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Background: The therapeutic capacity of mesenchymal stem cells (also known as
mesenchymal stromal cells/MSCs) depends on their ability to respond to the need of
the damaged tissue by secreting beneficial paracrine factors. MSCs can be genetically
engineered to express certain beneficial factors. The aim of this systematic review is
to compile and analyze published scientific literatures that report the use of engineered
MSCs for the treatment of various diseases/conditions, to discuss the mechanisms of
action, and to assess the efficacy of engineered MSC treatment.

Methods: We retrieved all published studies in PubMed/MEDLINE and Cochrane
Library on July 27, 2019, without time restriction using the following keywords:
“engineered MSC” and “therapy” or “manipulated MSC” and “therapy.” In addition,
relevant articles that were found during full text search were added. We identified 85
articles that were reviewed in this paper.

Results: Of the 85 articles reviewed, 51 studies reported the use of engineered
MSCs to treat tumor/cancer/malignancy/metastasis, whereas the other 34 studies
tested engineered MSCs in treating non-tumor conditions. Most of the studies reported
the use of MSCs in animal models, with only one study reporting a trial in human
subjects. Thirty nine studies showed that the expression of beneficial paracrine factors
would significantly enhance the therapeutic effects of the MSCs, whereas thirty three
studies showed moderate effects, and one study in humans reported no effect. The
mechanisms of action for MSC-based cancer treatment include the expression of
“suicide genes,” induction of tumor cell apoptosis, and delivery of cytokines to induce an
immune response against cancer cells. In the context of the treatment of non-cancerous

Frontiers in Cell and Developmental Biology | www.frontiersin.org 1 October 2020 | Volume 8 | Article 587776

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2020.587776
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fcell.2020.587776
http://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2020.587776&domain=pdf&date_stamp=2020-10-30
https://www.frontiersin.org/articles/10.3389/fcell.2020.587776/full
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-587776 October 25, 2020 Time: 16:19 # 2

Pawitan et al. Therapeutic Effects of Engineered MSC

diseases, the mechanism described in the reviewed papers included the expression of
angiogenic, osteogenic, and growth factors.

Conclusion: The therapeutic capacity of MSCs can be enhanced by inducing the
expression of certain paracrine factors by genetic modification. Genetically engineered
MSCs have been used successfully in various animal models of diseases. However,
the results should be interpreted cautiously because animal models might not perfectly
represent real human diseases. Therefore, further studies are needed to explore the
translational potential of genetically engineered MSCs.

Keywords: engineered MSCs, tumor, cancer, metastasis, bone defect, animal models

INTRODUCTION

Mesenchymal stem cells (MSCs) or mesenchymal stromal cells
are adult multipotent stem cells that can be differentiated to
other cell types such as bones, cartilage, skeletal muscles, and
connective tissues. MSCs can be isolated from various sources,
including bone marrow, adipose tissue, and the mucoid tissue
within the umbilical cord (Wharton’s jelly) (Pawitan et al., 2013,
2014; Budiyanti et al., 2015). A large number of studies, including
several double-blind randomized clinical trials, have reported
the use of MSCs in treating various conditions (Mohamadnejad
et al., 2013; Pawitan et al., 2018; Freitag et al., 2019). Most
of the studies showed that MSCs exert their beneficial effects
mainly through the secretion of paracrine factors (Lee et al., 2011;
Mirotsou et al., 2011; Mohamadnejad et al., 2013; Freitag et al.,
2019). Moreover, MSC-based therapy has obtained approval for
clinical use in some countries. For example, MSC-based therapies
have been approved for the treatment of acute graft-versus-host
disease, critical limb ischemia (Buerger’s disease), and complex
perianal fistulas in adults due to Crohn’s disease in Japan, India,
and the European Union, respectively (Robb et al., 2019). It is
thought that the therapeutic capacity of MSCs largely depends
on their ability to secrete beneficial factors to repair the damaged
tissues or organs. Therefore, genetically engineered MSCs that
can specifically express paracrine factors, which are needed in
a particular pathological condition, may be more effective in
treating the disease compared to native MSCs. The aim of this
article is to systematically review the literatures on the use of
genetically engineered MSCs in various diseases and to assess
their safety and efficacy. This review will provide an update on
the mechanisms of action of engineered MSCs in the treatment
of various conditions.

METHODS

This systematic review complies with the Preferred Reporting
Items for Systematic Review (PRISMA) guidelines. The protocol
was submitted to the PROSPERO database of systematic review
protocols (registration number: CRD 42020163707). We have
checked the Cochrane Library to ensure that there was no
systematic review on a similar topic.

We performed a PubMed/MEDLINE and Cochrane database
search for relevant published studies on July 27, 2019,

without time restriction using the following search terms:
“engineered MSC” AND “therapy” or “manipulated MSC” AND
“therapy.” In addition, relevant articles found during full text
search were reviewed.

All original articles on the therapeutic use of engineered MSC
or manipulated MSC were included. Studies on engineered MSC
or manipulated MSC therapy that did not provide data on the
treated conditions or disease models, type of MSC manipulation,
detail information on expressed protein, administration route,
and outcome of the treatment were excluded from this review.
Article selection was conducted by examination of the titles,
abstracts, and full texts.

The data collected include the following: the treated
disease or disease models, the species used, the number of
animals/participants, the source of the MSC, MSC passage, the
type of gene insertion and expressed protein, the outcomes of the
treatment, adverse events, and mechanism of action.

Data analysis: the studies were grouped and tabulated
according to the treated conditions/disease models, species,
number of animals, MSC source and passage, vector used, types
of gene insertion/expressed proteins, outcome, adverse event, and
mechanism of action.

Data were analyzed descriptively to determine the safety and
efficacy of a certain engineered MSC on a certain disease and the
possible mechanism.

RESULTS AND DISCUSSION

Using the keywords “engineered MSC” AND “therapy,” we
identified 26 articles from the PubMed database, of which 17
articles were included for review. Six articles from the Cochrane
Library database were identified using the same keywords
(of which one was selected for review). Using the keywords
“manipulated MSC” AND “therapy,” we identified 50 articles
from the PubMed database, of which six papers were selected
for review. The same keywords were used in the Cochrane
database, and we have identified five articles, but none of them
met the inclusion criteria for review. During full text search, we
found 61 relevant articles that met the inclusion criteria, and
thus, the total number of articles included in the review was 85
(Figure 1).

The conditions/disease models treated by engineered MSC
were grouped into two main groups: (i) tumor, cancer,
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malignancy, and metastasis (Supplementary Table 1) and (ii)
non-tumor conditions (Supplementary Table 2).

Engineered MSCs were mostly used to treat tumor/cancer/
malignancy/metastasis (51 studies, Supplementary Table 1), and
the rest of the studies reported the use of engineered MSCs to
treat various non-tumor conditions (34 studies, Supplementary
Table 2). MSCs from several different sources and species were
used in the reviewed papers, i.e., human bone marrow (BM)
MSCs (Sasportas et al., 2009; You et al., 2009; Chang et al.,
2010; Gao et al., 2010; Wang et al., 2012; Altaner et al., 2014;
Harati et al., 2015; NguyenThai et al., 2015; Nouri et al., 2015;
Beegle et al., 2016; Chung et al., 2016; Schug et al., 2018; Segaliny
et al., 2019), human adipose tissue (AT) MSCs (Kucerova et al.,
2007, 2008, 2014; Cavarretta et al., 2010; Altanerova et al., 2012;
Zolochevska et al., 2012; Altaner et al., 2014; Grisendi et al., 2015;
Matuskova et al., 2015; Tyciakova et al., 2015; Toro et al., 2016;
Roudkenar et al., 2018), rat BM-MSCs (Tsuchida et al., 2003; Li
et al., 2007; Jiang et al., 2009; Huang et al., 2010; Zhang et al.,
2010, 2011; Zhao et al., 2010; Fei et al., 2012; Kosaka et al.,
2012; Kim et al., 2013; Nakamura et al., 2013; Hu et al., 2014;
Niu et al., 2014; Qi et al., 2015; Yao et al., 2017; Roudkenar
et al., 2018), human embryonic stem cell (ESC) derived MSC
(Bak et al., 2011), murine BM-MSCs (Kumar and Ponnazhagan,
2007; Chen et al., 2008; Ren et al., 2008; Xin et al., 2009; Conrad
et al., 2011; Zhu et al., 2012; Zou et al., 2012; Fransson et al.,
2014; Amara et al., 2016), mouse AT-MSC (Abrate et al., 2014;
Krasikova et al., 2015, Krassikova et al., 2016), canine AT-MSCs
(Seo et al., 2011; Ahn et al., 2013), human umbilical cord (UC)
MSCs (Yan et al., 2013), rabbit BM-MSCs (Chang et al., 2004; Lin
et al., 2010, 2012a; Fu et al., 2015; Wang et al., 2015b), pig BM-
MSCs (autologous) (Chang et al., 2003; Chang et al., 2010), pig
AT-MSCs (Lin et al., 2015), and rabbit AT-MSCs (Lin et al., 2011,
2012b; Lin et al., 2013). Only 2 out of 85 studies used autologous
cells (Chang et al., 2003; Chang et al., 2010), and most of the
reported studies used allogeneic cells. Some studies reported the
use of human-derived MSCs in animal models, which could be
regarded as xenogeneic cells, but no adverse immune reaction was
reported. This might be due to the immune privilege and immune
modulation properties of MSCs (Andreeva et al., 2017).

The genetic modification of the MSCs was achieved using
different approaches, including viral and non-viral approaches.
The types of viral vectors used for MSC genetic manipulation
include the following: adenovirus (Chang et al., 2003, 2004;
Chang et al., 2010; Tsuchida et al., 2003; Chen et al., 2008;
Fritz et al., 2008; Jiang et al., 2009; Xin et al., 2009; Gao et al.,
2010; Huang et al., 2010; Zhang et al., 2010; Zhao et al., 2010;
Kosaka et al., 2012; Wang et al., 2012; Kim et al., 2013), lentivirus
(Sasportas et al., 2009; Luetzkendorf et al., 2010; Bak et al., 2011;
Seo et al., 2011; Zhang et al., 2011; Fei et al., 2012; Zolochevska
et al., 2012; Ahn et al., 2013; Lee et al., 2013; Martinez-Quintanilla
et al., 2013; Yan et al., 2013, 2017; Fransson et al., 2014; Niu
et al., 2014; Qi et al., 2015; Wang et al., 2015b; Amara et al.,
2016; Beegle et al., 2016), retrovirus (Kucerova et al., 2007, 2008,
2014; Cavarretta et al., 2010; Chang et al., 2010; Altanerova
et al., 2012; Zou et al., 2012; Martinez-Quintanilla et al., 2013;
Abrate et al., 2014; Grisendi et al., 2015; Lakota et al., 2015;
Matuskova et al., 2015; Tyciakova et al., 2015; Chung et al., 2016;

Toro et al., 2016), baculovirus (Lin et al., 2010, 2011, 2012a,b; Lin
et al., 2015; Bak et al., 2011; Fu et al., 2015), adeno associated
virus (Kumar and Ponnazhagan, 2007; Ren et al., 2008), and
cytomegalovirus (Conrad et al., 2011). The non-viral approaches
reported include the following: mRNA–lipofectamine-mediated
transfection (Segaliny et al., 2019), PEGylated DNA-templated
nano-composite system (Suryaprakash et al., 2019), plasmid
DNA transfection (You et al., 2009; Harati et al., 2015; Krasikova
et al., 2015, Krassikova et al., 2016; NguyenThai et al., 2015;
Nouri et al., 2015; Mirzaei et al., 2018; Roudkenar et al., 2018;
Schug et al., 2018), biotinylated MSCs (avidin link protein)
(Yao et al., 2017), spermin pullulan (Nakamura et al., 2013;
Hu et al., 2014), hyper-branched poly-amido-amine (hPAMAM)
(Zhu et al., 2012), and jetPEI mediated transfection (Li et al.,
2007). Most of the approaches were successful in transferring
various genes into the MSCs and in inducing secretion of the
protein of interest.

It is important to note that in gene therapy experiments, viral
vectors – particularly adenovirus – often cause a strong immune
reaction against the vector (Xin et al., 2009). However, when used
to transfect MSCs in vitro, the transfected MSCs did not induce
an adverse immune reaction following transplantation to host
tissues (Xin et al., 2009).

The Use of Engineered MSCs to Treat
Tumor/Cancer/Malignancy/Metastasis
Despite recent improvements in prognosis and treatment
modalities, cancer remains one of the major causes of death,
particularly when metastasized tumors become resistant to
conventional surgical and chemoradiotherapeutic treatment
strategies (Chulpanova et al., 2018). However, recent studies on
stem cell-based therapies have provided promising results in the
development of new strategies for cancer treatment (Zhang et al.,
2017). MSCs appear to be one potential candidate for stem cell-
based anti-cancer therapies. MSCs are a group of adult stem
cells that exert tumor tropism behavior and play various roles
in regulating cancer cell biology. Therefore, these cells have been
used as vehicles to deliver substances to the primary tumor or
metastatic tumor sites.

Mesenchymal stromal cells have attracted considerable
attention in the field of tumor therapy because of their unique
biological properties. In most circumstances, tumor cells reside
in a complex microenvironment, which also contains other
cell types such as endothelial cells, fibroblasts, and other bone
marrow-derived cells such as macrophages (Lin et al., 2019).
Within this microenvironment complex, tumor cells secret a
spectrum of chemokines, cytokines, and growth factors to
attract MSCs to the tumor sites. Meanwhile, MSCs could
secrete cytokines or chemokines, which orchestrate the fate and
development of tumor cells. MSCs are also safe to be used
in allogeneic transplantation because they do not express co-
stimulatory molecules that trigger graft rejection and immune
responses (Chulpanova et al., 2018).

Some pre-clinical studies have shown that MSCs could be
genetically manipulated to express cytotoxic agents to inhibit
tumor growth (Lin et al., 2019). There are various kinds of studies
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FIGURE 1 | Outline of the literature search. Flowchart describing the protocol
and literature search used in this systematic review.

using different strategies and animal models to test the efficacy
of engineered MSCs for the treatment of cancer/metastasis.
In some studies, engineered MSCs were delivered after the
tumors or metastatic lesions were established in animal models
(Chen et al., 2008; Ren et al., 2008; Xin et al., 2009; Gao
et al., 2010; Bak et al., 2011; Conrad et al., 2011; Zhang et al.,
2011; Wang et al., 2012; Kim et al., 2013; Lee et al., 2013;
Martinez-Quintanilla et al., 2013; Yan et al., 2013; Abrate et al.,
2014; Altaner et al., 2014; Hu et al., 2014; Harati et al., 2015;
Krasikova et al., 2015, Krassikova et al., 2016; Lakota et al., 2015;
Matuskova et al., 2015; Nouri et al., 2015; Chung et al., 2016;
Yan et al., 2017; Yao et al., 2017; Mirzaei et al., 2018; Schug
et al., 2018; Segaliny et al., 2019; Suryaprakash et al., 2019). In
other studies, tumor cells and engineered MSCs were injected
simultaneously in animal models (Fritz et al., 2008; Sasportas
et al., 2009; You et al., 2009; Cavarretta et al., 2010; Chang
et al., 2010; Seo et al., 2011; Altanerova et al., 2012; Fei et al.,
2012; Zolochevska et al., 2012; Ahn et al., 2013; Kucerova et al.,
2014; Grisendi et al., 2015; NguyenThai et al., 2015; Tyciakova
et al., 2015), whereas other studies used the combination of both
approaches (Kucerova et al., 2007, 2008; Luetzkendorf et al.,
2010; Kosaka et al., 2012; Zou et al., 2012; Amara et al., 2016;
Toro et al., 2016). Co-injection of a mixture of tumor cells and
engineered MSCs was intended to know whether engineered
MSCs could prevent tumor development. However, this approach
is not suitable in the clinical setting because patients are treated
when the tumors are already established. The use of engineered
MSCs for cancer prevention may not be feasible for clinical
application because we do not know which patient will develop
a certain type of tumor.

The genetically engineered MSCs are often used in
conjunction with treatment with chemotherapeutic drugs. Thus,
it is crucial to understand the effects of the chemotherapeutic
agents on the MSCs themselves. MSCs’ responses to
chemotherapeutic drugs vary depending on the mechanisms
of action of the anti-cancer drugs used. However, in general,
MSCs can be considered as more resistant cells against
chemotherapeutic agents because of their highly efficient DNA
repair, higher level of anti-apoptotic protein, and higher anti-
oxidant activity as reviewed in previous publications (Ruhle
et al., 2018, 2019).

There are three different strategies to generate anti-cancer
MSCs through genetic modification: (i) by inserting suicide gene
carriers that will activate a non-toxic pro-drug to become a
cytotoxic substance that can kill the tumor cells, (ii) by using
MSCs as vehicles to deliver cytokines for cancer immunotherapy;
and (iii) by using MSCs as agents to induce tumor cell
apoptosis (Figure 2).

MSCs as Suicide Gene Carriers That Activate
Non-toxic Pro-drugs Into Toxic Substances
One of the main challenges of the current first-line cancer
therapies, especially chemotherapy, is systemic cytotoxicity, and
limited delivery to the tumor sites. To tackle these problems,
genetically modified MSCs carrying suicide genes have been
employed to convert non-toxic pro-drugs into active agents for
selective elimination of cancer cells. Various genes encoding
these “suicide proteins” were used: cytosine deaminase (CD)
or cytosine deaminase-uracil phosphoribosyltransferase (CD-
UPRT), which converts the pro-drug 5-fluorocytosine (5-FC)
into an active agent 5-fluorouracil (5-FU) (Kucerova et al.,
2007, 2014; You et al., 2009; Cavarretta et al., 2010; Chang
et al., 2010; Conrad et al., 2011; Altanerova et al., 2012; Fei
et al., 2012; Kosaka et al., 2012; Abrate et al., 2014; Krasikova
et al., 2015, Krassikova et al., 2016; Lakota et al., 2015;
Matuskova et al., 2015; NguyenThai et al., 2015; Chung et al.,
2016; Toro et al., 2016; Segaliny et al., 2019); herpes simplex
virus thymidilate kinase (HSV-TK) (Bak et al., 2011; Martinez-
Quintanilla et al., 2013; Nouri et al., 2015) or SV40-TK (Lee
et al., 2013), which phosphorylates gancyclovir (GCV) into a
toxic substance; and cytochrome P450 reductase (CYP), which
converts cyclophosphamide (CPA) into cytotoxic metabolites
(Amara et al., 2016).

A study showed that human AT-MSCs expressing cytosine
deaminase (CD) could trigger dose-dependent apoptosis of
human melanoma A375 cells in both in vitro and in vivo models
(Kucerova et al., 2008). Subcutaneous injection of 20% AT-MSC-
CD in a mixture with A375 cells resulted in a complete regression
of 89% of the tumor-bearing animals within 14 days (Kucerova
et al., 2008). Moreover, AT-MSC-CD administered systemically
exhibited tumor tropism and suppressed tumor growth in the
presence of 5-FC.

Other pieces of evidence showing the promising therapeutic
potential of MSCs in suppressing melanoma tumors have
been provided by a study using a more aggressive variant
of melanoma cells, that is, EGFP-A375/Rel3, which exhibited
altered cell adhesion and tumorigenic and metastatic properties
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FIGURE 2 | Summary of the mechanisms of the use of engineered Mesenchymal Stem Cells for cancer treatment. MSCs are genetically modified to express “suicide
genes,” which can activate an inactive pro-drug to active anti-cancer drug; cytotoxic cytokines or apoptosis inducer that can kill cancer cells. Some part of this figure
was created using Servier Medical Art templates, which are licensed under a Creative Commons Attribution 3.0 Unported License; https://smart.servier.com.

(Kucerova et al., 2014). The combination of AT-MSC-CD/5-FC
treatment with SU11274, an inhibitor of the c-Met/hepatocyte
growth factor signaling pathway, could provide a complete cure
in 9 out of 10 animals at 60 days after EGFP-A375/Rel3 cell
injection (Kucerova et al., 2014). Augmentation of CD with
herpes virus 1 (HSV-1) tegument protein VP22 in a CD-UPRT
fusion construct could also enhance the therapeutic effects
of the MSC-CD-UPRT combination (Krasikova et al., 2015).
Consistent with studies using animal models, human BM-MSC-
CD could migrate to the subcutaneous human gastric cancer
MKN45 cells and induce tumor regression in the presence
of 5-FC (You et al., 2009). Importantly, these studies have
suggested the importance of identifying optimal timing and
augmentation of the treatment to maximize the anti-tumor
effects of the MSCs.

As mentioned previously, one major issue on the use of MSCs
in combination with chemotherapeutic substances is the toxicity
of the chemotherapeutic drugs on the MSCs. MSCs have been
shown to have some degree of resistance against alkylating agents
such as cyclophosphamide, melphalan, and busulfan (Nifontova
et al., 2008; Kemp et al., 2011). It has also been reported that
MSCs displayed high resistance against cisplatin, a platinum-
based anti-cancer drug (Bellagamba et al., 2016; Nicolay et al.,
2016). In addition, treatment with methotrexate did not affect the
survival and proliferative capacity of MSCs (Mancheno-Corvo
et al., 2013; Beane et al., 2014). However, studies on the effects

of nucleoside analog 5-FU on MSCs are rather limited. One
study suggested that low doses of 5-FU reduced MSC viability.
However, others have demonstrated a lower level of senescence
in MSCs treated with 5-FU compared to those treated with other
chemotherapeutics agents such as doxorubycin, methotrexate,
or busulfan (Qi et al., 2012). The origin of the MSCs may also
determine that the response to 5-FU with adipose-derived MSCs
appears to have lower sensitivity against 5-FU compared to bone
marrow-derived MSCs (Ruhle et al., 2018).

MSCs as Vehicles for Cytokine Delivery in Cancer
Immunotherapy
In addition to the application in delivering “suicide genes,”
engineered MSCs have been used as tools to deliver anti-cancer
cytokines to the tumor local environment. Thus, treatment using
engineered MSCs has been regarded as one important approach
in the field of cancer immunotherapy In a study on 786-0 renal
cancer cell xenografts, MSCs expressing interleukin-12 could
migrate to the tumor site and inhibit tumor growth through the
activation of the natural killer cells and secretion of interferon
γ at 14 days after MSC administration (Gao et al., 2010). In a
mouse model of subcutaneous B16F10 melanoma xenograft, a
combined treatment of canine AT-MSCs expressing interferon
β (IFN-β) along with systemic administration of the platinum-
containing anti-cancer drug cisplatin could significantly inhibit
tumor growth at 14 days after tumor cell injection compared with
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a cisplatin monotherapy group. This method could also increase
mouse survival up to 51 days after tumor cell injection compared
to 20 days of survival in the control group (Seo et al., 2011).
Consistently, subcutaneous injection of AT-MSC-IFN-β along
with a low dose of systemic cisplatin could induce cell cycle arrest
and apoptosis of LMeC melanoma xenografts (Ahn et al., 2013).

Another study reported that engineered MSCs expressing
inflammatory cytokine TNFα could trigger caspase 3/7-
dependent apoptosis of human A375 melanoma cells in vitro
(Tyciakova et al., 2015). This study also showed that the
subcutaneous injection of MSC-hTNFα and A375 melanoma
cells in a 1:4 ratio could induce tumor regression up to 97.5% in
the recipient mice.

In addition to the anti-tumor effects at the primary
tumor site, the engineered MSCs might be able to control
metastasized tumor growth as demonstrated in several studies.
For example, systemic administration of hAT-MSC-CXCL10
could inhibit Treg cell-driven lung metastasized tumors and
elevate the number of anti-tumor activated T-cells in the lungs
in animals receiving B16F10-induced melanoma cells (Mirzaei
et al., 2018). On the other hand, systemic administration of
MSC–lipocalin 2 could inhibit liver metastasis through the
downregulation of vascular endothelial growth factors in the
liver in a mouse model of SW48 colon cancer intrasplenic
xenografts (Harati et al., 2015). Together, these studies suggested
that cytokine-based targeted therapy using MSCs might be
effective in tackling a range of tumor cell types and possibly
cancer metastasis.

Engineered MSCs That Target Tumor Cell Apoptosis
Another strategy in using MSCs for cancer therapy is to use
these cells to deliver pro-apoptotic proteins to tumor cells
(Sasportas et al., 2009; Luetzkendorf et al., 2010; Kim et al.,
2013; Yan et al., 2013; Grisendi et al., 2015; Suryaprakash
et al., 2019). Tumor necrosis factor (TNF)-related apoptosis-
inducing ligand (TRAIL) is a transmembrane protein that binds
to death domain-containing receptors and selectively triggers the
extrinsic apoptotic pathway within cancer cells while sparing
other cell types (Luetzkendorf et al., 2010). Because most current
chemotherapy agents mainly act as DNA damage sensors and
activate the intrinsic apoptotic pathway of cancer cells, MSC-
TRAIL could be used in conjunction with first-line clinical
therapies to provide synergistic treatment effects.

The therapeutic potential of MSC-TRAIL has been
demonstrated in several pre-clinical models of sarcoma,
lung cancer metastasis, renal cancer, colorectal cancer, and
lymphomas. For example, co-injection of mixtures of human
MSC-TRAIL with mouse colorectal cancer cells could effectively
inhibit tumor growth via apoptosis activation. However, this
therapeutic effect was abolished when TRAIL-MSCs were
delivered through intravenous injection (Luetzkendorf et al.,
2010). MSCs expressing human TRAIL could induce caspase 8
activation and apoptosis of RD-ES sarcoma cells while retaining
anti-angiogenic effects (Grisendi et al., 2015). Engineered MSCs
expressing TRAIL and herpes simplex virus thymidine kinase
(MSC-TRAIL-TK) have shown efficacy in inducing apoptosis of
renal carcinoma (RENCA) cells and inhibiting lung metastasis.

Triple intravenous injections of MSC-TRAIL-TK could offer
100% survival rate and induce a complete cure for metastatic
tumor-bearing mice (Kim et al., 2013).

mesenchymal stromal cell-TRAIL can be modified further to
enhance their binding specificity to tumor cells. In a study using
a mouse model of non-Hodgkin’s lymphoma, engineered MSCs
expressing both CD20-specific single-chain Fv antibody fragment
and TRAIL could migrate to established CD20-positive B-cell
lymphoma line (BJAB) subcutaneous tumor in NOD/SCID mice
and induce 65% tumor regression without causing liver toxicity
compared to 42.7% of tumor regression in groups receiving
MSC-TRAIL only (Yan et al., 2013).

So far, most studies using pre-clinical cancer models have
shown consistent results, i.e., the engineered MSCs could inhibit
tumor growth and enhance the survival rate of the tumor-bearing
animals. However, a recent clinical report of a patient treated
with engineered MSC-CD-UPRT and 5-FC for metastatic head
and neck cancer has shown that there was no sign of tumor
regression at 6 days after intravenous injection of the therapeutic
stem cells. Moreover, tumor metastasis further progressed after
40 days of the treatment (Lakota et al., 2015). Therefore, success
in animal studies should be interpreted with caution. Further
studies to understand the biology, fate, and safety of grafted MSCs
would be needed for successful clinical translation of MSC-based
cancer therapies.

Other Genetic Strategies to Enhance the Anti-tumor
Effects of MSCs
Formation of new blood vessels (angiogenesis) has been regarded
as one of the key factors in the progression of cancers. Treatment
with anti-angiogenetic agents appears to become one promising
approach in cancer therapy. MSCs have been considered as
effective vehicles to deliver such factors. Several lines of evidence
have shown the use of genetic modification to generate MSCs
that are capable of sending anti-angiogenetic factors to the
tumor sites. For example, MSCs overexpressing endostatin have
been reported to be effective in controlling the growth of
ovarian cancer. It was shown that the beneficial effect was
likely due to the inhibition of neovascularization, enhanced
apoptosis, and inhibition of cell proliferation (Zheng et al., 2012).
Equally important, the fact that MSCs can be engineered to
express intact or single-chain antibody fragments (Frank et al.,
2010) has opened the possibility to generate MSCs that are
capable of secreting anti-angiogenetic antibodies, such as an
anti-VEGF antibody.

Another strategy in the development of anti-cancer MSCs
is by using these cells to deliver oncolytic adenovirus. One
example of this strategy is the use of MSCs to carry and deliver
the Delta-24-RGD adenovirus, which has a potent anti-glioma
property (Yong et al., 2009). Experimental evidence in mice has
demonstrated the efficacy of this approach in eradicating brain
glioma (Yong et al., 2009).

Genetic Engineering and the Pro-tumorigenic Effect
of MSCs
One important aspect of MSC-based therapy that may hamper
the clinical translation is the capability of MSCs to promote
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cancer progression. Co-injection of MSCs with cancer cells
in vivo can induce the growth of the tumor cells. This has been
observed in models of ovarian (Spaeth et al., 2009), prostate (Jung
et al., 2013), colorectal (De Boeck et al., 2013), and breast cancer
(Karnoub et al., 2007). It is thought that the pro-tumorigenic
effects of MSCs might be due to the cell-to-cell contact and/or
secretion of paracrine factors (Babajani et al., 2020). In vitro
studies showed that co-culturing of primary cancer cells with
bone marrow-derived MSCs significantly reduced the apoptosis
of the cancer cells. Direct cell-to-cell contact was proposed as
the anti-apoptotic mechanism, although the ligands and/or the
receptors that are responsible for the interaction are not known
yet (Lee et al., 2019).

Equally important, several lines of evidence have suggested
that MSCs that are recruited to the tumor microenvironment
might secrete paracrine factors and cytokines that can facilitate
tumor growth, angiogenesis, and survival against anti-cancer
drugs. For example, injected MSCs to cancer sites produce
pro-growth factors such as insulin-like growth factor, platelet-
derived growth factor, and epidermal growth factor receptor
(Akimoto et al., 2013), as well as cytokines and factors like IL-
6 (Lin et al., 2013) and TGF-b (Ye et al., 2012). Interestingly,
the secretory profiles of MSCs recruited to the tumor sites
are different from those of primary MSCs outside the tumor
microenvironment, suggesting that the pro-tumor phenotype
might be due to the local niche produced by the tumor cells
(Babajani et al., 2020).

It is important to note that in the majority of observations
showing the pro-tumorigenic effects of MSCs, the researchers
used native MSCs in their models. By contrast, most of the studies
using genetically manipulated MSCs as outlined above have
reported significant anti-tumor effects as opposed to the pro-
tumorigenic effect. This suggests that genetic modification might
be a promising strategy to control the pro-tumorigenic effects of
MSCs. In addition, drug-loading has been demonstrated to be
an effective approach to control the pro-tumorigenic phenotype.
For example, drug priming with paclitaxel has been shown to
improve the anti-tumor activity of MSCs and induce the anti-
angiogenic effect by inhibition of ICAM1, VCAM1, and VEGF
expressions (Pessina et al., 2011).

The Use of Engineered MSC to Treat
Non-cancer Conditions
Engineered MSCs were used to treat various non-cancer
conditions, including allogeneic liver transplantation (Niu et al.,
2014; Qi et al., 2015), autoimmune encephalomyelitis (Fransson
et al., 2014), nerve injury (Wang et al., 2015b), wound healing
(Nakamura et al., 2013), critical limb ischemia (Beegle et al.,
2016), acute kidney injury (Roudkenar et al., 2018), myocardial
infarction (Li et al., 2007; Huang et al., 2010; Zhang et al., 2010;
Zhu et al., 2012), various bone defects (Chang et al., 2003, 2004;
Chang et al., 2010; Tsuchida et al., 2003; Jiang et al., 2009; Lin
et al., 2010, 2011, 2012a,b; Lin et al., 2015; Zhao et al., 2010; Fu
et al., 2015), lung fibrosis (Min et al., 2015), radiation-induced
toxicity (Abdel-Mageed et al., 2009; Xue et al., 2013; Zhang
et al., 2014; Wang et al., 2015a; Zhang et al., 2019), Huntington’s

disease (Dey et al., 2010), and rheumatoid arthritis (Liu et al.,
2013; Dong et al., 2020; Figure 3 and Supplementary Table 2).

Engineered MSCs to Prevent Rejection in Organ
Transplantation
A study using a mouse model of allogeneic liver transplantation
used engineered MSC expressing transcription factor fork head
box P3 (Foxp3) to increase the median survival time of
the animals receiving organ transplantation. Foxp3 caused an
increase in Treg level, which has a strong immunomodulatory
effect. The increase was T cell contact dependent and was
associated with the upregulation of programmed death ligand
1 (PD-L1) expression in MSC (Qi et al., 2015). Another study
used interleukin-10 secreting MSCs (MSC-IL10) to prevent
rejection in an allogeneic liver transplantation model. It
showed an increase in median survival time of transplanted
animals compared to those injected with non-engineered MSCs,
though non-engineered MSCs also demonstrated increased
median survival time compared to control (non-MSC-injected
animals) (Niu et al., 2014). This might be due to the native
immunomodulation effect of MSC (Andreeva et al., 2017).
Secretion of IL10 might increase the levels of Treg-associated
anti-inflammatory cytokines (IL-10 and TGF-β1) and decrease
Th17-associated pro-inflammatory cytokines (IL-17, IL-6, IFN-γ,
TNF-α, and IL-23) (Niu et al., 2014).

Engineered MSCs for the Treatment of Autoimmune
Encephalomyelitis
Engineered MSCs have been used in a study using a mouse
model of experimental autoimmune encephalomyelitis (EAE).
Fransson et al. (2014) examined the use of genetically engineered
MSCs expressing a myelin oligodendrocyte glycoprotein (MOG)
specific receptor (MSC-CARα-MOG). Anti-rat MOG antibodies
cloned from a single-chain variable fragment (scFv) were
introduced into a chimeric antigen receptor (CAR), producing
a CARαMOG construct. This was then inserted into a lentiviral
vector. They discovered that the engineered MSCs exerted
beneficial effects in controlling the disease and showed that the
intranasal MSC application route was better than intraperitoneal
injection. Intranasal route of MSCs treatment caused symptom
free at days 27–30. Non-engineered MSCs also caused reduced
experimental autoimmune encephalomyelitis as indicated by
a better EAE score compared to control when given via an
intranasal route, but the improvement was not as good as
those treated with MSC-CARα-MOG. When given via an
intraperitoneal route, non-engineered MSCs showed a similar
EAE score to that of control. The beneficial effect of MSC-
CARαMOG might be due to the modulation of the inflammatory
cytokines released by T-lymphocytes in the brain. In EAE,
activated T-cells migrate across the blood–brain barrier to the
brain parenchyma, resulting in brain inflammation, myelin loss,
and axon damage. T-cells recovered from the brain of EAE
mice produced a lower level of interferon-7and higher level of
interleukin-17 when treated with MSC-CARαMOG compared
to those treated with control MSC. Interestingly, T-cells isolated
from the spleen did not show this phenotype, indicating a tissue-
specific effect (Fransson et al., 2014).
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FIGURE 3 | Summary of the use of engineered MSCs for the treatment of non-cancer diseases. MSCs overexpressing beneficial factors are used to treat several
conditions such as myocardial infarction, tissue injury, ischemia, and autoimmune encephalomyelitis. Engineered MSCs were also used to improve bone healing and
reduce the side effects of organ transplantation. Part of this figure was created using images from Servier Medical Art Commons Attribution 3.0 Unported License.
(http://smart.servier.com). Servier Medical Art by Servier is licensed under a Creative Commons Attribution 3.0 Unported License.

Engineered MSCs for Treating Tissue Injuries and
Ischemia
Wang and co-workers generated engineered MSCs that secrete
nerve growth factor (NGF) and used them to treat nerve injury
in a rabbit model. They showed that treatment with these
cells (MSC-NGF) increased the formation of nerve fibers and
the density of myelinated nerve fibers. It also decreased the
deposition of myelin debris compared to control animals. The
study demonstrated that the MSC-NGF cells enhanced the nerve
regenerative capacity (Wang et al., 2015b).

Another study used stromal cell-derived factor-1 (SDF-1)
secreting MSCs (MSC-SDF-1) to treat full thickness wound
in a rat model. Wound closure and blood vessel formation
were significantly improved in the MSC-SDF-1-treated group.
Animals treated with non-engineered MSCs have also shown
improvement compared to the control group, although not
as significant as in the MSC-SDF-1-treated group. SDF-1
increased vascular endothelial growth factor (VEGF) expression,
which induced angiogenesis. Furthermore, there was an
increase in dermal fibroblast migration in treated animals
(Nakamura et al., 2013).

The study by Beegle et al. (2016) used engineered MSCs
expressing VEGF in a mouse model of critical limb ischemia. The

results showed that mice treated with these MSCs displayed better
blood flow at week 10 after treatment compared to the control
group. This finding is expected as VEGF is known as a strong
angiogenesis factor. It is important to note that allogeneic MSCs
for critical limb ischemia have been approved for clinical use in
India (Robb et al., 2019).

Using a mouse model with acute kidney injury, a study used
lipocalin-2-secreting MSCs (MSC-Lcn2). The results showed
that the number of cast and tubular necrosis was significantly
decreased compared to mice treated with non-engineered MSCs
and with the control groups. At day 21 following treatment, the
serum creatinine level in the MSC-Lcn2-treated group decreased
significantly to a level comparable to those of normal mice.
The blood urea nitrogen level was also decreased, although
the level was still higher than normal. Lipocalin-2 has been
shown to upregulate the expression of various growth factors,
such as hepatocyte growth factor (HGF), insulin-like growth
factor, fibroblast growth factor, and VEGF. All of them have the
capability to trigger kidney regeneration. This was indicated by
the increase in the expression of kidney regenerative markers
(i.e., the proximal tubular epithelium markers such as AQP-1 and
CK18) and the decreased expression of kidney injury markers
such as KIM-1 and cystatin C (Roudkenar et al., 2018).
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Engineered MSCs for the Treatment of Myocardial
Infarction
Our systematic literature search has indicated four studies on the
use of engineered MSCs to treat myocardial infarction. One study
was conducted using a mouse model, and the others used a rat
model. The first study used VEGF-secreting MSCs and showed
that treatment with these cells improved heart function compared
to the control group. It was reported that the improvement was
likely due to the increased in capillary density because VEGF is
known as a potent angiogenic factor (Zhu et al., 2012).

Two studies used engineered MSCs that produce and secrete
CXCR4 (MSC-CXCR4) (Huang et al., 2010; Zhang et al., 2010).
In a study reported by Zhang et al. (2010) MSC-CXCR4 cells
were implanted as cell sheets, and Huang et al. (2010) grew
MSC-CXCR4 on the animals’ peritoneum and then applied them
onto the scarred myocardium. Both approaches resulted in the
improvement of heart function compared to the control group.
CXCR4 increased cell engraftment and angiogenesis as well as
reduced myocardial remodeling, hence improving heart function
(Huang et al., 2010; Zhang et al., 2010). MSC-CXCR4 was also
used in combination with diprotin A, a molecule that can inhibit
the enzymatic degradation of the SDF-1α-CXCR4 complex by
the enzyme CD26/dipeptidyl peptidase IV (DPP-IV). This would
result in the prolongation of the CXCR4 activity. Treatment with
the combination of MSC-CXCR4 and diprotin A produced better
therapeutic effects compared to treatment with MSC-CXCR4
alone (Zhang et al., 2010).

The fourth study in the field of myocardial infarction
indicated by our literature search involved the use of engineered
MSCs overexpressing Bcl2 (MSC-Bcl2). Bcl2 is known as a
potent anti-apoptotic agent. In this study, Li and co-authors
demonstrated that treatment with MSC-Bcl2 resulted in the
improvement of heart function following myocardial infarction
compared to the control group. Bcl2 was shown to induce
cell engraftment and VEGF expression level, which, in turn,
increased angiogenesis and eventually improved heart function
(Li et al., 2007).

The Use of Engineered MSCs to Induce Bone Healing
We found 13 studies on the use of genetically engineered MSCs
for the treatment of various types of bone defects (Chang et al.,
2003, 2004; Chang et al., 2010; Tsuchida et al., 2003; Jiang
et al., 2009; Lin et al., 2010, 2011, 2012a,b, 2015; Lin et al.,
2013; Zhao et al., 2010; Fu et al., 2015). In most studies, bone
morphogenetic protein 2 (BMP-2) was overexpressed in the
MSCs, either alone (Chang et al., 2003, 2004; Chang et al., 2010;
Tsuchida et al., 2003; Jiang et al., 2009; Zhao et al., 2010) or
in combination with VEGF (Lin et al., 2010, 2011, 2012a,b,
2015; Fu et al., 2015). Whilst in one study BMP2 overexpression
was compared with TGF-β3 overexpression (Lin et al., 2013).
All studies reported improvement in bone healing following
implantation of engineered MSCs. This is not unsurprising as
BMP2 is known as a strong inducer of osteogenesis (Chang et al.,
2003, 2004; Chang et al., 2010; Tsuchida et al., 2003; Jiang et al.,
2009; Lin et al., 2010, 2011, 2012a,b, 2015; Lin et al., 2013; Zhao
et al., 2010; Fu et al., 2015). On the other hand, VEGF helped
the process by promoting vascular network formation and hence

enhanced the BMP2 osteogenesis effect (Lin et al., 2010, 2011,
2012a,b, 2015; Fu et al., 2015).

A study examined a combination treatment of MSC-
BMP2 with the addition of various tissue scaffolds, such
as ultrapure alginate, alginate, arginine–glycine–aspartic acid
(RGD)–alginate, and collagen-1 (Chang et al., 2010). The authors
reported that the best scaffold was the type 1 collagen as it
degraded faster and improved bone regeneration. By contrast,
RGD alginate was considered inferior because it inhibited initial
chondrogenesis (Chang et al., 2010).

Tsuchida et al. (2003) compared the use of syngeneic MSCs
with allogeneic MSCs in a rat model of bone defect. They
showed that syngeneic MSCs exhibited better therapeutic effects
than allogeneic MSCs. However, when the allogeneic MSCs were
transfected with BMP2 and then implanted in combination with
an immunosuppressant drug FK506, they found improvement of
the therapeutic effects of the allogeneic MSCs to the level similar
to that of syngeneic MSCs. This effect could be attributable to the
BMP2 expression of the engineered allogeneic MSCs.

Several other studies examined the differential effects of
the transient and constitutive expression of the BMP2 and
VEGF combination in the MSCs. The data indicated that the
constitutive expression of the osteogenic factor showed better
therapeutic effects (Lin et al., 2011, 2012a).

BMP2-engineered MSCs seemed to produce better therapeutic
effects compared to TGF-β3-engineered MSCs in a rabbit model
of calvarial bone defect. A study reported that implantation
of BMP2-engineered MSCs promoted bone formation and
significantly improved bone volume and bone density. The better
therapeutic effect of these cells was likely due to the ability of
BMP2 to promote osteogenesis and chondrogenesis as well as to
stimulate the formation of the dura mater, which is important in
calvarial bone healing. The study also compared the use of two
types of tissue scaffolds, i.e., poly(L-lactide-co-glycolide) (PLGA)
and gelatin. It was shown that the gelatin sponge produced better
chondroinductive ability than PLGA and subsequently improved
bone healing (Lin et al., 2013).

A recent review from Freitas et al. summarized the
diverse approaches in using genetically modified MSCs for
the treatment of critical-size, non-union, and delayed bone
defects. Typically, the MSCs were engineered with genes
responsible for osteogenesis (e.g., TGF-β, BMPs, core binding
factor α1/Cbfa1, and Osteorix/Osx), angiogenesis (e.g., VEGF),
anti-apoptosis (e.g., human telomerase/hTERT), or non-coding
RNA (microRNAs). The MSCs can be implanted in the lesions,
or alternatively, the secretomes can be given either locally
or systemically. The critical questions in utilizing engineered
MSCs are how to ensure the safety of the genetic modification
and how to standardize the end products of the therapy
(Freitas et al., 2019).

The Use of Engineered MSCs to Improve Lung
Fibrosis
A study showed that MSCs overexpressing angiotensin-
converting enzyme 2 (ACE 2) produced a better therapeutic
effect in a bleomycin-induced lung fibrosis model in mice (Min
et al., 2015). Mice treated with the MSCs-ACE2 cells showed a
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significantly better lung phenotype compared to mice treated
with ACE2 only or with non-engineered MSCs (Min et al., 2015;
Supplementary Table 2). This finding indicated the synergistic
actions of MSCs and ACE2. MSCs are known to have fibrinolytic
properties (Srour and Thebaud, 2015), whereas ACE2 has an
anti-fibrotic activity via the degradation of angiotensin 2 (Ang 2),
which is known as a pro-fibrotic agent (Min et al., 2015).

Engineered MSCs to Alleviate Radiation-Induced
Toxicity
Another condition that has been successfully treated by
genetically engineered MSC is radiation-induced toxicity.
A study using a mouse model receiving total body irradiation
showed that genetically modified MSCs overexpressing
extracellular superoxide dismutase (ECSOD) could alleviate
the toxic effects of the radiation, resulting in an increase in
the 35-day survival rate to 52%, which was significantly better
compared to control (10%). The mechanism of action was
likely due to the improved scavenging process of the superoxide
anion by ECSOD, which might prevent hematologic toxicity
(Abdel-Mageed et al., 2009).

Similarly, a study using a radiation-induced lung injury model
in mice demonstrated that treatment with MSCs expressing
soluble transforming growth factor-ß type II receptor (sTGF-
ß-R) resulted in significantly higher survival (80%) compared
to mice treated with native MSCs (40% survival rate), and
none of the control animals (no MSC treatment) survived. It
is believed that the fibrinolytic effect of MSC in combination
with the anti-inflammatory effect of sTGF-ß-R is responsible
for preventing inflammatory cell infiltration, pro-inflammatory
cytokine secretion, and collagen overproduction in mice treated
with MSC-sTGF-ß-R (Xue et al., 2013).

In keeping with those results, another study using a mouse
model of radiation-induced lung injury analyzed the use of
MSCs overexpressing CXCR4. The genetically engineered MSCs
displayed better performance compared to native MSCs as
CXCR4 expression facilitated MSC migration and homing to
the injury sites. CXCR4 is a receptor for stem cell stromal
cell-derived factor-1 (SDF-1), and the activation of CXCR4 by
SDF-1 modulates the signaling pathway important for stem cell
migration and homing (Zhang et al., 2014).

Two other studies related to radiation-induced toxicity
involved the use of HGF. Wang et al. showed that MSCs
expressing HGF showed a significantly better therapeutic
capacity in alleviating radiation-induced intestinal injury
compared to native MSCs. It is thought that the regenerative and
anti-apoptotic effects of HGF might be the responsible factors
in enhancing intestinal epithelial cell regeneration (Wang et al.,
2015a). MSCs overexpressing HGF were also used in radiation-
induced liver damage. These cells have been shown to produce
better regenerative effects in the liver (Zhang et al., 2019).

The Use of Genetically Engineered MSC for the
Treatment of Huntington’s Disease and Rheumatoid
Arthritis
Huntington’s disease is caused by mutation in the huntingtin
(HTT) gene resulting in the production of mutant huntingtin

(mutHTT) protein. mutHTT may induce the death of the
medium spiny neurons in the brain striatum. The mechanism of
neuronal cell loss involves the reduction of neurotrophic factors,
such as brain-derived neurotrophic factor (BDNF). A study
using a mouse model of Huntington’s disease demonstrated
that treatment with MSCs overexpressing BDNF and/or NGF
produced better therapeutic effects compared with treatment
with naive MSCs (Dey et al., 2010).

A study on rat and mouse models of arthritis showed that
genetically modified MSCs expressing human soluble tumor
necrosis factor receptor type 2 (hsTNFR) could partially prevent
arthritis symptoms and produced better therapeutic effects than
naive MSCs. However, MSC-based treatment was still less
effective than treatment with dexamethasone. In addition to
the intrinsic anti-inflammatory properties of the MSCs, the
expression of hsTNFR might inhibit the pro-inflammatory effects
of TNF-α. hsTNFR could bind and decoy TNFα and thus block
the TNF-α-mediated inflammatory effect (Liu et al., 2013).

More recently, MSCs expressing HGF were reported for the
treatment of rheumatoid arthritis in mice. The study showed that
MSC-HGF could alleviate arthritis symptoms, but at the later
phase of the disease, the effect was not better than treatment with
naive MSCs. HGF at the early phase of the disease displayed an
immunosuppression effect, but at a later phase, HGF induced
the activation of fibroblast-like synoviocytes. These cells had
the capacity to produce Il-6, which induced inflammation, cell
proliferation, and decreased apoptosis (Dong et al., 2020).

CONCLUSION

Engineered MSCs have been used successfully to treat various
diseases and conditions in animal models. However, it is
important to note that animal models might not be similar
to human diseases/conditions. Therefore, the results should be
interpreted cautiously as a translational study in human so far did
not show any positive result. Nevertheless, MSC-based therapy is
still a promising new therapeutic modality for various conditions,
and it is clear that enhancement of its therapeutic effects can
be achieved by inducting the expression of beneficial paracrine
factors. Further studies are still needed to accelerate the pre-
clinical findings into clinical application.
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