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Abstract
Working from a dataset of 118 billion messages running from the start of 2009 to the
end of 2019, we identify and explore the relative daily use of over 150 languages on
Twitter. We find that eight languages comprise 80% of all tweets, with English,
Japanese, Spanish, Arabic, and Portuguese being the most dominant. To quantify
social spreading in each language over time, we compute the ‘contagion ratio’: The
balance of retweets to organic messages. We find that for the most common
languages on Twitter there is a growing tendency, though not universal, to retweet
rather than share new content. By the end of 2019, the contagion ratios for half of the
top 30 languages, including English and Spanish, had reached above 1—the naive
contagion threshold. In 2019, the top 5 languages with the highest average daily
ratios were, in order, Thai (7.3), Hindi, Tamil, Urdu, and Catalan, while the bottom 5
were Russian, Swedish, Esperanto, Cebuano, and Finnish (0.26). Further, we show that
over time, the contagion ratios for most common languages are growing more
strongly than those of rare languages.
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1 Introduction
Users of social media are presented with a choice: post nothing at all; post something
original; or re-post (“retweet” in the case of Twitter) an existing post. The simple am-
plifying mechanism of reposting encodes a unique digital and behavioral aspect of social
contagion, with increasingly important ramifications as interactions and conversations on
social media platforms such as Twitter tend to mirror the dynamics of major global and
local events [1–4].

Previous studies have explored the role of retweeting in the social contagion literature,
though the vast majority of this research is limited to either a given language (e.g., English
tweets) or a short period [1, 2, 5, 6]. Here, drawing on a 10% random sample from over a
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decade’s worth of tweets, we track the rate of originally authored messages, retweets, and
social amplification for over 100 languages.

We describe distinct usage patterns of retweets for certain populations. For exam-
ple, Thai, Korean, and Hindi have the highest contagion ratios, while Japanese, Russian,
Swedish, and Finish lie at the other end of the spectrum. While there is a wide range of
motives and practices associated with retweeting, our object of study is the simple differ-
entiation of observed behavior between the act of replication of anything and the act of de
novo generation (i.e., between retweeted and what we will call organic messages).

We acknowledge two important limitations from the start. First, while it may be tempt-
ing to naively view ideas spreading as infectious diseases, the analogy falls well short of
capturing the full gamut of social contagion mechanisms [7–16], and a full understanding
of social contagion remains to be established. And second, while higher contagion ratios
are in part due to active social amplification by users, they may also, for example, reflect
changes in Twitter’s design of the retweet feature, changes in demographics, or changes
in a population’s general familiarity with social media. Future work will shed light on the
psychological and behavioral drivers for the use of retweets in each language across geo-
graphical and societal markers, including countries and communities.

1.1 Background and motivation
Social contagion has been extensively studied across many disciplines including market-
ing [17–20], finance [21–24], sociology [25–27], and medicine [28–30]. Because it can be
easier to access data on human social behavior from social media outlets than from other
sources such as in-person or text-message conversations, social contagion dynamics are
often examined in the context of messages posted and subsequently re-posted on social
media platforms [31–34]. Indeed, the flow of information in the context of social con-
tagion on digital media outlets, especially Twitter, has been widely studied over the last
decade [6, 35], with attention paid to the spreading of certain kinds of messages, such as
rumours [36–40], misinformation and “fake news” [41–44]. Several models have also been
proposed to predict the spread of information on Twitter [45], while other models have
shown the differences in which various topics can propagate throughout social networks
[46, 47]. Studies have also investigated the extent to which information spread on Twitter
can have an echo chamber effect [48–50].

The body of research shows overwhelming evidence that retweeting is a key instrument
of social contagion on Twitter [3, 51]. One of the earliest analysis of Twitter by Kwak et
al. [52] suggests that a retweet can reach an average of a thousand users regardless of the
social network of its original author, spreading its content instantly across different hubs
of the full Twitter social network. While seemingly simple, there are different styles and
drivers of retweeting [2]. The practice of retweeting has become a convention on Twitter
to spread information, especially for celebrities. Researchers argue celebrities can act as
hubs of social contagion by studying the flow of retweets across their focal networks [5].
Recent work shows how retweets of officials can be either alarming or reassuring amid the
COVID–19 pandemic [53, 54]. Statistical features of retweets reveal a strong association
between links and hashtags in most retweeted messages [1]. Retweeting is not only an act
in which users can spread information, but a mechanism for actors to become involved in
a conversation without being active participants [2]. The use of retweets empirically alters
the visibility of information and how fast messages can spread on the platform [4].
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Other studies have quantified language usage on social media [55, 56], particularly on
Twitter [57, 58]. While investigators have studied the use of retweets in the context of so-
cial contagion using network-based approaches [35, 46, 54, 59], little research has been
done regarding the statistical variability of retweets across the vast majority of languages.
In this paper, by applying an updated language identification (LID) process to over a
decade of Twitter messages, we explore a macroscopic description of social contagion
through the use of retweets across languages on Twitter. Our study addresses a unique
property of social contagion on Twitter by statistically quantifying the rate of retweets in
each language. We show how the practice of retweeting varies across different languages
and how retweeting naturally lends itself to micro-level discussions of social contagion on
Twitter, which can also be extended to other social media outlets with similar features.

1.2 Overview
We structure our paper as follows. First, we discuss the state-of-the-art tools presently
used for language detection of short and informal messages (e.g., tweets). We then de-
scribe our dataset and processing pipeline to answer some key questions regarding social
contagion through the use of retweets. Based on our considerations, we deploy FastText-
LID [60] to identify and explore the evolution of 100+ languages in over 118 billion mes-
sages collected via Twitter’s 10% random sample (decahose) from 2009 to 2020 [61].

For messages posted after 2013, we also analyze language labels provided by Twitter’s
proprietary LID algorithm and justify using FastText-LID as an alternative LID tool to
overcome the challenge of missing language labels in the historical feed from Twitter (see
also Hong et al. [62]).

We study the empirical dynamics of replication: The rate at which users choose to
retweet instead of generating original content; and how that rate varies across languages
temporally. We quantify the ratio of retweets to new messages (contagion ratio) in each
language. In most common languages on Twitter, we show that this ratio reveals a growing
tendency to retweet.

Finally, we present a detailed comparison with the historical data feed in Appendix A.
We conclude with an analytical validation of our contagion ratios (Appendix B), and the
impact of tweet-length on language detection (Appendix C). We also provide an online
appendix at: http://compstorylab.org/storywrangler/papers/tlid/.

2 Tweet language identification
Twitter is a well-structured streaming source of sociotechnical data, allowing for the study
of dynamical linguistics and cultural phenomena [63, 64]. Of course, like many other social
platforms, Twitter represents only a subsample of the publicly declared views, utterances,
and interactions of millions of individuals, organizations, and automated accounts (e.g.,
social bots) around the world [65–68]. Researchers have nevertheless shown that Twit-
ter’s collective conversation mirrors the dynamics of local and global events [69] includ-
ing earthquakes [70], flu and influenza [71, 72], crowdsourcing and disaster relief [73, 74],
major political affairs [75], and fame dynamics for political figures and celebrities [76].
Moreover, analyses of social media data and digital text corpora over the last decade have
advanced natural language processing (NLP) research [77–79] such as language detection
[80–83], sentiment analysis [84–88], word embeddings [89–92], and machine translation
[93–95].

http://compstorylab.org/storywrangler/papers/tlid/
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LID is often referred to as a solved problem in NLP research [96–100], especially for
properly formatted documents, such as books, newspapers, and other long-form digital
texts. Language detection for tweets, however, is a challenging task due to the nature of
the platform. Every day, millions of text snippets are posted to Twitter and written in many
languages along with misspellings, catchphrases, memes, hashtags, and emojis, as well as
images, gifs, and videos. Encoding many cultural phenomena semantically, these features
contribute to the unique aspects of language usage on Twitter that are distinct from studies
of language on longer, edited corpora [101].

A key challenge of LID on Twitter data is the absence of a large, public, annotated corpus
of tweets covering most languages for training and evaluation of LID algorithms. Although
researchers have compiled a handful of manually labeled datasets of Twitter messages, the
proposed datasets were notably small compared to the size of daily messages on Twitter
and limited to a few common languages [81–83]. They showed, however, that most off-
the-shelf LID methods perform relatively well when tested on annotated tweets.

As of early 2013, Twitter introduced language predictions classified by their internal
algorithm in the historical data feed [102]. Since the LID algorithm used by Twitter is pro-
prietary, we can only refer to a simple evaluation of their own model.1 Our analysis of
Twitter’s language labels indicates Twitter appears to have tested several language detec-
tion methods, or perhaps different parameters, between 2013 and 2016.

Given access to additional information about the author of a tweet, the LID task would
conceivably be much more accurate. For example, if the training data for prediction in-
cluded any or all of the self-reported locations found in a user’s ‘bio’, the GPS coordinates
of their most recent tweet, the language they prefer to read messages in, the language asso-
ciated with individuals they follow or who follow them, and their collective tweet history,
we expect the predictions would improve considerably. However, for the present investi-
gation, we assume the only available predictors are found in the message itself. Our goal
is to use the state-of-the-art language detection tools to get consistent language labels
for messages in our data set to enable us to investigate broader questions about linguistic
dynamics and the growth of retweets on the platform over time.

2.1 Open-source tools for LID
Several studies have looked closely at language identification and detection for short-text
[103–110], particularly on Twitter where users are limited to a few characters per tweet
(140 prior to the last few months of 2017, 280 thereafter [111]). Researchers have outlined
common challenges specific to this platform [112, 113].

Most studies share a strong consensus that language identification of tweets is an excep-
tionally difficult task for several reasons. First, language classification models are usually
trained over formal and large corpora, while most messages shared on Twitter are infor-
mal and composed of 140 characters or fewer [81, 82] (see Appendix C for more details).
Second, the informal nature of the content is also a function of linguistic and cultural
norms; some languages are used differently over social media compared to the way they
are normally used in books and formal documents. Third, users are not forced to choose
a single language for each message; indeed messages are often posted with words from
several languages found in a single tweet. Therefore, the combination of short, informal,

1https://blog.twitter.com/engineering/en_us/a/2015/evaluating-language-identification-performance.html

https://blog.twitter.com/engineering/en_us/a/2015/evaluating-language-identification-performance.html
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and multilingual posts on Twitter makes language detection much more difficult com-
pared to LID of formal documents [114]. Finally, the lack of large collections of verified
ground-truth across most languages is challenging for data scientists seeking to fine-tune
language detection models using Twitter data [81, 115, 116].

Researchers have evaluated off-the-shelf LID tools on substantial subsets of Twitter data
for a limited number of languages [81, 82, 116]. For example, Google’s Compact Language
Detector (versions CLD-12 and CLD-23) offer open-source implementations of the default
LID tool in the Chrome browser to detect language used on web pages using a naive Bayes
classifier. In 2012, Lui and Baldwin [80] proposed a model called langid that uses an n-
gram-based multinomial naive Bayes classifier. They evaluated langid and showed that it
outperforms Google’s CLD on multiple datasets. A majority-vote ensemble of LID models
is also proposed by Lui et al. [82] that combines both Google’s CLD and langid to improve
classification accuracy for Twitter data.

Although using a majority-vote ensemble of LID models may be the best option to maxi-
mize accuracy, there are a few critical trade-offs including speed and uncertainty. The first
challenge of using an ensemble is weighing the votes of different models. One can propose
treating all models equally and taking the majority vote. This becomes evidently compli-
cated in case of a tie, or when models are completely unclear on a given tweet. Treating
all models equally is an arguably flawed assumption given that not all models will have the
same confidence in each prediction—if any is reported. Unfortunately, most LID models
either decline to report a confidence score, or lack a clear and consistent way of measuring
their confidence. Finally, running multiple LID classifiers on every tweet is computation-
ally expensive and time-consuming.

Recent advances in word embeddings powered by deep learning demonstrate some
of the greatest breakthroughs across many NLP tasks including LID. Unlike previous
methodologies, Devlin et al. [90] introduces a new language representation model called
BERT. An additional output layer can be added to the pre-trained model to harvest the
power of the distributed language representations, which enables the model to carry out
various NLP tasks such as LID.

FastText [60] is a recently proposed approach for text classification that uses n-gram
features similar to the model described by Mikolov et al. [117]. FastText employs vari-
ous tricks [91, 92, 118] in order to train a simple neural network using stochastic gradient
descent and a linearly decaying learning rate for text classification. While FastText is a
language model that can be used for various text mining tasks, it requires an additional
step of producing vector language representations to be used for LID. To accomplish that,
we use an off-the-shelf language identification tool [119] that uses the word embeddings
produced by the model. The proposed tool uses a hierarchical softmax function [60, 117]
to efficiently compute the probability distribution over the predefined classes (i.e., lan-
guages). For convenience, we will refer to the off-the-shelf LID tool [119] as FastText-LID
throughout the paper. The authors show that FastText-LID is on par with deep learning
models [120, 121] in terms of accuracy and consistency, yet orders of magnitude faster in
terms of inference and training time [60]. They also show that FastText-LID outperforms
previously introduced LID tools such as langid.4

2http://code.google.com/p/chromium-compact-language-detector/
3https://github.com/CLD2Owners/cld2
4https://fasttext.cc/blog/2017/10/02/blog-post.html

http://code.google.com/p/chromium-compact-language-detector/
https://github.com/CLD2Owners/cld2
https://fasttext.cc/blog/2017/10/02/blog-post.html


Alshaabi et al. EPJ Data Science           (2021) 10:15 Page 6 of 28

2.2 Processing pipeline
While there are many tools to consider for LID, it is important for us to ensure that the lan-
guage classification process stays rather consistent to investigate our key question about
the growth of retweets over time. In light of the technical challenges discussed in the pre-
vious section, we have confined this work to using FastText-LID [119] due to its consistent
and reliable performance in terms of inference time and accuracy.

To avoid biasing our language classification process, we filter out Twitter-specific
content prior to passing tweets through the FastText-LID model. This is a simple
strategy originally proposed by Tromp et al. [103] to improve language classification
[82, 122]. Specifically, we remove the prefix associated with retweets (“RT”), links (e.g.,
“https://twitter.com”), hashtags (e.g., “#newyear”), handles (e.g., “@username”), html
codes (e.g., “&gt”), emojis, and any redundant whitespaces.

Once we filter out all Twitter-specific content, we feed the remaining text through the
FastText-LID neural network and select the predicted language with the highest confi-
dence score as our ground-truth language label. If the confidence score of a given pre-
diction is less than 25%, we label that tweet as Undefined (und). Similarly, if no language
classification is made by the Twitter-LID model, Twitter flags the language of the message
as undefined [123, 124]. We provide a list of all language labels assigned by FastText-LID
compared to the ones served by Twitter-LID in Table 1.

We subsequently extract day-scale time series and Zipf distributions for uni-, bi-, and tri-
grams and make them available through an analytical instrument entitled Storywrangler.
Our tool is publicly available online at: https://storywrangling.org/. See Alshaabi et al.
[125] for technical details about our project.

3 Results and discussion
3.1 Temporal and empirical statistics
We have collected a random 10% sample of all public tweets posted on the Twitter plat-
form starting January 1, 2009. Using the steps described in Sect. 2.2, we have implemented
a simple pipeline to preprocess messages and obtain language labels using FastText-LID
[119]. Our source code along with our documentation is publicly available online on a Git-
lab repository.5 Here, we evaluate our results by comparing the language labels obtained
by FastText-LID to those found in the metadata provided by Twitter’s internal LID algo-
rithm(s). Our initial analysis of the Decahose metadata indicated missing language labels
until 2013, when Twitter began offering a language prediction (we offer an approach to
detecting corrupted time series in Dodds et al. [126]).

We find that our classification of tweets using FastText-LID notably improves the consis-
tency of language labels when compared to the labels served with the historical streaming
feed. In Fig. 1A, we display a weekly rolling average of the daily number of languages de-
tected by each classifier over time. We see that Twitter’s language detection has evolved
over time. The number of languages stabilized but continued to fluctuate in a manner
that is not consistent, with uncommon languages having zero observations on some given
days. By contrast, the FastText-LID time series of the number of languages shows some
fluctuations in the earlier years—likely the result of the smaller and less diverse user base
in the late 2000s—but stabilizes before Twitter introduces language labels. We note that

5https://gitlab.com/compstorylab/storywrangler

https://twitter.com
https://storywrangling.org/
https://gitlab.com/compstorylab/storywrangler
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Figure 1 Language time series for the Twitter historical feed and FastText-LID classified tweets. (A) Number of
languages reported by Twitter-LID (red) and classified by FastText-LID (black) since September 2008.
Fluctuations in late 2012 and early 2013 for the Twitter language time series are indicative of inconsistent
classifications. (B) Rate of usage by language using FastText-LID maintains consistent behavior throughout
that period. The change in language distribution when Twitter was relatively immature can be readily
seen—for instance, English accounted for an exceedingly high proportion of activity on the platform in 2009,
owing to Twitter’s inception in an English-speaking region

the fluctuations in the time series during the early years of Twitter (before 2012) and the
first week of 2017 are primarily caused by unexpected service outages which resulted in
missing data.

FastText-LID classifies up to 173 languages, some of which are rare, thus the occasional
dropout of a language seen in this time series is expected. On the other hand, Twitter-
LID captures up to 73 languages, some of which are experimental and no longer available
in recent years. Nonetheless, Fig. 1B shows that the overall rate of usage by language is
not impaired by the missing data, and maintained consistent behavior throughout the last
decade.

We compute annual confusion matrices to examine the language labels classified by
FastText-LID compared to those found in the historical data feed. Upon inspection of the
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computed confusion matrices, we find disagreement during the first few years of Twitter’s
introduction of the LID feature to the platform. As anticipated, the predicted language
for the majority of tweets harmonizes across both classifiers for recent years (see Fig. 7).
We notice some disagreement between the two classifiers on expected edge-cases such as
Italian, Spanish, and Portuguese where the lexical similarity among these languages is very
high [127–130]. Overall, our examination of average language usage over time demon-
strates that FastText-LID is on par with Twitter’s estimation. We show the corresponding
Zipf distribution of language usage for each classifier, and highlight the normalized ratio
difference between them for the most used languages on the platform in Figs. 8–9. We
point the reader’s attention to Appendix A for further details of our comparison.

Furthermore, we display a heatmap of the number of messages for each language as clas-
sified by FastText-LID in our data set (see Fig. 2). We have over 118 billion messages be-
tween 2009-01-01 and 2019-12-31 spanning 173 languages. English is the most used lan-
guage on the platform with a little under 42 billion messages throughout the last decade.
Although the number of Japanese speakers is much smaller than the number of English
speakers around the globe, Japanese has approximately 21 billion messages. Spanish—the
third most prominent language on Twitter—is shy of 11 billion messages. Arabic and Por-
tuguese rank next with about 7 billion messages for each. We note that the top 10 languages
comprise 85% of the daily volume of messages posted on the platform.

In Fig. 3, we show the flow of annual rank dynamics of the 15 most used languages on
Twitter between 2009 and 2020. For ease of description, we will refer to Undefined as a
language class. The top 5 most common languages on Twitter (English, Japanese, Spanish,
Undefined, and Portuguese) are consistent, indicating a steady rate of usage of these lan-
guages on the platform. The language rankings correspond with worldwide events such
as the Arab Spring [131–134], K-pop, and political events [76]. “Undefined” is especially
interesting as it covers a wide range of content such as emojis, memes, and other media
shared on Twitter but can’t necessarily be associated with a given language. Russian, how-
ever, starts to grow on the platform after 2011 until it peaks with a rank of 7 in 2015, then
drops down to rank 15 as of the end of 2019. Other languages such as German, Indone-
sian, and Dutch show a similar trend down in ranking. This shift is not necessarily caused
by a drop in the rate of usage of these languages, but it is rather an artifact prompted by
the growth of other languages on Twitter.

3.2 Quantifying Twitter’s social contagion: separating organic and retweeted
messages

We take a closer look at the flow of information among different languages on the platform,
specifically the use of the “retweet” feature as a way of spreading information. Encoding
a behavioral feature initially invented by users, Twitter formalized the retweet feature in
November 2009 [135]. Changes in platform design and the increasing popularity of mobile
apps promoted the RT as a mechanism for spreading. In April 2015, Twitter introduced the
ability to comment on a retweet message or “Quote Tweet”(QT) [136] a message, distinct
from a message reply [137].

To quantify the rate of usage of each language with respect to these different means
by which people communicate on the platform, we categorize messages on Twitter into
two types: “Organic Tweets” (OT), and “Retweets” (RT). The former category (OT) en-
compasses original messages that are explicitly authored by users, while the latter cate-
gory (RT) captures messages that are shared (i.e. amplified) by users. We break each quote
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Figure 2 Overall dataset statistics. Number of messages captured in our dataset as classified by the
FastText-LID algorithm between 2009-01-01 and 2019-12-31, which sums up to approximately 118 billion
messages throughout that period (languages are sorted by popularity). This collection represents roughly
10% of all messages ever posted

tweet into two separate messages: a comment and a retweet. We exclude retweets while
including all added text (comments) found in quote tweets for the OT category.

For each day t and for each language �, we calculate the raw frequency (count) of organic
messages f (OT)

�,t , and retweets f (RT)
�,t . We further determine the frequency of all tweets (AT)

such that: f (AT)
�,t = f (OT)

�,t + f (RT)
�,t . The corresponding rate of usages (normalized frequencies)

for these two categories are then:

p(OT)
t,� =

f (OT)
t,�

f (AT)
t,�

, and p(RT)
t,� =

f (RT)
t,�

f (AT)
t,�

.
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Figure 3 Annual average rank of the most used languages on Twitter between 2009 and 2019. English and
Japanese show the most consistent rank time series. Spanish, and Portuguese are also relatively stable over
time. Undefined—which covers a wide variety of content such as emojis, links, pictures, and other
media—also has a consistent rank time series. The rise of languages on the platform correlates strongly with
international events including Arab Spring and K-pop, as evident in both the Arabic and Korean time series,
respectively. Russian, German, Indonesian, and Dutch moved down in rank. This shift is not necessarily due to
a dramatic drop in the rate of usage of these languages, but is likely an artifact of increasing growth of other
languages on Twitter such as Thai, Turkish, Arabic, Korean, etc

3.3 Measuring social and linguistic wildfire through the growth of retweets
To further investigate the growth of retweets, we use the ratio of retweeted messages to
organic messages as an intuitive and interpretable analytical measure to track this social
amplification phenomenon. We define the ‘contagion ratio’ as:

R�,t = f (RT)
�,t /f (OT)

�,t .

In 2018, the contagion ratio exceeded 1, indicating a higher number of retweeted mes-
sages than organic messages (Fig. 4). The overall count for organic messages peaked in the
last quarter of 2013, after which it declined slowly as the number of retweeted messages
climbed to approximately 1.2 retweeted messages for every organic message at the end of
2019. Thereafter, the contagion ratio declined through 2020 with the exception of a surge
of retweets in the summer amid the nationwide protests sparked by the murder of George
Floyd.6

In 2020, Twitter’s developers redesigned their retweet mechanism, purposefully prompt-
ing users to write their own commentary using the Quote Tweet [138], along with several
new policies to counter synthetic and manipulated media [139–141]. While the long up-
ward trend of the contagion ratio is in part due to increasingly active social amplification
by users, the recent trend demonstrates how social amplification on Twitter is highly sus-
ceptible to systematic changes in the platform design. Twitter has also introduced several
features throughout the last decade, such as tweet ranking, and extended tweet length
that may intrinsically influence how users receive and share information in their social

6https://www.nytimes.com/2020/05/31/us/george-floyd-investigation.html

https://www.nytimes.com/2020/05/31/us/george-floyd-investigation.html
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Figure 4 Timeseries for organic messages, retweeted messages, and average contagion ratio for all
languages. (A) Monthly average rate of usage of organic messages (p(OT)

t,� , blue), and retweeted messages

(p(RT)
t,� , orange). The solid red line highlights the steady rise of the contagion ratio R�,t . (B) Frequency of organic

messages (f (OT)
�,t , blue), compared to retweeted messages (f (RT)

�,t , orange). The areas shaded in light grey
starting in early 2018 highlights an interesting shift on the platform where the number of retweeted messages
has exceeded the number of organic messages. An interactive version of the figure for all languages is
available in an online appendix: http://compstorylab.org/storywrangler/papers/tlid/files/ratio_timeseries.html

networks.7 We investigate the robustness of our findings regarding contagion ratios in
light of some of these changes in Appendix B and Appendix C. Future work will shed light
on various aspects of social amplification on Twitter with respect to the evolution of the
platform design, and behavioral drivers for the use of retweets in each language across
communities.

Finally, we show weekly aggregation of the rate of usage pt,� for the top 30 ranked lan-
guages of 2019 in Fig. 5. The time series demonstrate a recent sociolinguistic shift: Several
languages including English, Spanish, Thai, Korean, and French have transitioned to hav-
ing a higher rate of retweeted messages p(RT)

t,� than organic messages p(OT)
t,� . Thai appears to

be the first language to have made this transition in late 2013. In Fig. 6, we show a heatmap
of the average contagion ratio R�,t for the top 30 most used languages on Twitter per year.
With the exception of Indonesian, which showed a small bump between 2010 and 2013,
most other languages began adopting a higher ratio of retweeted content in 2014. Thai
has the highest number of retweeted messages, with an average of 7 retweeted messages
for every organic message. Other languages, for example, Hindi, Korean, Urdu, Catalan,
and Tamil average between 2 to 4 retweeted messages for every organic message. On the
other hand, Japanese—the second most used language on the platform—does not exhibit
this trend. Similarly, German, Italian, and Russian maintain higher rates of organic tweets.
The trend of increasing preference for retweeted messages, though not universal, is evi-
dent among most languages on Twitter. We highlight the top 10 languages with the highest
and lowest average contagion ratio per year in Table 2 and Table 3, respectively.

7https://help.twitter.com/en/using-twitter/twitter-conversations

http://compstorylab.org/storywrangler/papers/tlid/files/ratio_timeseries.html
https://help.twitter.com/en/using-twitter/twitter-conversations
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Figure 5 Weekly rate of usage of the top 30 languages (sorted by popularity). For each language, we show a
weekly average rate of usage for organic messages (p(OT)

t,� , blue) compared to retweeted messages (p(RT)
t,� ,

orange). The areas highlighted in light shades of gray represent weeks where the rate of retweeted messages
is higher than the rate of organic messages. An interactive version featuring all languages is available in an
online appendix: http://compstorylab.org/storywrangler/papers/tlid/files/retweets_timeseries.html

4 Concluding remarks
Understanding how stories spread through and persist within populations has always been
central to understanding social phenomena. In a time when information can flow instantly
and freely online, the study of social contagion has only become more important.

In the sphere of Twitter, the practice of retweeting is complicated from a social and
psychological point of view. There is a diverse set of reasons for participants to retweet.
For example, scientists and academics can use this elementary feature to share their find-
ings and discoveries with their colleagues. Celebrities and political actors can benefit from
other people retweeting their stories for self-promotion. Attackers can also take advantage
of this natural feature of social contagion to pursue malicious intents, deploy social bots,
and spread fake news.

In this paper, we have analyzed over a hundred billion messages posted on Twitter
throughout the last decade. We presented an alternative approach for obtaining language
labels using FastText-LID in order to overcome the challenge of missing labels in the Dec-
ahose dataset, obtaining consistent language labels for 100+ languages. We acknowledge
that shortcomings of language detection for short and informal text (e.g., tweets) are well

http://compstorylab.org/storywrangler/papers/tlid/files/retweets_timeseries.html
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Figure 6 Timelapse of contagion ratios. The average ratio is plotted against year for the top 30 ranked
languages of 2019. Colored cells indicate a ratio higher than 0.5 whereas ratios below 0.5 are colored in white.
Table 2 shows the top 10 languages with the highest average contagion ratio per year, while Table 3 shows
the bottom 10 languages with the lowest average contagion ratio per year

known in the NLP literature. Using FastText-LID is not necessarily the best approach for
language identification. Our analysis may be subject to implicit measurement biases and
errors introduced by word embeddings used to train the language detection tool using
FastText [60]. We emphasize that we have not intended to reinvent or improve FastText-
LID in this work; we have used FastText-LID only as a (well-established and tested) tool
to enable the study of social contagion dynamics on Twitter. Nevertheless, we have pre-
sented some further analysis of FastText-LID compared to Twitter-LID in Appendix A.
Future work will undoubtedly continue to improve language detection for short text, par-
ticularly for social media platforms.

Our results comparing language usage over time suggest a systematic shift on Twitter.
We found a recent tendency among most languages to increasingly retweet (spread infor-
mation) rather than generate new content. Understanding the general rise of retweeted
messages requires further investigation. Possible partial causes might lie in changes in
the design of the platform, increases in bot activity, a fundamental shift in human infor-
mation processing as social media becomes more familiar to users, and changes in the
demographics of users (e.g., younger users joining the platform).

The metrics we have used to compute our contagion ratios are simple but rather limited.
We primarily focused on tracking the rate of organic tweets and retweets to quantify social
amplification of messages on the platform. While our approach of measuring the statis-
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tical properties of contagion ratios is important, it falls short of capturing how retweets
propagate throughout the social networks of users. Future work may deploy a network-
based approach to investigate the flow of retweets among users and followers. Whether or
not the information is differentially propagated across languages, social groups, economic
strata, or geographical regions is an important question for future research, and beyond
the scope of our present work.

Geolocation information for Twitter is also limited, and here we have only examined
contagion ratios at the language level. Language, transcending borders as it does, can nev-
ertheless be used differently across communities. For instance, characterizing the tempo-
ral dynamics of contagion ratios for English, which is used all around the globe, is very
different from doing so for Thai—a language that is used within a geographically well-
defined population. Different social and geographical communities have cultures of com-
munication which will need to be explored in future work.

In particular, it is important to study the relationship between social contagion dynam-
ics, geographical region, and language. It might be the case that contagion dynamics are
more homogeneous across geographic regions even when each geographical region dis-
plays high language diversity, or vice versa. However, in order to conduct this line of re-
search, it is necessary to have accurate geotagging of tweets, which is currently not the
case except for a very small subsample [142]. Future research could focus on implement-
ing accurate geotagging algorithms that assign tweets a probabilistic geographical location
based on their text and user metadata, while fully respecting privacy through judicious use
of masking algorithms.

Appendix A: Comparison with the historical feed
We have collected all language labels served in the historical data feed, along with the pre-
dicted language label classified by FastText-LID for every individual tweet in our dataset.
We provide a list of all language labels assigned by FastText-LID compared to the ones
served by Twitter-LID in Table 1. To evaluate the agreement between the two classifiers,
we computed annual confusion matrices starting from 2013 to the end of 2019. In Fig. 7,
we show confusion matrices for the 15 most dominate languages on Twitter for all tweets
authored in 2013 (Fig. 7A) and 2019 (Fig. 7B).

We observe some disagreement between the two classifiers during the early years of
Twitter’s introduction of the LID feature to the platform. In Fig. 8, we show the normalized
ratio difference δD� (i.e., divergence) between the two classifiers for all messages between
2014 and 2019. Divergence is calculated as:

δD� =
∣
∣
∣
∣

CF
� – CT

�

CF
� + CT

�

∣
∣
∣
∣
,

where CF
� is the number of messages captured by FastText-LID for language �, and CT

� is
the number of messages captured by Twitter-LID for language �.

We show Zipf distributions of all languages captured by FastText-LID and Twitter-LID
in Fig. 8A and Fig. 8B, respectively. FastText-LID recorded a total of 173 unique languages,
whereas Twitter-LID captured a total of 73 unique languages throughout that period.
Some of the languages reported by Twitter were experimental and no longer available
in recent years. In Fig. 8C, we display the joint distribution of all languages captured by



Alshaabi et al. EPJ Data Science           (2021) 10:15 Page 15 of 28

Table 1 Language codes for both FastText-LID and Twitter-LID tools

Language Fast-
Text

Twit-
ter

Afrikaans af –
Albanian sq –
Amharic am am
Arabic ar ar
Aragonese an –
Armenian hy hy
Assamese as –
Asturian ast –
Avaric av –
Azerbaijani az –
Bashkir ba –
Basque eu eu
Bavarian bar –
Belarusian be –
Bengali bn bn
Bihari bh –
Bishnupriya bpy –
Bosnian bs bs
Breton br –
Bulgarian bg bg
Burmese my my
Catalan ca ca
Cebuano ceb –
Cherokee – chr
Central-Bikol bcl –
Central-Kurdish ckb ckb
Chavacano cbk –
Chechen ce –
Chinese-Simplified – zh-cn
Chinese-Traditional – zh-tw
Chinese zh zh
Chuvash cv –
Cornish kw –
Corsican co –
Croatian hr –
Czech cs cs
Danish da da
Dimli diq –
Divehi dv dv
Dotyali dty –
Dutch nl nl
Eastern-Mari mhr –
Egyptian-Arabic arz –
Emiliano-Romagnolo eml –
English en en
Erzya myv –
Esperanto eo –
Estonian et et
Fiji-Hindi hif –
Filipino – fil
Finnish fi fi
French fr fr
Frisian fy –
Gaelic gd –
Gallegan gl –
Georgian ka ka
German de de
Goan-Konkani gom –
Greek el el
Guarani gn –
Gujarati gu gu

Language Fast-
Text

Twit-
ter

Haitian ht ht
Hebrew he he
Hindi hi hi
Hungarian hu hu
Icelandic is is
Ido io –
Iloko ilo –
Indonesian id in
Inuktitut – iu
Interlingua ia –
Interlingue ie –
Irish ga –
Italian it it
Japanese ja ja
Javanese jv –
Kalmyk xal –
Kannada kn kn
Karachay-Balkar krc –
Kazakh kk –
Khmer km km
Kirghiz ky –
Komi kv –
Korean ko ko
Kurdish ku –
Lao lo lo
Latin la –
Latvian lv lv
Lezghian lez –
Limburgan li –
Lithuanian lt lt
Lojban jbo –
Lombard lmo –
Lower-Sorbian dsb –
Luxembourgish lb –
Macedonian mk –
Maithili mai –
Malagasy mg –
Malayalam ml ml
Malay ms msa
Maltese mt –
Manx gv –
Marathi mr mr
Mazanderani mzn –
Minangkabau min –
Mingrelian xmf –
Mirandese mwl –
Mongolian mn –
Nahuatl nah –
Neapolitan nap –
Nepali ne ne
Newari new –
Northen-Frisian frr –
Northern-Luri lrc –
Norwegian no no
Nynorsk nn –
Occitan oc –
Oriya or or
Ossetic os –
Pampanga pam –
Panjabi pa pa
Persian fa fa

Language Fast-
Text

Twit-
ter

Pfaelzisch pfl –
Piemontese pms –
Polish pl pl
Portuguese pt pt
Pushto ps ps
Quechua qu –
Raeto-Romance rm –
Romanian ro ro
Russian-Buriat bxr –
Russian ru ru
Rusyn rue –
Sanskrit sa –
Sardinian sc –
Saxon nds –
Scots sco –
Serbian sr sr
Serbo-Croatian sh –
Sicilian scn –
Sindhi sd sd
Sinhala si si
Slovak sk –
Slovenian sl sl
Somali so –
Shona – sn
South-Azerbaijani azb –
Spanish es es
Sundanese su –
Swahili sw –
Swedish sv sv
Tagalog tl tl
Tajik tg –
Tamil ta ta
Tatar tt –
Telugu te te
Thai th th
Tibetan bo bo
Tosk-Albanian als –
Turkish tr tr
Turkmen tk –
Tuvinian tyv –
Uighur ug ug
Ukrainian uk uk
Upper-Sorbian hsb –
Urdu ur ur
Uzbek uz –
Venetian vec –
Veps vep –
Vietnamese vi vi
Vlaams vls –
Volapük vo –
Walloon wa –
Waray war –
Welsh cy cy
Western-Mari mrj –
Western-Panjabi pnb –
Wu-Chinese wuu –
Yakut sah –
Yiddish yi –
Yoruba yo –
Yue-Chinese yue –
Undefined und und
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Figure 7 Language identification confusion matrices. We show a subset of the full confusion matrix for
top-15 languages on Twitter. (A) Confusion matrix for tweets authored in 2013. The matrix indicates
substantial disagreement between the two classifiers during 2013, the first year of Twitter’s efforts to provide
language labels. (B) For the year 2019, both classifiers agree on the majority of tweets as indicated by the dark
diagonal line in the matrix. Minor disagreement between the two classifiers is evident for particular languages,
including German, Italian, and Undefined, and there is major disagreement for Indonesian and Dutch. Cells
with values below 0.01 are colored in white to indicate very minor disagreement between the two classifiers

both classifiers. Languages found left of vertical dashed gray line are more prominent us-
ing the FastText-LID model (e.g., Chinese (zh), Central-Kurdish (ckb), Uighur (ug), Sindhi
(sd)). Languages right of the line are identified more frequently by the Twitter-LID model
(e.g., Estonian (et), Haitian (ht)). Languages found within the light-blue area are only de-
tectable by one classifier but not the other. We note that ‘Unknown’ is an artificial label
that we added to flag messages with missing language labels in the metadata of our dataset.
We list divergence values δD� for all languages identified in our dataset in Fig. 9.

Appendix B: Analytical validation of contagion ratios
To investigate our margin of error for estimating contagion ratios, we find the subset of
messages that both classifiers have agreed on their language labels using the annual con-
fusion matrices we discussed in Appendix A. We compute an annual average of the con-
tagion ratios for this subset of messages. We highlight the top 10 languages with the high-
est and lowest average contagion ratio per year in Table 2 and Table 3, respectively. We
then compare the new set of annual contagion ratios with the original ones discussed in
Sect. 3.3. In particular, we compute the absolute difference

δ = |R – Rα|,

where R indicates the contagion ratios of all messages, and Rα indicates the contagion ra-
tios of the subset of messages that both FastText-LID and Twitter-LID models have unan-
imously agreed on their language labels.

In Table 4, we show the top 10 languages with the highest average values of δ’s. Languages
are sorted by the values of δ’s in 2019. Higher values of δ’s indicate high uncertainty due
to high disagreement on the language of the written messages between FastText-LID and
Twitter-LID. Lower values of δ’s, on the other hand, highlight better agreement between
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Figure 8 Language Zipf distributions. (A) Zipf distribution [143] of all languages captured by FastText-LID
model. (B) Zipf distribution for languages captured by Twitter-LID algorithm(s). The vertical axis in both panels
reports rate of usage of all messages pt,� between 2014 and 2019, while the horizontal axis shows the
corresponding rank of each language. FastText-LID recorded a total of 173 unique languages throughout that
period. On the other hand, Twittert-LID captured a total of 73 unique languages throughout that same period,
some of which were experimental and no longer available in recent years. (C) Joint distribution of all recorded
languages. Languages located near the vertical dashed gray line signify agreement between FastText-LID and
Twitter-LID, specifically that they captured a similar number of messages between 2014 and end of 2019.
Languages found left of this line are more prominent using the FastText-LID model, whereas languages right
of the line are identified more frequently by Twitter-LID model. Languages found within the light-blue area
are only detectable by one classifier but not the other where FastText-LID is colored in blue and Twitter is
colored in red. The color of the points highlights the normalized ratio difference δD� (i.e., divergence)
between the two classifiers, where CF

�
is the number of messages captured by FastText-LID for language �,

and CT
�
is the number of messages captured by Twitter-LID for language �. Hence, points with darker colors

indicate greater divergence between the two classifiers. A lookup table for language labels can be found in
the Table 1, and an online appendix of all languages is also available here:
http://compstorylab.org/storywrangler/papers/tlid/files/fasttext_twitter_timeseries.html

the two classifiers, and thus better confidence in our estimation of the contagion ratios.
We show the bottom 10 languages with the lowest average values of δ’s in Table 5.

In Fig. 10, we display a heatmap of δ’s for the top 30 ranked languages. We note low
values of δ’s for the top 10 languages on the platform. In other words, our contagion ratios
for the subset of messages that both classifiers have unanimously predicted their language
labels are roughly equivalent to our estimations in Table 2. By contrast, we note high dis-
agreement on Catalan messages. The two classifiers start off with unusual disagreement
in 2014 (δ = 0.52). The disagreement between the two models continues to grow leading
to a remarkably high value of δ = 1.80 in 2017. Thereafter, we observe a trend down in our

http://compstorylab.org/storywrangler/papers/tlid/files/fasttext_twitter_timeseries.html
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Figure 9 Language identification divergence. A normalized ratio difference δD� (i.e., divergence) closer to
zero implies strong agreement, whereby both classifiers captured approximately the same number of
messages over the last decade. Grey bars indicate higher rate of messages captured by FastText-LID, whereas
red bars highlight higher rate of messages captured by Twitter-LID

Table 2 Top 10 languages with the highest annual average contagion ratio (sorted by 2019)

Language 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Greek 0.01 0.05 0.07 0.20 0.42 0.65 0.83 1.11 1.29 1.42 1.27
French 0.02 0.10 0.13 0.22 0.34 0.56 0.76 0.94 1.09 1.40 1.37
English 0.03 0.14 0.20 0.31 0.37 0.56 0.71 0.91 1.15 1.44 1.44
Spanish 0.03 0.16 0.21 0.31 0.42 0.62 0.82 0.94 1.24 1.54 1.52
Korean 0.05 0.11 0.14 0.26 0.30 0.43 0.66 1.28 1.74 2.22 2.07
Catalan 0.01 0.08 0.12 0.21 0.30 0.52 0.74 0.98 1.80 2.44 2.10
Urdu 0.03 0.25 0.25 0.19 0.26 0.64 0.82 0.95 1.51 2.67 2.90
Tamil 0.01 0.04 0.10 0.16 0.22 0.54 0.82 1.30 1.84 2.40 2.96
Hindi 0.01 0.03 0.06 0.15 0.38 1.14 2.26 2.81 3.09 3.58 3.29
Thai 0.07 0.24 0.18 0.32 0.79 2.01 2.54 3.35 5.31 6.52 7.29

estimations, indicating that FastText-LID and Twitter-LID have slowly started to harmo-
nize their language predictions for Catalan messages through the past few years. We also
note similar trends for Hindi and Tagalog messages.

Our results show empirical evidence of inconsistent language labels in the historical
data feed between 2014 and 2017. Our margin of error for estimating contagion ratios
narrows down as FastText-LID and Twitter-LID unanimously yield their language predic-
tions for the majority of messages authored in recent years. Future investigations can help
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Table 3 Bottom 10 languages with the lowest annual average contagion ratio (sorted by 2019)

Language 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Finnish 0.02 0.11 0.10 0.11 0.14 0.18 0.23 0.26 0.29 0.31 0.26
Cebuano 0.01 0.07 0.09 0.13 0.14 0.22 0.24 0.29 0.32 0.33 0.30
Esperanto 0.01 0.08 0.09 0.11 0.13 0.18 0.24 0.34 0.41 0.47 0.38
Swedish 0.02 0.07 0.09 0.14 0.20 0.31 0.37 0.41 0.47 0.55 0.45
Russian 0.01 0.04 0.07 0.13 0.13 0.19 0.29 0.31 0.42 0.57 0.50
Dutch 0.02 0.11 0.16 0.23 0.23 0.28 0.32 0.36 0.42 0.52 0.51
German 0.02 0.07 0.09 0.13 0.17 0.26 0.34 0.38 0.42 0.58 0.52
Japanese 0.02 0.08 0.10 0.11 0.16 0.31 0.35 0.31 0.40 0.47 0.53
Polish 0.01 0.06 0.08 0.13 0.22 0.28 0.42 0.60 0.84 0.74 0.57
Persian 0.03 0.07 0.07 0.14 0.22 0.40 0.35 0.41 0.50 0.64 0.57

Table 4 Top 10 languages with the highest average margin of error for estimating contagion ratios
as a function of the agreement between FastText-LID and Twitter-LID (sorted by 2019)

Language 2014 2015 2016 2017 2018 2019

Undefined ±0.14 ±0.14 ±0.16 ±0.19 ±0.17 ±0.15
Dutch ±0.11 ±0.10 ±0.11 ±0.12 ±0.15 ±0.17
Swedish ±0.14 ±0.16 ±0.18 ±0.19 ±0.21 ±0.20
Serbian ±0.26 ±0.27 ±0.32 ±0.33 ±0.35 ±0.25
Cebuano ±0.22 ±0.24 ±0.29 ±0.32 ±0.33 ±0.30
Esperanto ±0.18 ±0.24 ±0.34 ±0.41 ±0.47 ±0.38
Indonesian ±0.21 ±0.18 ±0.18 ±0.24 ±0.39 ±0.40
Tagalog ±0.22 ±0.34 ±0.49 ±0.51 ±0.48 ±0.44
Hindi ±0.08 ±0.41 ±0.97 ±0.76 ±0.73 ±0.71
Catalan ±0.52 ±0.74 ±0.98 ±1.80 ±1.08 ±0.75

Table 5 Bottom 10 languages with the lowest average margin of error for estimating contagion
ratios as a function of the agreement between FastText-LID and Twitter-LID (sorted by 2019)

Language 2014 2015 2016 2017 2018 2019

Tamil ±0.03 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01
Greek ±0.13 ±0.07 ±0.01 ±0.01 ±0.01 ±0.01
Japanese ±0.01 ±0.01 ±0.01 ±0.01 ±0.02 ±0.02
Russian ±0.01 ±0.01 ±0.01 ±0.02 ±0.03 ±0.03
Persian ±0.10 ±0.06 ±0.06 ±0.05 ±0.04 ±0.03
Arabic ±0.04 ±0.03 ±0.02 ±0.02 ±0.03 ±0.04
Chinese ±0.04 ±0.04 ±0.04 ±0.05 ±0.06 ±0.08
English ±0.04 ±0.05 ±0.05 ±0.06 ±0.08 ±0.09
Thai ±0.03 ±0.03 ±0.04 ±0.06 ±0.08 ±0.09
Portuguese ±0.08 ±0.10 ±0.09 ±0.11 ±0.11 ±0.10

us shed light on some of the implicit biases of language detection models. Nonetheless,
our analysis supports our findings regarding the growth of retweets over time across most
languages.

Appendix C: Impact of tweet’s length on language detection
The informal and short texture of messages on Twitter—among many other reasons—
makes language detection of tweets remarkably challenging. Twitter has also introduced
several changes to the platform that notably impacted language identification. Particularly,
users were limited to 140 characters per message before the last few months of 2017 and
280 characters thereafter [111]. To investigate the level of uncertainty of language detec-
tion as a function of tweet length, we take a closer look at the number of messages that are
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Figure 10 Margin of error for contagion ratios. We compute the annual average of contagion ratios R for all
messages in the top 30 ranked languages as classified by FastText-LID and described in Sect. 3.3. Similarly, we
compute the annual average of contagion ratios Rα for the subset of messages that both classifiers have
unanimously labeled their language labels. We display the absolute difference δ = |R – Rα | to indicate our
margin of error for estimating contagion ratios as a function of the agreement between FastText-LID and
Twitter-LID models. White cells indicate that δ is below 0.05, whereas colored cells highlight values that are
equal to, or above 0.05. We show the top 10 languages with the highest average values of δ ’s per year in
Table 4. We also show the bottom 10 languages with the lowest average values of δ ’s per year in Table 5

classified differently by FastText-LID and Twitter-LID for the top 10 most used languages
on the platform between 2020-01-01 and 2020-01-07.

In Fig. 11, we display the daily number of mismatches (grey bars) between 2020-01-01
and 2020-01-07 (approximately 32 million messages for each day for the top-10 used lan-
guages), whereas the black line shows an average of that whole week. We also display a
histogram of the average number of characters of each message throughout that period.
We note that the distribution is remarkably skewed towards shorter messages on the plat-
form. The average length of messages is less than 140 characters, with a large spike around
the 140 character mark. Long messages—which include messages with links, hashtags, and
emojis—can exceed the theoretical 280 character limit because we do not follow the same
guidelines outlined by Twitter for counting the number of characters in each message.8 For
simplicity, we use the built-in Python function to get the exact number of characters in a
given message.9 As anticipated, our results indicate a higher proportion of short messages

8https://developer.twitter.com/en/docs/basics/counting-characters
9https://docs.python.org/3/library/functions.html#len

https://developer.twitter.com/en/docs/basics/counting-characters
https://docs.python.org/3/library/functions.html#len
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Figure 11 Language identification uncertainty as a function of tweet-length for top 10 most used languages
on Twitter. We display the number of messages that were classified differently by Twitter-LID model and
FastText-LID for the top-10 prominent languages as a function of the number of characters in each message.
Unlike Twitter, we count each character individually, which is why the length of each message may exceed
the 280 character limit. The grey lines indicate the daily number of mismatches between 2020-01-01 and
2020-01-07 (approximately 32 million messages for each day for the top-10 used languages), whereas the
black line shows an average of that whole week

Table 6 Average daily messages for the top 10 languages between 2020-01-01 and 2020-01-07
(approximately 32 million messages for each day)

Language Messages Mismatches

English 1.1× 107 0.0853
Japanese 6.8× 106 0.0268
Spanish 2.3× 106 0.0558
Thai 2.2× 106 0.0161
Portuguese 2.1× 106 0.0565
Korean 1.7× 106 0.0085
Arabic 1.5× 106 0.0080
Indonesian 8.1× 105 0.1203
French 7.9× 105 0.1305
Turkish 5.6× 105 0.0325

classified differently by FastText-LID and Twitter-LID models. We highlight the average
percentage of mismatches for the top 10 most used languages in Table 6 (languages are
sorted by popularity).

Furthermore, we examine a sample of messages authored through the month before and
after the switch to the 280 character limit. We do not observe any distributional changes in
FastText-LID’s confidence scores between the two months. We categorize messages into
four classes based on the confidence scores we get from FastText-LID’s neural network.
Predictions with confidence scores below 0.25 are labeled as Undefined (und). On the
other hand, messages with scores greater or equal to 0.25 but less than 0.5 are flagged as
predictions with low confidence (low). Predictions that have scores in the range [0.5, 0.75)
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Figure 12 Confidence scores of the FastText-LID neural network predictions for the month before and after
the shift to 280 characters. We categorize messages into four classes based on the confidence scores we get
from FastText-LID’s neural network. Predictions with confidence scores below 0.25 are labeled as Undefined
(und). Messages with scores greater or equal to 0.25 but less than 0.5 are flagged as predictions with low
confidence (low). Predictions that have scores in the range [0.5, 0.75) are considered moderate (mid), and
messages with higher scores are labeled as predictions with high confidence (high). We note a symmetry
indicating that the shift did not have a large impact on the network’s predictions across organic and
retweeted messages

are considered moderate (mid), and messages with higher scores are labeled as predictions
with high confidence (high).

In Fig. 12, we display the relative proportion of messages for each of the confidence
classes outlined above. First and foremost, we observe a very symmetrical layout indicating
that the shift does not have a notable impact on the network’s confidence in its predictions
between the two months examined here across organic and retweeted messages.

Moreover, we note that the overall rate of usage for each language does not change be-
fore and after the switch to longer messages. To validate that, we take a closer look at
the rate of usage for the top 10 most used languages throughout the past three years. In
Fig. 13A, we observe a very consistent frequency of usage across all languages, indicating
that the mechanistic shift to allow users to post longer messages does not have a notable
impact on the language detection process. Figure 13B and Fig. 13C show the growth of
long messages on the platform, while the rate of usage for the most used languages re-
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Figure 13 Weekly rate of usage for short and long messages. (A) Rate of usage for the top-10 used languages
averaged at the week scale for the past three years. The introduction of long messages (i.e., above 140 but
below 280 characters) does not change the overall language usage on the platform. (B)–(C) The growth of
long messages over time across organic and retweeted messages. We observe a much higher ratio of
retweets in longer messages than shorter messages

mains consistent. In Fig. 13C, we see the adoption of longer messages starting in 2017,
however, short messages still represent the majority of messages on the platform which
comprise 75% of all messages as of 2019.

We observe a much higher ratio of retweets in longer messages than shorter messages.
As of 2019, about 25% of all messages are long messages, and surprisingly, 80% of these
long messages are retweets. However, we only examined the use of languages over time
from a statistical point of view. The use of longer messages and the rate at which they are
likely to be retweeted are different across languages. Further investigations will be needed
to explore and explain this phenomenon.
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