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The extent of parallel evolution at the genotypic level is quantitatively linked to the
distribution of beneficial fitness effects (DBFE) of mutations. The standard view,
based on light-tailed distributions (i.e., distributions with finite moments), is that
the probability of parallel evolution in duplicate populations is inversely proportional
to the number of available mutations and, moreover, that the DBFE is sufficient to
determine the probability when the number of available mutations is large. Here, we
show that when the DBFE is heavy-tailed, as found in several recent experiments,
these expectations are defied. The probability of parallel evolution decays anomalously
slowly in the number of mutations or even becomes independent of it, implying higher
repeatability of evolution. At the same time, the probability of parallel evolution is
non-self-averaging—that is, it does not converge to its mean value, even when a large
number of mutations are involved. This behavior arises because the evolutionary process
is dominated by only a few mutations of high weight. Consequently, the probability
varies widely across systems with the same DBFE. Contrary to the standard view, the
DBFE is no longer sufficient to determine the extent of parallel evolution, making it
much less predictable. We illustrate these ideas theoretically and through analysis of
empirical data on antibiotic-resistance evolution.
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The repeatability and predictability of evolution are important questions in the field
of evolutionary biology. In 1990, Stephen Jay Gould famously mused about “replaying
life’s tape” (1). In subsequent years, the topic of parallel evolution has become a major
subject of empirical research (2–4), and theoretical questions concerning the probability
of parallel evolution within the mathematical theory of population genetics have also
attracted substantial attention (5–7). Here, the questions are focused mostly on changes at
the level of genetic sequences. According to a common definition (6, 7), parallel evolution
is said to occur when the exact same mutation is substituted in replicate populations. It is
in this strong sense that we shall use the term “parallel evolution” here. The computation
of the probability of parallel evolution is often set in a simplified scenario (5–7), where
an asexual population evolves by strong selection and weak mutation (SSWM), which
applies for moderately large population size and low mutation rate (more details are in
SI Appendix). The evolutionary process starts with a homogeneous population and n
possible beneficial mutations that can occur. Denoting by ri the substitution rate of the
i -th mutation, i = 1, 2, . . . ,n , the probability that the i -th mutation will be the first to
fix is Wi = ri/(

∑
j rj ). Therefore, the probability that k replicate populations will all

fix the same mutation is given by Pk =
∑

i W
k
i . Although we focus on the repeatability

of the first substitution event, this measure can be generalized to address evolutionary
trajectories with several mutations (see ref. 2 and further discussion in SI Appendix).

Within the SSWM approximation, the substitution rate of a mutation is the product
of its mutation rate and fixation probability, ri = μiπi , and the repeatability measure
is affected equally by heterogeneities in μi and πi (4). However, because empirical
information on mutation-rate heterogeneity is sparse, theoretical studies have commonly
assumed that all mutations occur at the same rate. If, in addition, the selection coefficients
are small, si � 1, it follows that ri ∼ πi ∼ si , and the probability of parallel evolution is
given by

Pk =
∑

i

ski(∑
j sj

)k . [1]

We will adopt this simplification throughout, but emphasize that our theoretical results
hold equally well for the full expression of Pk with ri in place of si , provided that the
distribution of the substitution rates ri is heavy-tailed in the sense specified below.

The selection coefficients follow a distribution denoted by Ps(s), which we
refer to as the distribution of beneficial fitness effects (DBFE) (8). The mean
probability of parallel evolution is 〈Pk 〉, where 〈·〉 denotes the average with respect
to the DBFE. The extreme-value theory (EVT) hypothesis of fitness effects (see
SI Appendix for details) predicts that the DBFE belongs to one of three classes of
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distributions: The Weibull and Gumbel classes contain distribu-
tions with finite moments, whereas the Fréchet class contains
distributions with power-law tails (and therefore diverging mo-
ments). In the last case, the asymptotic form of the DBFE is

Ps(s)∼
A

s1+α
, [2]

with a scale parameter A> 0 and the tail exponent α > 0. The
cases of the Gumbel and Weibull extreme-value distributions
have been explored in some detail for k = 2 (5–7). The Fréchet
EVT class had been conjectured to be relatively unimportant
biologically (7), but several subsequent studies (9–11) have uncov-
ered signatures of heavy-tailed distributions of fitness effects (see
SI Appendix for further details on tails of empirical DBFEs). In the
realistic case of a large number of available beneficial mutations
n , the statistics of Pk for heavy-tailed distributions of the form
Eq. 2 are markedly different from those of light-tailed distribu-
tions, as will be shown below.

Results

The number n of beneficial mutations that can occur in a pop-
ulation varies widely across organisms and environments, but it
is likely to be large. For bacterial populations, one may con-
servatively estimate that there are several thousand beneficial
mutations (SI Appendix). We therefore focus on Pk in the large-n
regime. The simplest computation is in the limiting case of neutral
variation, where all selection coefficients are identical. Since all
mutations are equally likely to be the first to fix, Pk = 1/nk−1

(which is exact for all n). Specifically, the probability of parallel
evolution in two replicates is P2 = 1/n . Using this observation,
one can define, for any system, the quantity ne = P−1

2 as the
effective number of mutations that dominate the dynamics of
fixation (further comments in SI Appendix). It is similar to the
notion of the effective number of reproducing lineages studied in
ref. 12 in the context of family size distributions.

The most commonly studied class of DBFEs is where all the
moments are finite. In this case, the numerator and denominator
in each term in Eq. 1 become uncorrelated as n →∞ and the
distribution of (

∑
i s

m
i )/n becomes sharply centered around the

moment 〈sm〉 of Ps(·). Therefore, for large n , we have

Pk � 〈sk 〉
〈s〉k

n−(k−1). [3]

Notice that, so far, we have omitted the angular brackets
around Pk since it converges to the mean value in the limit
of large n , as shown by the highly localized distribution of Pk

in Fig. 1A (red dashed curve). Such quantities are described as
“self-averaging.” For the particular case k = 2, we have P2 ∼
1
n , which is the characteristic decay in self-averaging systems.
It was shown in ref. 6 that, for an exponential distribution,
〈P2〉= 2/(n + 1) (see SI Appendix for a general expression for
〈Pk 〉). Our focus here, however, is on heavy-tailed distributions
with tails of the form Eq. 2. When k < α, Eq. 3 continues to hold.
Particularly for α > 2, P2 still decays as ∼ 1/n (see SI Appendix,
Fig S1A). However, when k > α, the moment 〈sk 〉 diverges, and
Eq. 3 no longer holds. We can now break the analysis down into
two cases.

Case I. The moderately heavy-tailed case occurs when α > 1; in
this case, 〈s〉 is finite, but higher moments corresponding to k >
α > 1 diverge. For k > α, the asymptotic behavior of 〈Pk 〉 is

〈Pk 〉 � Ckn
−(α−1), [4]

A B

C D

Fig. 1. (A) The black curve is the numerically sampled distribution of P2 for
α = 1.4, and Inset shows the same for α = 0.5; we used 106 realizations and
n = 104 mutations. The dashed red curve is the distribution of P2 for an
exponential distribution of selection coefficients and n = 104. (B) This and
the following panels analyze data from the study based on mutant screening
reported in ref. 9, which determined the selection coefficients for several
resistance-conferring mutations in TEM-1 β-lactamase. Here, we numerically
estimate the distribution of P2 from the selection coefficients reported in
ref. 9. The dataset at each cefotaxime concentration was randomly split into
subsets of size n in order to obtain distributions of P2 as a function of n.
The box plots show median, quartiles, and extreme values. (C) The Pk were
obtained from the entire dataset at each concentration, and Eq. 5 was used
to infer α. (D) The effective mutation number ne = 1/P2 has been computed
and compared with the actual number of mutations in the available dataset
at each concentration.

where the constant Ck = AΓ(k − α)Γ(α)/(Γ(k)〈s〉α). Note
that 〈Pk 〉 decays with an exponent less than k − 1; therefore,
the mean probability of parallel evolution is asymptotically much
larger than in the case of light-tailed DBFEs. The scaling n−(α−1)

in Eq. 4 was first reported in ref. 9 and recently derived inde-
pendently in ref. 12 in a different context. In particular, we see
that when 1< α < 2, 〈P2〉 decays anomalously—i.e., with an
exponent< 1—in contrast toP2 ∼ n−1, as in the light-tailed case
(SI Appendix, Fig S1A).

It is important to point out that Pk does not become sharply
centered around its mean value when k > α, which can be
shown as follows. The m-th moment is given by 〈Pm

k 〉= 〈Pkm〉
(SI Appendix). The value of 〈Pkm〉 can be read off from Eq.
4 by replacing k by km . Thus, all moments are of the same
order n−(α−1). In particular, we notice that for 1< α < 2,
〈P2

2 〉/〈P2〉2 ∼ nα−1. For self-averaging systems (which obey
Eq. 3 for all k ), this ratio goes asymptotically to one, and the SD
vanishes relative to the mean (as seen in the red dashed curve in
Fig. 1A). In contrast, here, we see that the SD diverges relative
to the mean, implying a broad distribution for P2, as illustrated
in Fig. 1A. This non-self-averaging effect arises because the sum
Pk =

∑
i W

k
i is dominated by the largest weight W k

max (12, 13).
According to EVT, the largest selection coefficient scales as n1/α,
implying that Wmax ∼ n1/α−1. Therefore, the scale of typical Pk

is
Pk ∼ nk( 1

α−1), [5]

for k > α, which is asymptotically smaller than 〈Pk 〉, as given by
Eq. 4. In fact, most of the weight is concentrated near the typical
value, and the much higher mean is obtained from values of Pk

that are much rarer, but have much higher magnitude.

Case II. For the severely heavy-tailed case 0< α < 1, all integer
moments of s diverge. It was shown in ref. 13 that for a power-law
distribution with 0< α < 1,

〈Pk 〉 �
Γ(k − α)

Γ(k)Γ(1− α)
, [6]
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in the limit of large n . Specifically, the average probability of
parallel evolution in two replicates is 〈P2〉 � 1− α. Note that
the asymptotic form in Eq. 6 is independent of n , and, thus, we
have the striking result that the probability of parallel evolution
remains finite, even in the limit of an infinite number of available
alternative mutations. In the present case, all moments of P2

are of O(1), and, therefore, P2 is non-self-averaging. This is
visible in the wide distribution of P2, as shown in the numerically
sampled plot in Fig. 1 A, Inset. Similar non-self-averaging effects
are familiar in the physics of disordered systems (ref. 13 and
references therein) and in probability theory (14).

While the moderately (α > 1) and severely (α < 1) heavy-
tailed cases display somewhat different behavior, we note that both
Eqs. 4 and 6 give rise to the recursion relation

〈Pk+1〉
〈Pk 〉

= 1− α

k
for k ≥ 2, [7]

which, therefore, holds for the entire range 0< α < k . The
result is independent of n and of all features of the underlying
distribution, except the tail exponent α. It is, therefore, suitable
for extracting α from empirical data; however, the disadvantage
is that the averages require large datasets. Eq. 7 easily yields
an approximate solution for large k , 〈Pk 〉 ∼ 1/kα, shown in
SI Appendix, Fig. S1B. The slow decay of 〈Pk 〉 with k con-
trasts with the exponential decay of the typical Pk , as given by
Eq. 5.

The theoretical results discussed so far are valid in the limit of
large n . Nonetheless, we will show that signatures of non-self-
averaging effects can be discovered in limited empirical datasets.
For this purpose, we use data on selection coefficients associated
with antibiotic-resistance evolution reported in ref. 9. In this
study, the fitness effects of 48 beneficial mutations in the resistance
enzyme TEM-1 β-lactamase were reported for Escherichia coli
growing at four different concentrations of the antibiotic cefo-
taxime (see SI Appendix for further details of the experiment). An
analysis based on EVT indicated that the DBFE is light-tailed
for the lowest concentration and heavy-tailed for the three higher
concentrations, although large uncertainties were associated with
the exponents in the latter case (9). We evaluate the statistics of P2

for the four different concentrations (see SI Appendix for further
details). Fig. 1B shows P2 as a function of n . For the lowest
concentration, P2 is seen to be small with a small dispersion, and
it decreases with n , consistent with our expectation. For the three
higher concentrations, the values of P2 are larger and have a large
dispersion, which is consistent with heavy-tailed distributions.
There is no discernible decrease with n . However, due to the
relatively small values of n and the modest size of the datasets,
it is not possible to distinguish this from a slow decrease with
n . In Fig. 1C, we have plotted Pk as a function of k . Note

that the distinction between the typical and mean values (12)
has important implications here. Due to the limited size of the
data, we have not used the recursion relation Eq. 7 to infer α.
Instead, for each concentration, we have used the entire set of
selection coefficients to create a single sample value of Pk , which
is expected to be of the typical scale given by Eq. 5. Using this, we
estimate the exponent α, which is seen to progressively decrease
with increasing concentration, indicating an increasingly heavy-
tailed distribution. Thus, stronger selection pressures amplify the
differences between fitness effects of beneficial mutations, lead-
ing to a broader distribution. Nonetheless, we should mention
that inferred power-law exponents should be treated with some
caution, since these can be sensitive to experimental errors or
methods of analysis (9, 11). What is clear from Fig. 1C, however,
is that the behavior of Pk is at least a good qualitative indicator
of the dispersion of selection coefficients. We have also computed
and plotted the effective mutation number ne in Fig. 1D. The
trend is, again, seen to be as predicted by theory. At the lowest
concentration, ne is relatively large and close to (n + 1)/2 (where
n is the actual number of mutations), consistent with an exponen-
tial distribution of selection coefficients. The effective mutation
number decreases progressively with increasing concentration and
indicates a slower-than-exponential tail.

Conclusions

Parallel phenotypic evolution often proceeds through distinct
genotypic pathways. Here, we have shown that heavy-tailed
DBFEs can substantially enhance the probability of parallel evo-
lution even at the genotypic level. However, we also find that
this probability varies widely across large, independent samples
generated from the same heavy-tailed DBFE. This makes it harder
to generalize the degree of repeatability from one model system
to other, closely related ones. On the flip side, the evolutionary
process is dominated by a few mutations of high weight, making
evolution of the system more repeatable and, therefore, more
predictable. For example, in the study (15) on antibiotic-resistance
evolution, the authors found that the mutation of highest effect
(which also features in the heavy-tailed distributions reported in
ref. 9 and discussed above) occurred in the majority of multiple-
replicate experiments. The full implications of these ideas in the
context of natural populations remain to be elucidated.

Data, Materials, and Software Availability. All study data are included in the
article and/or SI Appendix. The codes for numerical simulations are available on
GitHub (https://github.com/meetsumand/Parallel-evolution) (16).
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