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Neurons express new gene transcripts 
and proteins upon receiving synap-

tic inputs, and these events are essential 
for achieving proper neuronal wiring, 
adequate synaptic plasticity, and updat-
able memory. However, the biological 
impact of new gene expression on input-
specific synaptic potentiation remains 
largely elusive, in part because the cell 
biological and biochemical mechanisms 
for synaptic targeting of newly synthe-
sized proteins has remained obscure. A 
new study investigating the targeting of 
the memory-related protein Arc from the 
soma to the synapses teases apart a novel 
“inverse” synaptic tagging mechanism 
that enables Arc to specifically target the 
un-potentiated synapses, thereby help-
ing to maintain the contrast of synaptic 
weight between strengthened and weak 
synapses.

Several pioneering studies have suggested 
the significance of new gene transcription 
and new protein synthesis in long-term 
memory formation.1-5 Recently, the critical 
importance of neurons in which transcrip-
tion of various neuronal genes such as c-fos 
is heightened during the memory encod-
ing period was directly tested. Thus, opto-
genetic6 or chemical manipulations7 to 
re-active a transcriptionally pre-activated 
subset of neurons were found to be suffi-
cient to trigger, or to recapitulate at least in 
part, the memory recall process, as judged 
from mouse behavioral criteria. Additional 
works also indicated that reconsolida-
tion and extinction of fear memories are 
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dissociable processes of memory “updat-
ing,” which rely upon induction of de 
novo gene expression in distinct areas of 
the brain.8-11 Such memory reallocation 
processes appear to play a crucial role in 
updating the emotional valence as well as 
the sensory and contextual information 
associated with an episodic event.12 In spite 
of an growing interest in the physiological 
role of activity-dependent gene expression 
and a widely recognized role of CREB in 
this process,1-3,13-16 how differential gene 
expression across various brain areas con-
tributes to formation of new memory and 
to determining the boundary between 
extinction and reconsolidation of memo-
ries that were once formed remain as yet 
unknown. What we clearly need to better 
understand are the synaptic mechanisms 
that underlie the assembly and re-assem-
bly (i.e., the dynamic updating of func-
tional connectivity) of activated neurons 
in which new memory-related genes are 
induced. This is not only a fundamental 
challenge in memory research, but also in 
molecular systems neuroscience in general 
(Fig. 1).

In parallel to in vivo memory studies in 
mammals, it has been clearly demonstrated 
in many experimental settings, such as 
brain slices and dissociated neuronal cul-
tures, that long-lasting changes in synap-
tic transmission efficacy and structures 
also require new synthesis of transcripts 
and proteins.3,17 This may be especially 
true during a particular time window after 
receiving plasticity-inducing stimuli when 
newly induced plasticity-related proteins 
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determines the efficacy of synaptic con-
nections between neurons in the brain, 
these results demonstrate that one critical 
role of Arc may be to keep weak synapses 
weak, while allowing strong, essential 
synapses to remain strong and capable of 
memory storage. These results provide a 
novel framework for an “inverse synaptic 
tagging,” which may subserve memory 
consolidation (and initially block memory 
updating) by preventing undesired synap-
tic enhancement at weak synapses, while 
sparing potentiated synapses. This find-
ing presents new mechanistic insights on 
how the contrast between strong and weak 
synapses may be maintained during long-
term synaptic plasticity, and shed light on 
the fundamental role of new gene expres-
sion and of the guided targeting of new 
protein products to synapses as a molecu-
lar basis of memory weight allocation at 
individual synapses within an activated 
neuronal network.29
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may functionally interact with synaptic 
tags.18 However, to date, it remains unclear 
how specific protein products derived 
from newly-transcribed genes may medi-
ate alteration of neuronal synaptic efficacy. 
An even larger mystery is to understand 
how newly-expressed plasticity-related 
gene products selectively target the very 
synapses that need to be modulated. In an 
attempt to address this question, Okuno 
et al.19 focused on the activity-regulated 
neuron-specific gene product Arc.20-25 Arc 
protein induction highly correlates with 
ongoing cognitive activity in the hip-
pocampus26,27 and in the cortex,5 and its 
absence causes severe memory disorders.28 
When the dynamics of Arc protein’s tar-
geting to the synapses was investigated, a 
privileged accumulation of Arc was unex-
pectedly found in non-potentiated, weak, 
synapses (Fig. 2A). Furthermore, synap-
tic levels of induced Arc were negatively 
correlated with the surface expression of 
glutamate receptors at these synapses dur-
ing the late-phase of potentiation. The 
critical molecular beacon that physically 
attracted Arc to weak synapses turned out 
to be the calmodulin-unbound form of 
the β subunit of Ca2+/Calmodulin kinase 
II (CaMKIIβ), a well-known molecular 
player implicated in synaptic plasticity 
and memory formation (Fig. 2B). Because 
the number of glutamate receptors directly 

Figure 1. A model of assembly and re-assembly of neurons that are activated during formation 
and retrieval of memory. Neurons are activated in response to stimuli that trigger memory forma-
tion and these activated neurons constitute a functional assembly, or an active neuronal network, 
in several brain regions. Re-activating this neuronal network is a critical process during memory 
retrieval. A large amount of evidence indicate that molecular and cellular traces of memory which 
are produced during memory encoding within the original neuronal network that is assembled in 
response to the initial memory-inducing stimuli persist in this network. An outstanding ques-
tion is whether, and if so how, this network of neurons can be “re-assembled” at the cellular and 
synaptic levels when updating memory after retrieval. Addressing this problem is essential for not 
only in memory research but also in molecular systems neuroscience.
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Figure 2. A model for Arc’s targeting to weak synapses and its net effect on glutamate receptor 
clearance. (A) Selective accumulation of activity-induced Arc protein in inactive synapses during 
late-phase synaptic plasticity. Upon receiving plasticity-inducing synaptic inputs, Arc is newly 
synthesized in the cell body and delivered to the dendrites (left). Arc is then gradually lost from 
active synapses, but in contrast, accumulates in inactive synapses during a following period 
(right). This Arc accumulation in the inactive synapses relies upon selective interaction with the 
inactive form of CaMKIIβ. (B) Selective Arc-CaMKIIβ interaction in inactive synapses favors the 
removal of AMPA receptors from inactive synapses neighboring the active, potentiated synapses.


