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Abstract: In light of the state-of-the-art treatment options for patients with rheumatoid arthritis (RA),
a detailed and early quantification and detection of impaired hand function is desirable to allow
personalized treatment regiments and amend currently used subjective patient reported outcome
measures. This is the motivation to apply and adapt modern measurement technologies to quan-
tify, assess and analyze human hand movement using a marker-based optoelectronic measurement
system (OMS), which has been widely used to measure human motion. We complement these record-
ings with data from markerless (Doppler radar) sensors and data from both sensor technologies
are integrated with clinical outcomes of hand function. The technologies are leveraged to identify
hand movement characteristics in RA affected patients in comparison to healthy control subjects,
while performing functional tests, such as the Moberg-Picking-Up Test. The results presented discuss
the experimental framework and present the limiting factors imposed by the use of marker-based
measurements on hand function. The comparison of simple finger motion data, collected by the
OMS, to data recorded by a simple continuous wave radar suggests that radar is a promising option
for the objective assessment of hand function. Overall, the broad scope of integrating two measure-
ment technologies with traditional clinical tests shows promising potential for developing new
pathways in understanding of the role of functional outcomes for the RA pathology.

Keywords: arthritis; hand movement; hand function; optical measurement system; markerless
motion capture; Doppler radar; Moberg-Picking-Up Test

1. Introduction

Rheumatoid arthritis (RA) is a chronic inflammatory auto-immune disease [1]. Patients
suffering from RA show arthritis mainly of the finger and hand joints that may result in
permanent destruction of the affected skeletal sites. Therapeutic measures aim to control
inflammation and avoid irreversible tissue destruction of the affected joints. The diagno-
sis of RA, and in the course of the disease the assessment of disease activity, is based on
biochemical and physical characteristics, which are quantified using serology, physical exam-
ination and imaging procedures [2]. Hand function in these patients is impaired because of
pain, swelling and joint stiffness. Depending on the level of disease activity, RA patients have
lower skeletal muscle function [3]. In the clinical context, functional impairment is mainly
assessed using patient reported outcome measures, such as the Health Assessment Question-
naire (HAQ, [4]) for arthritis related physical impairment, visual analog scale (VAS) for global
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disease activity or hand specific questionnaires, such as the Michigan Hand Questionnaire
(MHQ) [5]. Furthermore, simple validated functional tests like isometric grip strength [6] or
the Moberg-Picking-Up Test (MPUT, [7]) can be used to quantify muscle performance and fine
motor skills but do not allow identifying and quantifying differences in movement patterns.
Additionally, these functional measures even though they are objective, often are not well
related with the above mentioned subjective patient reported outcome measures and do not
provide a resolution for discrepancies between clinical scores and subjective patient reported
disease activity. Age and sex both affect subjective and objective clinical hand function
outcomes in RA patients as we have shown in a recent study [8]. In light of the state-of-the-art
treatment options for RA patients, a detailed and early quantification and detection of disease
activity is desirable, see [9], to allow personalized treatment regiments and amend currently
used subjective patient reported outcome measures. Hand function can potentially serve as
an early indicator of change in disease activity and thus allow timely adaptation of patient
management procedures.

The current gold standard for capturing human movements are optoelectronic mea-
surement systems (OMS), see [10]. An OMS sends out light, which is being reflected by
optical markers, detects the reflection and estimates the 3D position of the marker using
time-of-flight-triangulation. While human gait has been measured and modeled in detail
for many years, in the reference of RA [11–13], comprehensive biomechanical description
of hand movement is sparse, with a few limited examples [14,15]. The assessment of hand
movement is complex due to the high number of degrees of freedom resulting from the
various finger and hand joints [16]. Thus, previous studies mainly investigated individual
fingers or very specific movements [17–19]. A detailed quantification of hand function
capturing simple tasks but also complex movements that can reflect subjectively observed
hand function impairment in patients with RA would be desirable. While achieving a
detailed kinematic description of hand function in RA patients based on OMS data is the
first step for a biomechanical characterization of hand function, data collection with these
methods is time consuming and requires a well equipped laboratory with optimal light con-
ditions. Furthermore, hand movement may be artificially changed because of restrictions
due to markers mounted on the skin and the artificial test environment. To acquire hand
function in a more natural environment, markerless capturing of movement is desirable.

In this context, Doppler radar is an attractive option for recording movement with-
out markers and independent of lighting conditions [20]. A Doppler radar sends out an
electromagnetic wave and measures its reflection. The received signal thus contains the
Doppler frequency shift fD, which is caused by a target moving towards or away from
the radar at specific speed. It can be calculated by fD ≈ 2v/λ, where λ is the wavelength
of the carrier signal and v is the speed radial to the line of sight of the radar. Further
modulations, which are called micro-Doppler signatures, arise in the presence of addi-
tional micro-motions and overlay the Doppler signal [21]. Doppler radars are capable of
measuring the speed of a target v by evaluating the Doppler frequency shift fD and in the
last decades have been used to detect various motion patterns, e.g., vital signs such as
heart and respiratory rate [22–26]. Furthermore, Range-Doppler-Maps have been used to
detect falls [27,28]. Besides that, Doppler radar can be used for gait analysis [29–32]. In ad-
dition, Doppler radar and the micro-Doppler envelopes measured with it are also used
for hand gesture recognition [33–36]. The previously mentioned examples of Doppler
radar usage to measure different human motions differ regarding the used radar wave-
form. A continuous wave (CW) radar without any frequency modulation continuously
sends out an electromagnetic wave at a constant radio frequency, which does not allow
any spatial resolution. Frequency-modulated CW radars are capable to detect the time of
arrival of the different wave parts and thus allow spatial resolution in the range dimension
(parallel to the line of sight). The same also applies to pulsed waveforms [37]. Radar
systems also differ in the number of transmit and receive antennas used. Monostatic radars
only have one antenna that serves as transmit and receive antenna. Bistatic radars have
one antenna for sending and receiving [38]. Furthermore, many modern radar systems
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use antenna arrays to transmit and receive the radar signals. They are called multistatic or
MIMO (multiple input multiple output) radars and allow angular resolution (orthogonal to
the line of sight) [39]. A review of how these different radar waveforms and architectures
can be used for sensing human life activities can be found in [40]. In this study, a simple
monostatic 24 GHz CW Doppler radar, which was originally designed as a vital signal
radar, was used to examine finger motion. The received signal contains a superposition
of all reflections of the object scene. Because of that, the main challenge when measuring
hand motion using a monostatic CW radar compared to using an OMS is to detect which
signal components are caused by which hand or body part.

In addition to measuring kinematics, the use of electromyography (EMG) measure-
ment technologies to understand effects of arthritis has been extensive in human gait
motion, e.g., Refs. [41,42] to name a few. Therefore, it is desirable to quantify the grip
strength across RA patients and healthy subjects in terms of muscle activity to understand
possible effects of RA on the musculotendon structure of the hand as done for a few
studies, see [43,44].

The overall challenge for this integrative experimental approach is to identify hand
movements that are ascertainable with all here applied methods, the clinical parame-
ters, OMS and radar technology and at the same time are relevant for characterizing hand
movement in RA patients. Thus, the objectives of this study were to (1) evaluate the
potential of radar as a markerless technology for capturing human motion, (2) use OMS
to identify relevant hand movements that better differentiate RA patients from healthy
controls compared to clinical tests (grip strength and MPUT times) and characterize im-
pairment more detailed than the questionnaires (e.g., HAQ), (3) design a setup that allows
to use OMS and radar in parallel and is suitable for data acquisition with patients from
a very early stage during development of the technology, (4) to evaluate the potential of
future radar developments to replace OMS in the investigation of hand movement in the
long run. We are clearly at the very beginning of designing an experimental setup with the
goal to further develop the suggested technologies.

2. Methods
2.1. Experimental Setup
2.1.1. Subject Characteristics and Clinical Hand Function Assessment

Individuals diagnosed with RA (ACR/EULAR 2010 criteria [2]) and healthy con-
trols were included in the study. Patient participants were recruited from the Internal
Medicine 3—Rheumatology and Immunology outpatient clinics. Exclusion criteria for
healthy and patient participants comprised of fracture of hand and finger bones in the
five years before entry in the study and distinct destruction of the finger joints. Disease
activity was assessed using the erythrocyte sedimentation rate (ESR), see [45], C-reactive
protein (CRP), tender/swollen joint count 78/76, and Disease-activity-score (DAS)-28,
see [46]. Patient reported disease activity was recorded using the visual analog scale (VAS)
for global disease activity and HAQ. The assessment of clinical hand function included
three components. First of all, isometric grip strength was measured in pounds (lbs) using
a hand dynamometer (Lafayette Instrument, Lafayette, IN, USA). After a familiarization
trial, three measurements of grip strength were performed, starting with the dominant
hand and alternating between hands. The highest measured force for each hand was
included in the data analysis. Secondly, fine motor skills were assessed using the MPUT [7]
which is a validated test procedure for inflammatory diseases [47]. Briefly, subjects are
asked to pick up twelve small items and drop them into a box as fast as possible while
the time to complete the task is recorded. With each hand two repetitions of the test were
completed starting with the dominant hand. The fastest trial for each hand was included
in the analysis. Thirdly, subjective hand function was measured using the MHQ, a patient
reported outcome measure that scores hand function of the left and right hand [48,49] and
has previously been used successfully in RA [5].
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2.1.2. Optoelectronic Measurement System

Hand segment kinematics were recorded with a 29 retroreflective spherical marker
layout, described in [16], with diameters of 8 mm and 14 mm at a frame-rate of 100 Hz. Re-
duced marker layouts, such as [50,51] have been presented in literature. However, the anal-
ysis required of their outputs requires higher efforts to compute joint angles, which far
outweighs the effort to use a 29 marker layout. Furthermore, since the measurements were
performed for a high number of subjects for a pilot study, it was desirable to begin with
acquiring measurements with highest possible accuracy, before progressing to reduced
layouts. The markers were tracked by synchronized and calibrated high-resolution and
high-speed infrared cameras (eight Oqus7+ cameras and one Oqus5+ camera, Qualisys
AB, Sweden). They were placed on the hand dorsum using double-sided hypoallergenic
adhesive tape, as shown in Figure 1a. As a variation from [16], the thumb metacarpal
(MC) was tracked using a T-cluster with 3 markers [52], and a marker each on the inter-
phalangeal (IP) joint and the thumb tip was used. The thumb markers were labeled as
T1 (MC base), T2 (MC head), T4 (IP joint) and T5 (thumb tip), see Figure 1c. The third
marker in the T-cluster was named T3. Furthermore, since RA deformities are primarily
observed in the finger MC heads, along with their small relative motion in precision grasp-
ing, 14 mm markers were used to allow for better placement and tracking, as compared to
the setup in [16].

(a) Marker setup

(b) Reference posture 1

(c) Reference posture 2

Figure 1. Marker setup showing all 29 markers on the hand in (a) with the hand in open position
and displaying the marker labels and in (b) with the hand in the first flat reference posture and in (c)
with the hand in the second reference posture displaying thumb marker labeling.

2.1.3. Doppler Radar

The radar measurement setup used in this study to measure a simple finger movement
described in Section 2.2.3 consisted of a 24 GHz CW radar, which was originally designed
as a vital signal radar, one absorber mat as well as one absorber wall to reduce disturbing
reflections of the incident radar wave, see Figure 2a. An optical marker was placed on
the respective fingertip (see Figure 1a I5 and L5) to generate reference data with the
OMS, see Table 1 set E. Both systems were synchronized using a common trigger signal.
The distance between the absorber mat and the monostatic radar module (RSM2650, B+B
Thermo-Technik GmbH) was approximately 60 cm. The respective finger was positioned
within the 3 dB beam width, which describes the angle between the points of half power
of the radar main lobe, and moved along the line of sight of the radar. The horizontal
and vertical beam widths were 80◦ and 35◦ respectively. The placement of the optical
fingertip marker within the 3 dB beam width can be seen in Figure 2b. As a first step
of the analog signal processing, the received radar signal was down-converted using an
In-phase and Quadrature (IQ) demodulator. The analog signal processing also included
a low-pass-filter with a cutoff frequency fLP = 50 kHz to get the baseband signal and to
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filter out unwanted signal components, which arise due to the IQ demodulation, as well
as a high-pass-filter with a cutoff frequency fHP = 160 mHz that eliminated the DC offset
and signal components from stationary targets. After filtering, the radar data was sampled
at 13 kHz with an analog-to-digital converter. This was followed by the digital signal
processing in Section 2.3.3, which e.g., included further filtering processes, to extract the
fingertip speed of the recorded signals.

(a) Real hardware setup. (b) Illustration of fingertip placement within 3 dB beam width of radar module
(α = 80◦; β = 35◦).

Figure 2. Radar measurement setup: 1—CW radar, 2—absorber wall, 3—absorber mat on table, 4—optical marker placed
on fingertip to collect reference data.

Table 1. Overview of the complete testing procedure for one patient/hand.

Test Repetitions Markers EMG Radar

A grip strength 3 - - -
Moberg-Picking-Up Test 3 - - -

B reference posture 1 1 29 - -
reference posture 2 1 29 - -

C

joint relation 1 29 2 -
finger tipping 1 29 2 -
grasping: spheres 1 29 2 -
grasping: cylinders 1 29 2 -

D
fist 1 25 2 -
grip strength 2 25 2 -
Moberg-Picking-Up Test 2 25 2 -

E

tapping index finger: frequency 1 1 - 1
tapping index finger: amplitude 1 1 - 1
tapping little finger: frequency 1 1 - 1
tapping little finger: amplitude 1 1 - 1
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2.1.4. Electromyography Measurement System

Further insight into the RA effects on the hand musculotendon network was obtained
by the measurement of muscle activity with two surface EMG sensors (Noraxon Desktop
DTS dual electrodes) while patients performed the different activities in sets C and D in
Table 1. The electrodes were placed on the flexor carpi radialis and extensor carpi radialis
muscles on the dorsal and ventral sides of the forearm, respectively [53], as seen in Figure 3a.
The EMG system measures muscle activation in voltage units, specifically, mV. When the
measurements will be used for analysis later, the activation will be normalized with respect
to the maximum voluntary contraction, see [54], performed during the grip strength test.

(a) Moberg-Picking-Up test setup (D)

(b) Finger tipping (C)

(c) Fist posture (D)

Figure 3. The hand postures for the different recordings, listed in Table 1, with the respective marker
set-up. In (a), the 25 marker set, along with the surface EMG sensors, as described in Section 2.1.2,
for the MPUT. The participants are instructed to lift and place 12 objects in the nearby container.
In (b), finger tipping motion is shown between the thumb and the index finger with a 29 marker set.
In (c), the fist posture showing the full flexion capacity of the hand is demonstrated.

2.2. Data Collection
2.2.1. Clinical Data

Data collection of clinical information for all patient participants was conducted
in combination with a routine visit to the outpatient clinics of the Internal Medicine
3, University Hospital Erlangen. Healthy control subjects were scheduled for a complete
test session. Test sessions started with collecting anamnestic data and performing clinical
hand function tests described above, in Section 2.1.1.

2.2.2. OMS Data

Participants’ hands were equipped with the reflecting markers and OMS data collec-
tion started with the measurement of the reference postures (RPs), set B in Table 1, followed
by other physiological tests. The RPs are two neutral repeatable positions for the hand,
which define the relative zero angles between two successive segments, see [16]. These
positions were, therefore, used to compare the joint angles obtained in two separate
measurements, either with the same patient or different patients. The first RP (RP1) de-
fined the relative position of the fingers, excluding the thumb, with respect to the wrist.
Here, the forearm and hand lay on a flat surface, keeping the fingers close together and
the forearm markers W3 and W4 were aligned with the middle finger metacarpal markers
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M1 and M2, see Figure 1b. RP2 was used to define the thumb neutral posture. The thumb
distal phalanx was rested on the lateral side of the index finger medial phalanx, with the
fingers flexed and in a relaxed posture, as shown in Figure 1c, such that the thumb markers
T1, T2, T4 and T5 were aligned in a straight line with the wrist marker W1, when viewed
from the top. For the measurements in sets C and D, the participants were additionally
equipped with the EMG measurement setup. In the first test in set C, named joint rela-
tion, the participants were asked to start with an open handed posture, and flex the finger
IP joints three times. This was done to estimate relations between the finger IP joints for
the different fingers, similar to the common relation in the literature [55], i.e., θDIP = 2

3 θPIP.
This served a primary purpose as a comparative measure among the different healthy and
RA individuals, along with a secondary utility to estimate the θDIP angles for the different
fingers in case the I5, M5, R5, and L5 markers are removed.

Then, finger motion for touching the thumb with each of the fingers, as shown in
Figure 3b, named here as finger tipping was recorded. The sequence was performed
three times. After that, an activity to measure the finger synergistic kinematic coordina-
tion, see [56,57], by performing grasping of objects of two shapes, namely, spherical and
cylindrical was performed. The participants were asked to passively, i.e., with application of
minimal force, grasp and lift three objects with different dimensions for a single shape. In do-
ing so, movements were recorded for performing the Power Sphere, the Medium Wrap and
Prismatic 4 Finger grasps, from the grasp taxonomy, see [58]. Following on to set D, firstly
the participants were asked to make a fist, to evaluate the maximum kinematic flexion
capacity of the fingers starting from an open posture. After that, the grip strength test and
the MPUT were repeated with the markers and EMG sensors. For this set, the markers
I5, M5, R5, and L5 are removed. This was done to avoid reflections between the markers
themselves during the fist and grip strength tests, and between the markers and the ob-
jects, while grasping with precision in the MPUT. In the set E, we used two single markers I5
and T5 to record the finger tapping motion, which is described in the following subsection.

2.2.3. Doppler Radar

To evaluate the application of radar for the assessment of hand movement, participants
were asked to perform a simple finger motion consisting of a periodic hyper-extension of
the index and little finger, named finger tapping, while the hand lay flat on the table, see
Figure 4. In one measurement scenario all participants were asked to perform the finger
tapping as fast as possible (frequency tapping), in another one they were instructed to focus
on the maximum deflection of the finger performing the movement in their own speed
(amplitude tapping). The parameters of interest were the maximum occurring upward and
downward angular velocity of the finger in case of the frequency tapping movement as
well as the maximum occurring deflection angle while performing the amplitude tapping
movement. To measure the frequency tapping sequences, both sensor systems, radar and
OMS, were used. In the following though, only the frequency tapping of the index finger
was evaluated as an example. Furthermore, the amplitude tapping was also recorded by
both sensor systems, but since the movement was not a continuous motion, important
signal components were filtered out by the analog high-pass-filter. Therefore, the evaluation
of those measurements was only done using the OMS data.
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Figure 4. Hyper-extension of the index finger to perform tapping movement (sequence 1-2-3-2-1).

2.3. Data Processing
2.3.1. Clinical Data

Clinical data from the routine visit of the same day was included in the data analysis.
In this analysis, anthropometric data and disease activity will be reported, as well as the
results of the clinical hand function assessments.

2.3.2. Marker Data Processing

The trajectories of the captured markers was visualized in 3D space by the optical mo-
tion capture system from the Qualisys Track Manager (QTM) (https://www.qualisys.com/
software/qualisys-track-manager/ (accessed on 5 February 2021)). The marker tracking in
QTM was performed using the Automatic Identification of Markers (AIM) module, to iden-
tify different labeled positions. QTM allows for calculation of Euler Angles between two
rigid bodies, where every body is defined by three markers. This was not feasible for our
measurements, where every segment was defined by a single marker, except for the thumb
metacarpal. The marker coordinates were processed to calculate the joint angles, in particu-
lar the flexion-extension (F-E), adduction-abduction (A-A) and pronation-supination (P-S)
angles, between different segments in the following way. A body-fixed coordinate system
was setup for every segment using the description provided in [16], with the underlying
assumption that the rotation axes are perpendicular to the segments’ anatomical planes.
In accordance with the recommendations by the International Society of Biomechanics
(ISB), see [59], the X-, Y- and Z-axes were positive along the palmar, proximal and radial
directions, respectively. The relative rotation matrix between two subsequent segments was
then calculated for every position. The rotation matrix was subsequently used to calculate
the Tait-Bryan or Cardan angles with the order ZXY, or F-E, A-A, followed by P-S. The pro-
cedure to calculate joint angles was performed for all measurements. For the tests in set D
in Table 1, the PIP joint angles were determined with the IP joint angle relations evaluated
in set B. Additionally, to assist the radar processing, the index and little finger metacarpal
hyper-extension motions were recorded using the vertical position of the I5 and L5 mark-
ers, respectively. The hyper-extension motion is used to calculate the maximum possible
angular velocity, as well as the hyper-extension angle for the two fingers. To compare these
quantities across subjects with different hand dimensions, we calculated the finger lengths,
i.e., for index finger dI2_I5 = ‖I2− I5‖ and for little finger dL2_L5 = ‖L2− L5‖, from the
RP1 posture.

2.3.3. Radar Signal Processing

The aim of the digital signal processing chain was to extract the fingertip speed
from the received radar signal. This was challenging as the radar beam illuminated the
entire hand and its surroundings and thus, the complex radar signal resulted from the
superimposed reflections of all moving finger segments. The first step of the digital signal
processing was the calibration of the IQ imbalance [60]. Afterwards, the DC offset caused
by the analog-to-digital converters, was removed and the received signal down-sampled
to 1625 Hz, which means that the sampling rate is reduced in order to decrease the size

https://www.qualisys.com/software/qualisys-track-manager/
https://www.qualisys.com/software/qualisys-track-manager/
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of the data being processed. In addition, the signal was filtered by a zero-phase low-
pass-filter with cutoff frequency 320 Hz, eliminating all signal components corresponding
to a speed higher than 2 m/s. Afterwards, a short-time Fourier transform (STFT) with
Gaussian window, called Gabor transform [61], was applied to the signal. The size of the
Gaussian window was set to 512, which corresponds to a time frame of 0.32 s, the standard
deviation was 16 and the overlap was chosen to 256 samples. Each window was zero
padded by a factor of two. The STFTs of a 5 s cutout of two example measurements can
be seen in Section 3. The noise floor of the measurements was −50 dB. Determining
the speed of the fingertip became more complex due to window effects, which widen
the frequency peaks of the Fourier transform, as well as higher frequency components
that were caused by the nonlinear finger movement within one window of the STFT [21].
Thus, in order to detect the fingertip speed from the radar data, it was not possible to
simply extract the maximum occurring Doppler frequency and speed respectively. Instead,
an amplitude value, which needed to be subtracted from the maximum amplitude per
time slot defining a suitable threshold, had to be determined. Then, the maximum speed
per time slot, which occurs with an amplitude greater than the defined threshold, could
be extracted from the STFT. After that, the extracted curve was smoothed by a low-pass-
filter. The selection of the amplitude value was challenging though, as it seemed to be
dependent on the shape on the finger of the respective subject as well as on the form of
movement. By looking at different measurements and the corresponding STFTs and a
simulation of the tapping movement using multiple point scatterers to model the finger,
it was possible to empirically adjust the needed amplitude value. The choice of the
amplitude value depended on the amplitude ratio between low and high frequencies or
speeds. Measurements, in which the amplitude difference between low and high speeds
was small, required a low amplitude value. Other measurements, in which higher speeds
occured with much smaller amplitude than low speeds, needed a comparatively high
amplitude value. To evaluate this behavior, the amount of frequencies and corresponding
speeds, which appeared with an amplitude greater or equal to the average amplitude, was
set in relation to the number of frequencies appearing with at least 5 dB above noise level.
This ratio is called frequency ratio. For all measurements, the amplitude value was set
between 7 dB and 25 dB, where frequency ratios above 0.64 lead to an amplitude value
of 7 dB and frequency ratios below 0.2 lead to an amplitude value of 25 dB [62]. As an
example, Figure 7a in the results section shows all corresponding speeds above noise
threshold normalized to the maximum occurring amplitude of −11 dB for one frequency
tapping measurement. The minimum and maximum speeds with an amplitude higher
than −34 dB (5 dB above normalized noise level) are −0.8 m/s and 0.7 m/s. Whereas the
minimum and maximum speeds with an amplitude higher than the average amplitude
of −13 dB (normalized) are −0.42 m/s and 0.42 m/s. With the given resolution of the
Fourier transform of 0.0195 m/s, this results in a frequency ratio (or speed ratio) of 43/77 ≈
0.56 and an amplitude value of 10 dB.

2.3.4. Statistical Analysis

This paper does not present a complete analysis of all outcome measures, as the
primary goal is to introduce the scope of measurement techniques compared to and also
integrated with conventional clinical evaluations. Data are presented as means, minimum,
maximum and standard deviations for the overall study sample and also stratified by study
group. The descriptive statistics assume each hand as independent therefore the standard
deviations should be regarded accordingly. For a formal comparison of hand function, grip
strength and kinematics, we used linear mixed-effects regression models to accommodate
the within person clustering of measurements from two hands and the unbalanced data
structure, since a valid measurement could not be obtained from both hands in some
participants. The models included the respective clinical or kinematics measurement as
the dependent variable, study group as the fixed effect where the control group was the
reference level and the individual as the random effect. The regression coefficients for the
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study group term in these models were considered as the effect of RA representing an
unadjusted between group difference that accounts for within-person correlation. These
were presented with their respective 95% confidence intervals and p-values estimated using
the Satterthwaite approximation for the model degrees of freedom. The level of significance
was set to p ≤ 0.05 and was not corrected for multiple testing.

3. Results
3.1. Clinical Results and OMS Measures Outcomes

Forty-seven individuals participated in this study with a mean age of 56.3± 14.2 years
(29 females and 18 males). This included 23 healthy control subjects with ages 50.2 ± 16.1
years (12 females and 11 males) and 24 patients with RA with ages 62.3 ± 9.1 years
(17 females and 7 males). Mean patient reported disease activity (VAS global disease
activity) was 29.4 (standard deviation 25.8). The choice to undertake measurements for
either one or both hands provided us with measurement data for NA = 64 total hands with
NC = 35 healthy controls and NR = 29 RA patients hands. MPUT times and grip strength
results for clinical and OMS setup are summarized in Table 2.

Table 2. The table provides the mean (sd, or standard deviation), minimum, and maximum values for subjects’ grip strength
and times for MPUT in the clinical setting and with the OMS setup.

ALL (NA = 64) CON (NC = 35) RA (NR = 29)

min mean (sd) max min mean (sd) max min mean (sd) max

grip strength in lbs clinical 32 82.3 (34.6) 178 44 91.7 (35.7) 178 32 71.8 (29.8) 134
OMS 19 64.0 (28.6) 140 19 71.5 (29.6) 140 20 55.4 (24.7) 102

MPUT times in s clinical 9.2 15.6 (4.7) 31.4 9.2 14.1 (4.1) 31.4 12.2 17.5 (4.7) 30.1
OMS 11.1 18.0 (6.2) 41.0 11.1 16.0 (4.5) 31.9 12.2 20.3 (7.1) 41.0

RA patients needed longer to complete the MPUT (17.5 ± 4.7 s) compared to control
subjects (14.1 ± 4.1 s). Mean MPUT times with markers during OMS data collection
was 20.3 ± 7.1 s for RA patients and 16.0 ± 4.5 s for the control group. This increase
in MPUT times is similar for control and RA participants and also for men and women.
Figure 5, illustrates the MPUT times for the two groups. The mean, standard deviation,
maximum and minimum values values for MPUT and grip strength test are provided in
Table 2. Group coefficient from a mixed model indicating between group difference after
accounting for within person clustering is presented in Table 3.
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Figure 5. The mean and standard deviation values for the grip strength in lbs, on the left MPUT times, on the right, for all
subjects, RA and control (CON) groups. Grip strength was assessed according to the clinical set up and repeated in a sitting
position with markers placed on the hand (OMS setup).
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In Table 4, the mean, standard deviation, maximum and minimum values for angular
velocities, number of cycles and maximum hyper-extension angles are provided for the
tapping motion across the two groups. The hyper-extension angles can be computed,
e.g., for the index finger, as the inverse cosine of the ratio between the maximal vertical
distance covered by the marker I5 on the finger tip and the finger length dI2_I5, defined
in Section 2.3.2. Table 3 provides the unadjusted absolute RA-Effect (absolute difference
RA vs. Control) differences with 95% confidence intervals (CI) and p-values from mixed-
models analysis.

Table 3. The table provides the unadjusted absolute RA-Effect (absolute difference RA vs. Control) differences with
95% confidence intervals (CI) and p-values from mixed-effects regression models for the outcomes reported in Tables 2
and 4. p-Values < 0.05 indicate a significant difference in the respective outcomes between RA and Control participants.
The regression coefficients for the study group term in these models were considered as the RA-effect representing an
unadjusted between group difference that accounts for within-person correlation.

Outcome RA-Effect, 95% CI p-Value

clinical MPUT time in s 3.87 (1.36 to 6.39) 0.004
grip strength in lbs −23.61 (−42.34 to −4.88) 0.017

OMS

MPUT time in s 5.07 (1.56 to 8.57) 0.007
grip strength in lbs −19.62 (−35.01 to −4.23) 0.016

index finger

ang. vel. up in deg/s −14.37 (−82.05 to 53.31) 0.679
ang. vel. down in deg/s −2.95 (−85.06 to 79.16) 0.944

num. cycles −4.58 (−9.96 to 0.81) 0.103
hyper-ext. in deg −4.46 (−10.12 to 1.21) 0.131

little finger

ang. vel. up in deg/s −29.42 (−86.50 to 27.67) 0.318
ang. vel. down in deg/s −9.41 (−72.99 to 54.17) 0.773

num. cycles −7.79 (−14.96 to −0.62) 0.039
hyper-ext. in deg −3.53 (−9.50 to 2.44) 0.253

Table 4. The table provides the mean value, standard deviation, minimum, and maximum values for different quantities
for subjects’ tapping motion. These include the angular velocity (ang. vel.) in the vertically upwards and downwards
directions, and number of lifting cycles (num. cycles) in the frequency tapping exercise. The hyper-extension (hyper-ext.)
angle is calculated for the amplitude tapping exercise.

ALL (NA = 64) CON (NC = 35) RA (NR = 29)

min mean (sd) max min mean (sd) max min mean (sd) max

index finger

ang. vel. up in deg/s 118 381 (113) 729 174 381 (113) 729 118 371 (124) 598
ang. vel. down in deg/s 187 438 (142) 760 228 436 (125) 713 187 441 (160) 760

num. cycles 15 46.0 (10.2) 82 33 48.0 (9.5) 82 15 43.5 (10.4) 58
hyper-ext. in deg 13.4 38.1 (10.4) 68.4 20.2 40.0 (10.8) 68.4 13.4 35.6 (9.3) 51.3

little finger

ang. vel. up in deg/s 87.1 237 (100) 562 87.1 248 (101) 562 90.5 225 (97) 461
ang. vel. down in deg/s 127 317 (116) 675 127 319 (113) 675 127 315 (120) 579

num. cycles 5 33.5 (13.1) 63 7 37.1 (10.0) 63 5 29.0 (13.6) 57
hyper-ext. in deg 8.4 26.4 (10.8) 57.5 8.4 27.9 (10.8) 53.9 10.6 24.6 (10.4) 57.5
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Figure 6 illustrates the additional information that can be gained from the MPUT
by OMS tracking of the hand motion. The graph exemplarily shows the evolution of
the distance between markers T5 and I4 (normalized to finger length) during pick and
drop actions of the hand while the respective participants perform the MPUT. For a
healthy control individual (age 32, male) and an RA patient (age 82, female), the distance
between these markers was normalized with respect to their finger lengths, as done for the
calculation of the tapping motion. This was plotted over time overlaid by the time periods
of the manipulation and prehension motions observed from the video. The shaded and non-
shaded regions in the plots refer to the manipulation and reaching motions, respectively.
While a traditional MPUT analysis would involve comparing only the fastest times, a sensor
based recording with hand kinematic data allows more observations. For instance the
mean ± standard deviations values for the distance between I4 and T5 are 0.45 ± 0.11 and
0.52 ± 0.07 for the control individual and an RA patient, respectively. This suggests that
the control individual was able to maintain the two fingers closer (lower mean), and was
able to perform prehension with a higher degree of mobility (higher standard deviation),
when compared with the RA patient.
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Figure 6. The normalized grip distances between thumb tip (T5) and index finger DIP (I4) markers
are shown for a participant each from the control and RA groups, while performing the MPUT.
The shaded and non-shaded areas in each plot correspond to the manipulation and prehension
motions, respectively.

3.2. Radar Results

The frequency tapping of the index finger was measured by the radar for 62 hands
in total as in two cases the radar did not measure properly. Figure 7a shows the STFT
of a 5 s cutout of an example measurement that required the amplitude value to be
set to 10 dB. The amplitudes were normalized to the maximum occurring amplitude
(−11 dB), all amplitudes below noise threshold were excluded. The extracted fingertip
speed compared to the reference data collected by the OMS can be seen in Figure 7b. The
comparison of both curves illustrates that the radar fingertip speed is almost congruent
with the reference data. However, the radar signal processing presented here reaches its
limits as soon as larger amplitude fluctuations occur over the measurement time. Figure 8a
shows the STFT (normalized to the maximum occurring amplitude, 5 s cutout) of such
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a measurement. The automatically selected amplitude value would be 20 dB in this case.
The extracted radar fingertip speed compared to the OMS reference data can be seen
in Figure 8b. It should be noted that due to the analog high-pass-filter, speeds below
1 mm/s were filtered out which causes the fluctuations of the radar fingertip speed in this
area. Furthermore, the two curves show that the selected amplitude value did not yield
an optimal result for the entire measurement, as the maximum deviation between radar
data and OMS is approximately 0.5 m/s. These amplitude fluctuations are most likely
caused by an unfavorable finger position under the radar module. Future measurement
campaigns should include an automatic detection of such faulty measurements, to ensure
that measurements can be repeated in this case. Since this was not given in the current
setup, 14 measurements had to be discarded due to those amplitude fluctuations.

To evaluate the quality of the remaining 48 radar measurements, a relative error
concerning the maximum occurring upward fingertip speed in comparison to the maximum
occurring upward fingertip speed detected by the OMS was calculated. The mean value of
the relative error for all 48 measurements was 11%.
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Figure 7. (a) Short-time Fourier transform of an example measurement with amplitude value 10 dB;
(b) extracted fingertip speed of radar measurement shown in (a) and reference data collected by OMS.
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Figure 8. (a) Short-time Fourier transform of an example measurement with strong amplitude
fluctuations and a selected amplitude value 20 dB; (b) extracted fingertip speed of radar measurement
shown in (a) and reference data collected by OMS.

4. Discussion

The objectives of this study were to design an experimental framework that allows to
comprehensively assess hand movement in patients with rheumatoid arthritis. The study
integrated clinical and sensor data with the goal to evaluate the potential of radar to serve
as a markerless sensor for the acquisition of hand movement. While the application of
optical marker tracking for the quantification of hand movement will already broaden
the understanding of the role of hand function for the identification of disease activity,
the use of modern , markerless motion capturing techniques for the assessment of hand
kinematics broadens the research scope with an extensive list of measurable attributes,
compared to the traditional methods. Furthermore, early assessment of dynamic hand
function is favorable when compared to static measurements such as thermal imaging,
see [14], or expensive medical technologies such as magnetic resonance imaging.

Recording clinical data and sensor data on the same testing day is essential for the
interpretation of sensor data in relation to disease activity. The initially anticipated chal-
lenge to find relevant hand movements that are detecTable across the here implemented
technologies proved true. The assessed movement needs to suit the deployed technology
and at the same time be meaningful in the context of the disease of interest. Assessing
hand movement in rheumatoid arthritis patients creates the additional difficulty that hand
geometry can be altered.

In this study, the rather complex MPUT was implemented as the common testing
scenario between clinical and OMS assessments. As illustrated in Figure 6, compared to
the clinical assessment that only includes the time to completion of the task, OMS data
would allow to quantify the movement that is needed to complete the picking task and
would lead to a movement specific resolution of the time needed. This will allow to identify
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specific characteristics of a picking task that discriminate patients from healthy individuals.
However, the marker set up had to be adjusted by removing fingertip markers as MPUT
items frequently stuck to the glue or markers impaired picking up the objects. Marker
movement over the joints as a result of skin motion did not prove to be a major challenge
in this set up, most likely due to the slow and controlled movements.

For radar data acquisition the movement needed to be rather simple to account for
the current scope of the hardware, and also OMS data collection required the recording of
very simple reference postures and extremes in the hand range of motion. Slow and rather
static postures may however not allow characterization of hand movement to a degree of
resolution that is necessary to detect movement patterns in RA patients. For that, intuitive,
daily activities may be more relevant.

The post processing of OMS and radar data in the context of hand movements is
challenging due to the complex nature of hand motion. The here applied marker set up
introduced by [16] allows the extraction of hand movement characteristics and also proved
applicable in our patient cohort. Patients performed generally worse in grip strength and
MPUT tests when compared to healthy individuals as expected and previously shown [8].
This impaired functionality is also reflected in the here presented kinematic data. While
the kinetic analysis of hand movement will provide parameters that allow a more detailed
characterization of hand function in relation to disease status, this study showed, that the
time to complete the MPUT protocol is slower in both, patients and healthy controls, when
the hands are equipped with the reflecting markers compared to the pure clinical testing.
This was observed for women and men equally and emphasizes the fact, that the use of
markers artificially alters hand movement and supports the need to develop markerless
motion capture systems for unconfined acquisition of hand motion.

While the repetition of the MPUT and grip strength tests with the OMS system is
essential to assess the effects of the markers on hand motion and also to visualize, where
in the clinical tests healthy controls differ from patient participants, in future analyses of
the data set, more simple hand movements, for example grasping spherical or cylindrical
objects, will allow a detailed kinematic description of hand movement in RA patients in
relation to disease status.

In addition to the MPUT, the angular velocity was evaluated from the measurement
of the periodic hyper-extension of the index finger with both the radar prototype and
the OMS. RA patients show a reduced mean angular velocity in the MCP joint with an
increased standard deviation for the upwards movement compared to the control group
which is especially prominent for the upward movement. While this difference is not
significant in the statistical results, this needs further investigation in a larger sample size.
Especially the difference in the variation between the upwards and downward movement
is interesting here, while the latter is assisted by gravity and thus does not require conscious
effort, the upward movement may be relevant for distinguishing between healthy and
diseased individuals.

To extract the fingertip speed of a moving finger from the radar signal, the signal
processing chain presented in this paper was applied. The extraction was challenging as
the radar signal measured by the monostatic CW radar module did not allow any spatial
resolution and higher frequency components emerged due to the application of a STFT
with nonlinear movements within a window. Therefore, a methodology for applying a
suitable threshold was introduced in Section 2.3.3. However, the methodology presented
could not be applied to measurements, which underlay strong fluctuations in amplitude
over the measurement duration. As 9 out of 14 discarded data sets were finger tapping
measurements of RA patients, it should be investigated whether this behavior has been
caused by geometric differences of RA hands. The detection of the maximum upward
fingertip speed using the CW radar showed an error of 11%, which implicates that the
presented CW radar hardware setup and signal processing chain are suitable to some
extent. Anyhow, to reduce the relative error, the current signal processing chain needs to
be further improved. Using the parameter frequency ratio to determine the amplitude
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value could be improved by introducing a sliding amplitude value that is variable over the
measurement time. In case the form of the finger movement changes within one specific
measurement (e.g., in between upward and downward finger movement), an adjustment
of the amplitude value for every second or less is likely to benefit the signal processing.
In order to completely avoid the problem of determining an amplitude value and threshold,
the use of more complex radar systems with high angular resolution, which allow to
resolve different finger parts, has to be investigated in this context. In addition, to measure
more complex hand movements, radar systems with high spatial resolution (angular and
range) are essential and should therefore be part of future research. In summary, radar is a
promising contact- and markerless option to be used for the objective assessment of hand
function as well as for controlling therapeutic success.

Overall, more women then men participated in the study. While the sex distribution
in the control group was even with 12 females and 11 males, more female RA patients
were recruited compared to males (17 females vs. 7 males). Even though this reflects the
sex distribution of RA patients in the general population, given the fact that the effect
of disease on hand function varies between sexes, a more targeted subject recruitment
to achieve equal distributions of ages and sexes between control and patient participant
should be aimed for. Furthermore, the integration of clinical and sensor based data will
require larger sample sizes that account for the greater variation in movement patterns
observed in the patient population.

5. Conclusions

The paper emphasizes the need for adapting newer technologies to assist in the charac-
terization of hand movement in patients suffering from RA. To achieve this, the integration
of existing clinical methodologies together with state of the art technologies and experi-
mental methodology is essential. Optical tracking using OMS has been shown capable of
capturing a variety of hand movements observed in activities of daily living. However,
differences in the results noticed due to the use of surface markers attached to the subjects’
skin surfaces can be circumvented through the markerless radar technology. The pre-
liminary examinations carried out show a promising potential for the development of
sensory recordings of hand movements using radar technologies.The comparison of finger
motion data collected by the marker-based OMS to the data recorded by radar implies
that even a simple monostatic CW radar can be used to measure simple hand motions.
Furthermore, due to the difference in MPUT times with and without markers, a non-contact
and marker-free measurement method is clearly preferable for these measurements.
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