on the bacteria of ori-
gin (Ryu et al., 2009; Müller-Anstett et al., 2010). The pathogenic
bacteria considered here are from the genera Corynebacterium,
Nocardia, Bacillus, Listeria, Staphylococcus, Clostridium, Enteroco-
cus, Streptococus, Mycobacterium, and Mycoplasma. The last two
genera do not stain as Gram-positive because they have different
cell wall structure, but are regularly grouped with Gram-positive
bacteria due to the genetic background (Silhavy et al., 2010). So far,
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all, Gram-positive bacteria activate TLR2 to some extent. Murine
phagocytes with impaired TLR2 function, either by using blocking
antibodies or gene knockouts, when exposed to the above bacteria
or their cell wall components have diminished or absent produc-
tion of TNF-α or/and IL-6, as opposed to normal cells (Takeuchi
et al., 1999, 2000; Torres et al., 2004; Bafica et al., 2005; Leendertse
et al., 2008; Love et al., 2010).

Various infection models have helped to characterize some
functions of TLR2 in recognition of Gram-positive bacteria. Respi-
ratory infection models of TLR2 knockout mice with Mycoplasma
and Mycobacterium showed increased bacterial burden, tissue
damage, and death. This potentially protective role for TLR2 in
mycobacterial infection was confirmed in humans, where TLR2
polymorphisms that decrease TLR2 expression were found to
predispose people to tuberculosis (Yim et al., 2006) and non-
tuberculous mycobacterial lung disease (Yim et al., 2008). Con-
versely, protection from respiratory infection with Streptococcus
pneumoniae only requires TLR2 when the TLR4 ligand pneu-
molysin is not expressed, indicating redundancy in recognition
and protective responses to these bacteria (Dessing et al., 2008).
Interestingly, middle ear infections (Han et al., 2009) and meningi-
tis (Letiembre et al., 2005) caused by Streptococcus are exacerbated
when TLR2 is absent, which may indicate that pneumolysin may be
differentially expressed depending on the environment and strain
variant. Intraperitoneal inoculation of Enterococcus (Leendertse
et al., 2008), Listeria (Torres et al., 2004), and Staphylococcus (Mul-
laly and Kubes, 2006) caused similar disease and inflammatory
states in TLR2 knockout as compared to wild-type mice, while, in
contrast, intravenous inoculation of these TLR2 KO mice with Lis-
teria (Torres et al., 2004) or Staphylococcus (Takeuchi et al., 2000)
resulted in death and bacterial burden as compared to wild-type
mice. This suggests that the presence of TLR2, for these organisms
at least, triggers an immune response that prevents dissemina-
tion. However, once dissemination occurs, TLR2 stimulation is no
longer occurs or is protective. Regardless of strain variations, the
route of infection seems quite important in regards to protection
induced by TLR2 toward Gram-positive bacterial infections, at
least in mice.

Human polymorphism studies found no relationship between
TLR2 gene polymorphism R753Q and serious pneumococcal
(Moens et al., 2007; Yuan et al., 2008), streptococcal (Liadaki et al.,
2011), staphylococcal infection (Moore et al., 2004), or altered
cytokine patterns in Gram-positive septic patients (Woehrle et al.,
2008), even though this polymorphism prevents TLR2 from
responding to LTA. However, one functional allele is enough
to compensate for this deficiency, since heterozygous subjects
respond to infections the same way as the ones without the poly-
morphism (von Aulock et al., 2004). A TLR2-16933AA promoter
human polymorphism has been associated with increased preva-
lence of Gram-positive bacterial sepsis but not an increase in
true shock or mortality (Sutherland et al., 2005). Accordingly,
blood monocytes from septic patients had higher TLR2 and CD14
expression than healthy individuals, but mortality was associ-
ated with down-regulation of the same receptors and consequent
cytokine induction (Schaaf et al., 2009).

These studies demonstrates that TLR2 is important, if not
essential, for control of Gram-positive infections in general, but

its absence can be compensated by activation of other receptors by
some genera.

Gram-negative bacteria
The Gram-negative bacterium cell wall contains a thin peptido-
glycan layer with pore forming proteins, covered by an extra layer
of lipopolysaccharides (LPS). However, unlike Gram-positive bac-
teria, they do not produce the TLR2 ligand lipoteichoic acid. LPS
is an important TLR ligand present in all Gram-negative bacteria,
with its molecular composition varying among the genera. These
variation leads to different receptor activation and subsequent
inflammation (Munford and Varley, 2006).

Campylobacter, Bordetella, Shigella, Escherichia, Haemophilus,
Salmonella, Neisseria, Klebsiella, and Leptospira produce the typ-
ical LPS, a hexaacylated form capable of activate inflammation
through TLR4 (Munford and Varley, 2006). All of the above genera
can stimulate cells via TLR2. Escherichia, Haemophilus, Salmo-
nella, Neisseria, Klebsiella, and Leptospira have all been examined
in animal models of infection to determine the role of TLR2 in
protection or pathology. In this context, TLR2 was not essential
for resolution of infection for these bacteria, while TLR4 played a
much greater role (Lorenz et al., 2005; Spiller et al., 2007; Sjölinder
et al., 2008; Fedele et al., 2010; Moranta et al., 2010; Pore et al.,
2010; Seibert et al., 2010). Nevertheless, TLR2 knockout mice had
higher bacterial burdens during the course of infections with Kleb-
siella and Salmonella, but with mortality or antibody responses
were not altered as compared to wild-type mice (Spiller et al.,
2007; Seibert et al., 2010). TLR2/TLR4 double-knockout mice were
even more susceptible to infection with Leptospira and Klebsiella,
as compared to TLR4 single knockout mice, demonstrating an
important role for TLR2 recognition in control of these infec-
tion and a potential synergistic function with TLR4, demonstrat-
ing another potential redundancy of immune system activation
(Spiller et al., 2007; Chassin et al., 2009). Regarding animal models
of sepsis, Escherichia and Salmonella trigger excessive inflam-
mation and subsequent mice death via TLR4 and TLR2. IFN-γ
induced by TLR4 stimulation increases TLR2 up-regulation and
affects the immunopathology, a probable reason why TLR4/TLR2
double-knockout mice all survived infection with these organ-
isms after antibiotic therapy as opposed to single knockouts or
wild-type mice, where antibiotics could not rescue these animals
(Spiller et al., 2008). This demonstrates a pathologic effect of the
inflammatory response induced by bacteria through these TLRs.

The under-acylated forms of LPS are weak inducers of inflam-
mation, some of them capable of competing with typical LPS for
TLR4 and therefore acting as anti-inflammatory agents (Mun-
ford and Varley, 2006). Gram-negative bacteria that produce these
forms of LPS generally evade TLR4-driven immune response
and the host relies on other receptors to recognize and react
to the threat. Porphyromonas and Coxiella infection resolution
are partially dependent on TLR4, but pro-inflammatory cytokine
production is dependent on TLR2. The establishment of Por-
phyromonas chronic infection and inflammation appears to be
affected by TLR2, where the absence or presence of TLR2 has
been associated with both deleterious and protective effects (Shin
et al., 2010). Chlamydia murine infections have TLR2 dependent
immune pathology, although TLR2 human polymorphisms have
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not been associated with the disease (Karimi et al., 2009). It has
also been shown that TLR2 mediates morbidity and mortality in
murine models of infection with Burkholderia species, as TLR2
knockout mice have decreased pathology and increased survival
as compared to wild-type mice (Wiersinga et al., 2007). TLR2
can mediate protection as well, i.e., in murine infection models
of Legionella, Francisella, Citrobacter, and Borrelia. The resolution
of these infections or consequent inflammation are TLR4 inde-
pendent, while lack of TLR2 appears to be associated with higher
bacterial burden (Archer and Roy, 2006; Abplanalp et al., 2009;
Dickinson et al., 2010), tissue damage (Gibson et al., 2008), or
decreased survival (Fuse et al., 2007; Gibson et al., 2008; Abplanalp
et al., 2009; Dickinson et al., 2010). TLR2 mice orally infected
with Yersinia develop a gut barrier defect and diminished intesti-
nal clearance, demonstrating a role for TLR2 in full protection
from this infection, but this may not just be specific for this bowel
pathogen (Dessein et al., 2009).

Overall, the role of TLR2 in Gram-negative infections seems
to be directly related with the dominant PRR activated by the
bacterium. Often, at least in animal models, an excessive bacte-
rial burden increases TLR2 sensitivity and its role in pathology.
It is important to note that infection models often use attenu-
ated or heat killed bacteria, which can change the predominant
roles of participating PRRs. Accordingly, heat killed Treponema
signals through TLR2, as opposed to live bacteria which suppresses
activation by this receptor (Shin et al., 2010).

Bartonella quintana, Helicobacter pylori, Moraxella catarrhalis,
Pasteurella multocida, Rickettsia akari, and Vibrio vulnificus are
also recognized by TLR2 with subsequent induction of many
inflammation related cytokines or chemokines: TNF-α, IL-6, IL-10
(phagocytes), or IL-8 (mucosal epithelial cells), depending on

which cells were examined (Slevogt et al., 2007; Matera et al., 2008;
Hildebrand et al., 2009; Peek et al., 2010; Lee et al., 2010; Quevedo-
Diaz et al., 2010). Surprisingly, no relationship to disease has been
studied or confirmed (Oliveira et al., 2008).

CONCLUSION
As discussed, there are a large variety of microbial pathogens in var-
ious phyla that express components that are recognized by TLR2.
These molecules then trigger various innate immune responses
that are involved with protection from these organisms and are
also involved with inflammatory sequelae that are associated with
disease caused by these microbes. The outcomes of ligand recog-
nition were shown to be dependent on the recognition dimer
(TLR2/TLR1 or TLR2/TLR6), and co-receptors. It is important
to remember, however, that the innate immune system does not
recognize microbial TLR2 ligands in a vacuum, and many of these
pathogens express ligands recognized by other PRRs, i.e., LPS and
TLR4, RNA and TLR3, CpG DNA motifs and TLR9, etc. There-
fore, the responses to these organisms are complex and not easily
predicted. It needs to be mentioned, though it is beyond the scope
of this review, that many investigators have taken advantage of
the ability of some of these microbial derived molecules to stim-
ulate cells via TLR2, or other TLRs, to utilize this ability in at the
development of vaccine adjuvants (Wetzler, 2010; Duthie et al.,
2011).
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