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Abstract

Introduction—Assessment of cartilage integrity during ar-
throscopy is limited by the subjective visual nature of the
technique. To address this shortcoming in diagnostic evalu-
ation of articular cartilage, near infrared spectroscopy
(NIRS) has been proposed. In this study, we evaluated the
capacity of NIRS, combined with machine learning tech-
niques, to classify cartilage integrity.

Methods—Rabbit (n = 14) knee joints with artificial injury,
induced via unilateral anterior cruciate ligament transection
(ACLT), and the corresponding contra-lateral (CL) joints,
including joints from separate non-operated control
(CNTRL) animals (n = 8), were used. After sacrifice, NIR
spectra  (1000-2500 nm) were acquired from different
anatomical locations of the joints (n7o74; = 313:
nentre = 111, nep = 97, nacet = 105). Machine and deep
learning methods (support vector machines—SVM, logistic
regression—LR, and deep neural networks—DNN) were then
used to develop models for classifying the samples based
solely on their NIR spectra.

Results—The results show that the model based on SVM is
optimal of distinguishing between ACLT and CNTRL
samples (ROC_AUC = 0.93, kappa = 0.86), LR is capable
of distinguishing between CL and CNTRL samples (RO-
C_AUC = 091, kappa = 0.81), while DNN is optimal for
discriminating between the different classes (multi-class
classification, kappa = 0.48).

Conclusion—We show that NIR spectroscopy, when com-
bined with machine learning techniques, is capable of holistic
assessment of cartilage integrity, with potential for accurately
distinguishing between healthy and diseased cartilage.

Keywords—Osteoarthritis, Cartilage, Near infrared spec-
troscopy, Machine learning, Deep learning, Classification.
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INTRODUCTION

Osteoarthritis (OA) is a disabling musculoskeletal
condition affecting a significant proportion of the
world’s population. OA is mainly associated with
damage and erosion of articular cartilage, the func-
tional soft tissue surrounding the ends of articulating
bones. OA could be triggered by aging (idiopathic OA)
or injury to cartilage and other joint connective tissues,
leading to cartilage lesions, which without intervention
may degenerate to post-traumatic OA (PTOA). Sur-
gical intervention in the repair of cartilage injury is
currently conducted via arthroscopy, which allows vi-
sual inspection of the intra-articular joint space for
assessment of lesion size, depth and severity. However,
diagnosis of the extent of cartilage injuries during ar-
throscopy is limited by the subjective visual nature of
the technique,”' decreasing the chances of successful
intervention. Thus, methods with potential for sensi-
tive and reliable arthroscopic assessment of cartilage
integrity would be highly desirable.

There has been growing interest in utilizing fast
optical methods, particularly near infrared spec-
troscopy (NIRS), for the evaluation of cartilage con-
ditions, !> 71922272833 NIRS is capable of
characterizing cartilage physical’>?’ and functional®*’
properties, and composition.'**?® Furthermore, NIRS
has been proposed for assessing®?*** cartilage integrity
and monitoring the progression of OA using an animal
model,® which provides in vivo and ex vivo data during
methods development and optimization. Thus, the
method has the potential to overcome the limitations
of current conventional arthroscopy and enable
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quantitative diagnosis of cartilage condition during
repair surgery.

During degeneration, complex and often simulta-
neous micro- and macroscopic changes occur within
the matrix of articular cartilage, which consists mainly
of collagen, proteoglycans (PG) and water. For
example, the early stages of OA are characterized by
increased water content, loss of PG, and degeneration
of the superficial collagen network, resulting in altered
mechanical responses. Since NIRS is sensitive to
specific molecular species containing CH, NH, OH and
SH bonds, which constitute the fundamental structure
of cartilage composition, it can detect changes in the
tissue during degeneration.® Thus, the NIR spectrum
of cartilage contains information on its physico-
chemical, structural, and functional characteristics.

Analysis of NIR spectra for assessment of cartilage
integrity has so far relied on traditional multivariate
linear methods, particularly partial least squares
regression (PLSR), e.g., for prediction of specific tissue
properties from cartilage NIR spectrum. Only few
studies have applied machine learning techniques, such
as support vector machines (SVM)® and neural net-
works (ANN),?-3° for analysis of cartilage NIR spec-
tral data, specifically regression analysis. However, no
study has applied machine learning techniques for
classification of connective tissue integrity based on
NIRS. Furthermore, machine learning algorithms,
particularly deep learning methods such as convolu-
tional neural networks, are gaining interests in the
diagnosis of musculoskeletal disorders, with recent
studies,®** demonstrating their capacity for diagnosis
of OA from radiographic images with unprecedented
accuracy.

Classification of cartilage integrity based on NIRS
harnesses the capacity of the spectrum, which encodes
latent and inherent properties of the cartilage matrix,
to provide a holistic assessment of the tissue. For
example, features in the spectrum, such as spectral
peaks and shapes and shapes due to absorption and
scattering associated with the composition and struc-
ture of cartilage, encode information on tissue thick-
ness” and biomechanical®’ properties. In this study, we
compared the performance of traditional machine
learning techniques, including support vector machines
(SVM) and logistic regression (LR), with deep learning
methods, particularly deep neural networks (DNN),
for classification of cartilage integrity based on NIRS.
SVM is a supervised learning algorithm that uses the
maximum margin principle to find a hyperplane that
best separates two or multiple classes, while LR uses
the logit (sigmoid) function to model the relationship
between independent (predictors) and response (clas-
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ses) variables based on maximum likelihood estima-
tion. Unlike traditional analytical approach that is
problem-defined, neural networks are universal
approximators. They can discover features in large
datasets by using the backpropagation algorithm to
indicate how a model should change its internal
parameters that are used to compute the representation
in each layer from the representation in the previous
layer.'> We hypothesized that machine learning tech-
niques, which encompass both traditional (e.g., SVM
and LR) and state-of-the-art (e.g., DNN) artificial
intelligence techniques, can harness sample-related
information embedded in the NIR spectrum for clas-
sification and holistic assessment of the tissue integrity.

MATERIALS AND METHODS

Sample Preparation and Experimental Protocol

Unilateral anterior cruciate ligament transection
(ACLT) surgery, to induce degenerative changes con-
sistent with early stage osteoarthritis,'® was performed
on skeletally mature female New Zealand white rabbits
(n = 14, age = 12 months at the time of operation)
under general anaesthesia. Anesthesia was induced by
first delivering a pre-med sedative (SQ, Acepromazine
maleate, 1 mg/kg body weight, AceVet®, Vetoquinol
Inc., Lavaltrie, QC, Canada). After 30 minutes, ani-
mals were placed under deep surgical anesthesia using
5% Isoflurane (Fresenius Kabi Inc., Richmond Hill,
ON, Canada) in medical oxygen (1 1/min). Anesthesia
was maintained with 1 to 2% Isoflurane in medical
oxygen, and monitored continuously.

Animals were sacrificed under general anesthesia at
two time points post-injury: 2 weeks (n = § animals, 16
knee joints) and 8 weeks (n = 6 animals, 12 knee
joints). Subsequently, the experimental (ACLT) and
contra-lateral (CL) knee joints were harvested from the
animals after sacrifice. Control (CNTRL) knee joints
(n = 16) were collected from age and gender-matched
animals (n = 8) not subjected to any surgical proce-
dure. Subsequently, osteochondral (cartilage-bone)
samples were collected from patella, lateral femoral
groove, the medial and lateral tibial plateaus, and the
femoral condyles (Figs. 1a—1d) from all joints. Spectral
measurements and histological analysis were per-
formed on all samples, resulting in a total of 313
(nentrL = 1115 ner = 97; nacr, = 105) measurement
locations. All experiments were carried out in accor-
dance with guidelines of the Canadian Council on
Animal Care and were approved by the committee on
Animal Ethics at the University of Calgary [#ACI11-
0035].
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FIGURE 1. Rabbit knee joint showing anatomical locations (a—d) where spectral measurements were collected, and
representative Safranin-O stained sections obtained from the medial femoral condyle of control (CNTRL, e), contra-lateral (CL,
f) and anterior cruciate ligament transected (ACLT, g) joints. (h) shows the average (thick line) and 95% CI (dashed line) of
proteoglycan (PG) content profile of samples from the different groups. [/ medial, L lateral].

NIR Spectroscopy

Diffuse reflectance NIRS of the samples was per-
formed using an Avantes dual VIS-NIR spectrometer
(AvaSpec-ULS2048L, wavelength 350-1100 nm and
AvaSpec-NIR256-2.5-HSC, wavelength 1000-2500
nm, Avantes BV, Apeldoorn, The Netherlands) and
light source (AvaLight HAL-(S)-mini, wavelength
360-2500 nm, Avantes BV, Netherlands). Spectral
data were acquired using a custom-designed arthro-
scopic fibre optic probe (Avantes BV). The reusable
stainless-steel fibre probe (diameter = 3.25 mm) is
autoclave sterilisable (121 °C) and has a tip shaped like
a traditional arthroscopic hook. The probe (window
diameter = 2 mm) contains 114 optical fibres (diam-
eter = 100 um), with 100 emitting fibres and 14 col-
lecting fibres (7 fibers collecting light from the sample
back to each spectrometer). To ensure sample preser-
vation and physiological conditions, each sample’s
surface was covered with 0.15 M phosphate- buffered
saline (PBS) solution at room temperature during
spectral measurements. Although the entire probe tip
(diameter = 3.2 mm) did not always cover the sample
surface as a result of the curvature, the central region
consisting of the receiving fibres (diameter = 1 mm) of
the probe window (diameter = 2 mm)* was always in
full contact with the sample surface during spectral
acquisition. Contact was made between the probe tip
and sample surface before spectral acquisition to avoid
spectral absorption from the surrounding PBS. Spec-

tral acquisition was performed using the AvaSoft
software (ver. 8.7.0, Avantes BV).

Three spectral measurements were acquired per
sample (1.8 seconds/measurement), with probe
realignment prior to each measurement. Each spec-
trum consisted of 100 co-added (averaged) scans, with
the final spectrum for each sample obtained as the
average of the three spectral measurements, resulting
in a total of 313 spectra (ncntrr = 111, nep, = 97,
nacrt = 105). Due to spectral saturation, i.e., near
complete absorption of the NIR photons, in the
combination region of the NIR spectral range (1900~
2500 nm), data used in the analyses were restricted to
1000-1900 nm (140 variables).

Histological Analysis and Tissue Grading

Following NIRS measurements, the samples were
subjected to histological analysis for assessment of
tissue integrity. Briefly, the samples were fixed in for-
malin, decalcified with ethylenediaminetetraacetic acid
(EDTA), dehydrated in a series of graded alcohols and
embedded in paraffin according to the standard pro-
tocol.>*?! Subsequently, 3 um thick sections were cut
from the samples and stained with Safranin-O
(Figs. le—1g), a cationic stain that binds stoichiomet-
rically to negatively charged glycosaminoglycans in
PG. Following staining, the sections were subjected to
standard digital densitometry protocol®” to quantify
the depth-wise PG distribution (Fig. 1h).
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Spectral Pre-processing

Since NIRS measurements are prone to noise due to
ambient environment and stray light, pre-processing is
often required to minimise the influence of noise on the
outcome of spectral analysis. In this study, spectral
pre-processing was performed using Savitzky—Golay
filter with different combinations of parameters. Filter
window sizes of 9 (= 57 nm) and 11 (= 69.7 nm),
polynomial order (2 and 3), and three different
derivative orders: 0 (spectral smoothing), 1 (Ist
derivative) and 2 (2nd derivative, Fig. 2a), were
applied to generate different pre-processed spectra
used in machine learning analyses for classification of
cartilage integrity.

Classification Models and Parameter Tuning

For assessment of cartilage integrity, classification
models (Fig. 2b) were developed using traditional
machine learning methods, including support vector
machines (SVM) and logistic regression (LR), and
deep learning methods, specifically deep neural net-
works (DNN). Three different classifiers were devel-
oped, including two binary classifiers: ‘classifier I’ for
distinguishing between CNTRL and ACLT samples,
and ‘classifier 2’ for differentiating between CNTRL
and CL samples from their NIR spectra. The third
classifier (‘classifier 3’) was aimed at multi-class clas-
sification of cartilage integrity, i.e., differentiating
between CNTRL, CL and ACLT, akin to classifying
between healthy, moderate and advanced cartilage
degeneration, respectively. Prior to analysis, the joints
were split by animals into training (=~ 80%) and test (=~
20%) sets to avoid biased estimators. Furthermore, in
order to account for site-specific variations in cartilage
properties, the sample splitting was done based on
animals so that the training and test set data included
samples from the different anatomical locations.
Sample number distribution for the different classifi-
cation prOblemS are: Nelassifier_1_training — 173 (”ACLT =

84» NCNTRL — 89), Nclassifier_2_training — 165 (nCL = 76:
NCNTRL — 89), Nclassifier_3_training — 249 (nACLT = 847
ncL = 76, NCNTRL = 89), Nclassifier_1_test =
Nclassifier_2_test — 43: Nclassifier_3_test — 64.

Since SVM and LR consist of multiple hyperpa-
rameters that alter the decision boundary for classifi-
cation, and affect a model’s performance on
independent data, it is essential to find the combination
of hyperparameters that optimizes model performance
and generalization. To achieve optimal performance, a
‘it and ‘score’ method was employed using the
GridSearchCV algorithm.’ In this algorithm, a model
is first fitted on the training data using a classifier (e.g.,
based on SVM or LR) with a set of hyperparameter
values. The resulting model is then validated and
scored using a specified metric, e.g., mean absolute
error (MAE) was used in this study. The process is
repeated with different combinations of hyperparam-
eter values, allowing an exhaustive cross-validated
search over a user-defined grid of classifier hyperpa-
rameters, where the best classifier hyperparameters are
those that yield the lowest error score.

Two different DNN architectures were developed
for the deep learning-based classifiers, with the optimal
architecture determined after preliminary tests. The
DNN architecture for the binary classification models
(classifier 1 and classifier 2) consisted of 4 fully-con-
nected (dense) layers, consisting of 70, 70, 35 and 14
neurons. The architecture for multi-class classification
(classifier 3) consisted of 5 fully-connected layers,
consisting of 140, 140, 70, 35 and 14 neurons. A
dropout layer*® (rate = 0.4) was inserted between the
last hidden layer and the output layer to minimize
overfitting. Based on preliminary model assessment,
hyperbolic tangent (‘tanh’) function was optimal for
neuron activation in all layers, except the output layer,
where ‘softmax’ activation was used because the net-
works are designed for classification. During training,
the training set was further (randomly) divided into
training (90%) and validation (10%) sets. During each

I "TEST SET (20%) |
(@) () | |
T T 1 | |
| TRAINING SET (80%) | s | | ACL I
5 %% ! : B [ aom !
: | L <« ;
§ 0.05 : ACL | : LR Classifier : : |
b [ CNTRL I | | 4
£ , I ! [ [
2 .0.05f | I d DNN Classifier [§
Qo v | |
< i | | I e Recall
| | e ROC_AUC
0155 . LY, . 4 TTTTTT T - - s 3 ge o kappa
1100 1300 1500 1700 1900 Training & validation
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FIGURE 2. Schematic illustration of the analysis protocol showing (a) representative first derivative pre-processed NIR spectra
and (b) protocol for training, validation, and testing of classifiers performance.
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training step, validation metrics (accuracy and loss)
were calculated and used to tune the model’s hyper-
parameters (weights and biases). Optimal network
hyperparameters were achieved using the Adam opti-
mization algorithm in all networks, with
‘binary_crossentropy’ and ‘categorical_crossentropy’
loss functions in the binary and multi-class networks,
respectively. Model training was halted when no
improvement in validation metrics are observed after
20 consecutive epochs.

Classifier performance was assessed in terms of
precision, recall, fl-score, kappa and area under re-
ceiver operator characteristic (ROC_AUC). It is worth
noting that in binary classification, recall of the posi-
tive class (CNTRL) is the ‘sensitivity’ of the classifier;
while recall of the negative class (ACLT and CL) is the
‘specificity’ of the classifier. Machine learning analysis
was performed using Scikit-Learn®* (ver. 0.20.1)
package in Python (ver. 3.6). Deep learning analysis
was performed using Keras deep learning library'?
(ver. 2.2.4), with TensorFlow'? (ver. 1.12.0) backend,
in Python (ver. 3.6).

RESULTS

Histological analysis shows significant decrease in
depth-wise PG content at the superficial and middle
zones of the ACLT group compared to the CNTRL
group, and throughout the cartilage depth compared
to the CL group (Fig. 1h). Spectral pre-processing with
a filter window of 9, polynomial order of 2, and no
derivative (i.e., only spectral smoothing) of the NIR
spectra yielded the best performance for both binary
and multi-class cases, possibly due to noise and loss of
spectral fidelity after derivative pre-processing. For
distinguishing between ACLT and CNTRL samples
(classifier 1), SVM (optimal parameters: C = 10, ker-
nel = linear) and LR (optimal parameters: C = 1000,
regularization = [2) were optimal, with similar levels
of performance (Table 1, Figs. 3a and 3b). However,
in differentiating between CL and CNTRL samples
(classifier 2), the LR model (optimal parameters: C =
1000, regularization = /1) was optimal (Fig. 3e), with
SVM yielding the worst result (Fig. 3d). Although
DNN performed slightly poorer than the traditional
methods in binary classification, it was better at clas-
sifying CNTRL samples (Figs. 3c and 3f).

For multi-class classification, the model based on
DNN outperformed SVM and LR (Fig. 4¢), albeit
with poorer performance compared to the binary
classifiers. The results also show that more samples
were misclassified by the SVM and LR multi-class
models (Figs. 4a and 4b), with most of the misclassi-
fications occurring with the ACLT samples being

TABLE 1. Performance metrics of the best classifiers for

assessing cartilage integrity based on NIRS: best classifier 1

for differentiating between ACLT and CNTRL is based on

SVM; best classifier 2 for differentiating between CL and

CNTRL is based on LR; and best classifier 3 for multi-class
classification is based on DNN.

Precision  Recall fl-score ROC_AUC kappa
Classifier 1
ACLT 0.95 0.90 0.93 0.93 0.86
CNTRL 0.91 0.95 0.93
Classifier 2
CL 0.90 0.90 0.90 0.91 0.81
CNTRL 0.91 0.91 0.91
Classifier 3
ACLT 0.58 0.52 0.55 - 0.48
CL 0.63 0.57 0.60
CNTRL 0.73 0.86 0.79

classified as CL, suggesting that these classifiers have
poor sensitivity in distinguishing between the NIR
spectra of ACLT and CL samples.

DISCUSSION

We demonstrate the capacity of NIRS, combined
with machine learning methods, to support a holistic
assessment of cartilage integrity via classification
analysis. We quantified the potential of NIRS to dis-
tinguish between cartilage of control and experimental
joints, simulating differences between healthy and
degenerated cartilage. Although NIRS has been
extensively applied for predicting cartilage biochemi-
cal'?*%% and structural®® properties, which are the
basis of its function, these properties would need to be
measured for each location independently because of
the site-specific variation in cartilage properties. Fur-
thermore, the functional properties of articular carti-
lage, alone, are not reliable indicators of tissue
integrity. This is supported by the observation of
Brown et al.,'"® who showed significant overlap in the
stiffness of normal and degenerated cartilage due to
site-specific variations in articular cartilage structure,
functional and material properties. More so, besides
regression analysis for prediction of cartilage proper-
ties,”®*° it is worth noting that no study has applied
machine learning techniques for classification of car-
tilage integrity based on non-destructive spectroscopic
methods like NIR spectroscopy, which has immense
diagnostic potential.

While the exact mechanism of cartilage degradation
and pathophysiological process in OA remains un-
clear, a complex interplay between factors including
genetics, environment, metabolism and biochemistry
has been proposed.'® During degeneration, matrix-
degrading enzymes are overexpressed, resulting in

BIOMEDICAL
ENGINEERING
SOCIETY



224 AFARA et al.

(a) (b) ()

20.0

175

ACLT ACLT ACLT

15.0
125

10.0

True class

CNTRL CNTRL CNTRL

(d) (e) ®

CL CL

CL

True class

(@]
=2
5
P
=

CNTRL CNTRL

(X g [ o g o 4
K K &
o2 s >

Predicted class Predicted class Predicted class

FIGURE 3. Confusion matrix showing prediction performance of the binary classification models. Performance of classifier 1 and
classifier 2 models based on SVM (a: kernel = linear and C=10; d: C = 1000, gamma = 0.001, kernel = rbf), LR (b: regularization
penalty = 2, C = 1000; e: regularization penalty = 1, C = 1000) and DNN (c and f) for predicting cartilage integrity in the independent
test set, respectively. Optimal spectral preprocessing was based on Savitzky—Golay filtering with window size of 9, polynomial
order of 2 and no derivative.
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FIGURE 4. Confusion matrix of the best multi-class classification models based on SVM (a, kernel = linear, and C=100), LR (b:
regularization penalty = 1, C = 1000) and DNN (c) The optimal spectral preprocessing was based on Savitzky—Golay filtering with
window size of 9, polynomial order of 2 and no derivative.

degradation of the matrix network on a molecular le- process initiates a proliferative chondrocyte response
vel. This leads to decrease in the size of matrix mole- with synthesis of increased quantities of extra-cellular
cules and eventual loss of cartilage extra-cellular matrix macromolecules. Even in samples with marked
matrix (collagen and PGs), together with a concomi- histological alterations, some chondrocytes can be
tant increase in tissue water content. This degenerative observed to display strong anabolic activities, often
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characterized by cell clusters (cell cloning) surrounded
by newly synthesized matrix molecules. However, as
the disease progresses, the chondrocytes are not able to
keep up their repair activity and the reparative at-
tempts are outpaced by cartilage degradation®®
resulting in complete loss of the cartilage tissue.
Probing these changes by taking advantage of the
interaction of light with the structure and composition
of cartilage enables identification of integrity-related
features in the spectra, e.g., increased OH peaks
(~ 1450 and ~ 1900 nm)** from increased water con-
tent, for tissue assessment. Thus, adaptation of ma-
chine learning-based approaches takes advantage of
the relevant integrity-related features in the NIR
spectrum for classification of tissue health, which may
be difficult to capture via single traditional macro-
scopic parameters, such as instantaneous and dynamic
moduli.

Depending on the anatomical location, samples
from the contra-lateral (CL) joints may exhibit slightly
higher PG content compared to CNTRL samples, as
opposed to the lower PG content observed in the
ACLT samples (Fig. 1h). This may be due to exposure
of the CL joints to abnormal loading as a result of
altered gait following injury of the ACLT joint,'*'®
triggering increased synthesis of PG by chondrocytes, a
physiological response observed in the early stages of
cartilage degeneration, and a precursor to gradual PG
loss and matrix disruption.'” Thus, CL and ACLT
joints present different manifestation of early stage
cartilage matrix degeneration. As such, the main
changes observed in samples with early matrix alter-
ation are related to changes in PG content, which
influences the water content and potentially the
superficial collagen structure, all of which are
detectable using NIRS."*?%3° This result suggests that
cartilage degeneration, and thus changes in its spectral
features, may not follow a linear trend, and therefore
may benefit from a non-linear modelling approach
such as neural networks, including shallow and deep
networks.

Differentiating between CNTRL and ACLT sam-
ples was trivial for all classifiers, even at this early stage
of cartilage degeneration, possibly due to significant
differences between the spectra of samples from both
classes. Inspection of the coefficients of the optimal
classifiers (via the feature importance plot, Fig. 5),
obtained as part of the standard output from the ma-
chine learning analysis, provides insight into the vari-
ables, and thus the specific matrix components, that
contribute substantially to the classification between
sample classes. The features in classifier 1 (Fig. 5a)
show that spectral variables related to the water peaks

(1370-1550 nm and 1850-1900 nm) are the most
dominant. This is indicative of the increased water
content in the ACLT samples during degenera-
tion—one of the significant and noticeable changes
during cartilage degeneration."'

In the case of classifier 2, which is aimed at distin-
guishing between CNTRL and CL samples, it is un-
clear why LR outperformed the other methods.
However, the difference in performance is not that
substantial (Figs. 3d-3f). The dominant features in the
LR classifier (Fig. 5b) are spread across the spectrum,
suggesting that differences between the classes (CL and
CNTRL) might be due to overall changes within the
tissue matrix. In multi-class classification, aimed at
evaluating the capacity of NIRS to differentiate
between CNTRL, CL and ACLT samples, the deep
learning-based model was optimal, possibly due to the
capacity of neural networks to model non-linear rela-
tionships. The performance observed with the DNN
model suggests that the relationship between the
spectra and cartilage integrity consists of both linear
and non-linear changes in cartilage components, which
is consistent with the progression of cartilage degen-
eration.

The high misclassifications rate of CL observed in
the multi-class case, particularly in the SVM and LR
multi-class models, might be due to pooling of samples
from the animals sacrificed at 2 and 8 weeks, poten-
tially resulting in samples with inconsistent (location-
specific) trends of tissue degeneration within the same
class, since certain locations exhibit more pronounced
changes at 2 weeks than at 8 weeks, and vice versa.
Nevertheless, the deep learning model was able to
classify the samples with somewhat reasonable per-
formance (Fig. 4c). Since deep learning models require
a large amount of data for training, the DNN model
performance is likely to improve in all classification
cases when more data are available. Furthermore, the
approaches adopted in this study would need to be
further validated using large animal models and
human joints ex vivo. In a recent study, Sarin er al.*®
applied shallow neural networks for predicting carti-
lage properties from its NIR spectrum, thus supporting
the outcomes and underlying hypothesis of this study
that machine learning methods may offer better
approaches for classification of cartilage integrity from
NIR spectra than traditional methods.

In conclusion, NIRS combined with machine
learning techniques, could provide a powerful tool for
classification of cartilage integrity, with the potential
for accurately distinguishing between normal and early
osteoarthritic cartilage. This finding, combined with
recent application of NIR for estimating cartilage
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FIGURE 5. Normalized feature importance of SVM classifier 1 (a) and LR classifier 2 (b) models.

biomechanical properties in human cadaver knee
joints, % is insofar significant as it suggests that
NIRS can be adapted for rapid diagnosis of cartilage
integrity during knee arthroscopy, where it may be
critical to correctly discriminate between healthy and
degenerated cartilage prior to removal of the degen-
erated tissue. However, our approach needs further
validation with human samples prior to clinical
applications in cartilage/joint repair surgery.

ACKNOWLEDGMENTS

Open access funding provided by University of
Eastern Finland (UEF) including Kuopio University
Hospital. Dr. Afara acknowledges funding support
from the Finnish Cultural Foundation (Suomen
Kulttuurirahasto: 00160079 and 00171194) and Acad-
emy of Finland (Project 315820). This study was also
supported by Academy of Finland projects of Profes-
sor Toyrds (267551), Professor Korhonen (286526,
324529), and Professor Saarakkala (303786). State
research funding (Kuopio University Hospital VTR
Projects 5041750 and 5041744: Professor Toyréds) and
Sigrid Juselius Foundation (Professor Korhonen) are
also acknowledged. Professor Herzog acknowledges
the Canadian Institutes of Health Research, the Killam
Foundation and the Canada Research Chair Program.
Dr Finnild acknowledges strategic funding from the
University of Eastern Finland. Mr Ojanen acknowl-
edges funding from Saastamoinen Foundation, Pii-
vikki and Sakari Sohlberg Foundation, and Finnish
Cultural Foundation (North Savo Regional Fund).

BIOMEDICAL
ENGINEERING
SOCIETY

CONFLICT OF INTEREST

Afara 10, Sarin JK, Ojanen S, Finnild M, Herzog
W, Saarakkala S, Korhonen RK and Toéyrés J declare
that they have no conflicts of interest.

ETHICAL STANDARDS

No human studies were carried out by the authors
for this article. All animal experiments were carried out
in accordance with guidelines of the Canadian Council
on Animal Care and were approved by the committee
on Animal Ethics at the University of Calgary [#AC11-
0035].

OPEN ACCESS

This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction
in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and
indicate if changes were made. The images or other
third party material in this article are included in the
article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence
and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://crea
tivecommons.org/licenses/by/4.0/.


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

NIRS Classification of Cartilage Health 227

REFERENCES

'Afara, 1. O., M. Hauta-Kasari, J. S. Jurvelin, A. Oloyede,
and J. Toyrds. Optical absorption spectra of human
articular cartilage correlate with biomechanical properties,
histological score and biochemical composition. Physiol.
Meas. 36:1913-1928, 2015.

’Afara, I. O., H. Moody, S. Singh, I. Prasadam, and A.
Oloyede. Spatial mapping of proteoglycan content in
articular cartilage using near-infrared (NIR) spectroscopy.
Biomed. Opt. Express 6:144-154, 2015.

3Afara, 1. O., I. Prasadam, Z. Arabshahi, Y. Xiao, and A.
Oloyede. Monitoring osteoarthritis progression using near
infrared (NIR) spectroscopy. Sci. Rep. 7:11463, 2017.

4Afara, 1., I. Prasadam, R. Crawford, Y. Xiao, and A.
Oloyede. Non-destructive evaluation of articular cartilage
defects using near-infrared (NIR) spectroscopy in os-
teoarthritic rat models and its direct relation to Mankin
score. Osteoarthr. Cartil. 20:1367—-1373, 2012.

SAfara, 1., S. Singh, and A. Oloyede. Application of near
infrared (NIR) spectroscopy for determining the thickness
of articular cartilage. Med. Eng. Phys. 35:88-95, 2012.

SAfara, 1. O., S. Singh, and A. Oloyede. Load-unloading
response of intact and artificially degraded articular carti-
lage correlated with near infrared (NIR) absorption spec-
tra. J. Mech. Behav. Biomed. Mater. 20:249-258, 2013.

"Afara, I. O., et al. Near infrared spectroscopy for rapid
determination of Mankin score components: a potential
tool for quantitative characterization of articular cartilage
at surgery. Arthroscopy 30:1146-1155, 2014.

8Antony, J., K. McGuinness, N.E. O’Connor, and K.
Moran. Quantifying radiographic knee osteoarthritis
severity using deep convolutional neural networks. In:
Proceedings—International ~ Conference on  Pattern
Recognition, 2017. https://doi.org/10.1109/ICPR.2016.789
9799.

9Bergstra, J., and Y. Bengio. Random search for hyper-
parameter optimization. J. Mach. Learn. Res. 13:281-305,
2012.

Brown, C. P., R. W. Crawford, and A. Oloyede. Indenta-
tion stiffness does not discriminate between normal and
degraded articular cartilage. Clin. Biomech. ( Bristol, Avon)
22:843-848, 2007.

"Buckwalter, J. A., H. J. Mankin, and A. Grodzinsky.
Articular Cartilage and Osteoarthritis. Instr. Course Lect.
54:466-480, 2005.

2Chollet, F. Keras: deep learning library for theano and
tensorflow. GitHub Repos. 2015. https://doi.org/10.1111/j.
1439-0310.1985.tb00118.x.

BGoogleResearch. TensorFlow: large-scale machine learning
on heterogeneous systems. Google Res 2015. https://doi.or
2/10.1207/s15326985ep4001.

14Han, S. K., R. Seerattan, and W. Herzog. Mechanical
loading of in situ chondrocytes in lapine retropatellar car-
tilage after anterior cruciate ligament transection. J. R. Soc.
Interface 2010. https://doi.org/10.1098/rsif.2009.0458.

"5LeCun, Y. A., Y. Bengio, and G. E. Hinton. Deep learning.
Nature 521:436-444, 2015.

1T orenz, H., and W. Richter. Osteoarthritis: cellular and
molecular changes in degenerating cartilage. Prog. His-
tochem. Cytochem. 40:135-163, 2006.

"Lorenzo, P., M. T. Bayliss, and D. Heinegird. Altered
patterns and synthesis of extracellular matrix macro-
molecules in early osteoarthritis. Matrix Biol. 2004. http
s://doi.org/10.1016/j.matbio.2004.07.007.

"¥Mikeld, J. T. A., ef al. Site-dependent changes in structure
and function of lapine articular cartilage 4 weeks after
anterior cruciate ligament transection. Osteoarthr. Cartil.
2014. https://doi.org/10.1016/j.joca.2014.04.010.

YMarticke, J. K., ef al. How do visual, spectroscopic and
biomechanical changes of cartilage correlate in osteoar-
thritic knee joints? Clin. Biomech. (Bristol, Avon) 25:332—
340, 2010.

200janen, S. P., et al. Site-specific glycosaminoglycan content
is better maintained in the pericellular matrix than the
extracellular matrix in early post-traumatic osteoarthritis.
PLoS ONE 2018. https://doi.org/10.1371/journal.pone.019
6203.

2l0janen, S. P., et al. Anterior cruciate ligament transection of
rabbits alters composition, structure and biomechanics of
articular cartilage and chondrocyte deformation 2 weeks
post-surgery in a site-specific manner. J. Biomech. 98:109450,
2020. https://doi.org/10.1016/j.jbiomech.2019.109450.

22padalkar, M. V., R. G. Spencer, and N. Pleshko. Near
infrared spectroscopic evaluation of water in hyaline car-
tilage. Ann. Biomed. Eng. 41:2426-2436, 2013.

Bpalukuru, U. P., C. M. McGoverin, and N. Pleshko.
Assessment of hyaline cartilage matrix composition using
near infrared spectroscopy. Matrix Biol. 38:3—11, 2014.

2*Pedregosa, F., et al. Scikitlearn: machine learning in python
Gaél Varoquaux. J. Mach. Learn. Res. 2011. https://doi.
org/10.1007/s13398-014-0173-7.2.

ZPrakash, M., et al. Near-infrared spectroscopy enables
quantitative evaluation of human cartilage biomechanical
properties during arthroscopy. Osteoarthr. Cartil. 27:1235-
1243, 2019.

26Qandell, L. J., and T. Aigner. Articular cartilage and
changes in arthritis an introduction: cell biology of
osteoarthritis. Arthritis Res. 3:107-113, 2001.

?"Sarin, J. K., et al. Near infrared spectroscopic mapping of
functional properties of equine articular cartilage. Ann.
Biomed. Eng. 44:3335-3345, 2016.

2Sarin, J. K., et al. Combination of optical coherence
tomography and near infrared spectroscopy enhances
determination of articular cartilage composition and
structure. Sci. Rep. 7:10586, 2017.

PSarin, I. K., et al. Arthroscopic near infrared spectroscopy
enables simultaneous quantitative evaluation of articular
cartilage and subchondral bone in vivo. Sci. Rep. 8:13409,
2018.

NSarin, J. K., et al. Arthroscopic determination of cartilage
proteoglycan content and collagen network structure with
near-infrared spectroscopy. Ann. Biomed. Eng. 2019. http
s://doi.org/10.1007/s10439-019-02280-7.

31Spahn, G., H. M. Klinger, and G. O. Hofmann. How valid
is the arthroscopic diagnosis of cartilage lesions? Results of
an opinion survey among highly experienced arthroscopic
surgeons. Arch. Orthop. Trauma Surg. 129:1117-1121,
2009.

Spahn, G., et al. Evaluation of cartilage defects with near-
infrared spectroscopy (NIR): an ex vivo study. Med. Eng.
Phys. 30:285-292, 2008.

¥Spahn, G., et al. Near-infrared spectroscopy for arthro-
scopic evaluation of cartilage lesions: results of a blinded,
prospective, interobserver study. Am. J. Sports Med.
38:2516-2521, 2010.

3Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov. Dropout: a simple way to prevent neural
networks from overfitting. J. Mach. Learn. Res. 15:1929—

1958, 2014.
BMES:
ENGINEERING
SOCIETY


https://doi.org/10.1109/ICPR.2016.7899799
https://doi.org/10.1109/ICPR.2016.7899799
https://doi.org/10.1111/j.1439-0310.1985.tb00118.x
https://doi.org/10.1111/j.1439-0310.1985.tb00118.x
https://doi.org/10.1207/s15326985ep4001
https://doi.org/10.1207/s15326985ep4001
https://doi.org/10.1098/rsif.2009.0458
https://doi.org/10.1016/j.matbio.2004.07.007
https://doi.org/10.1016/j.matbio.2004.07.007
https://doi.org/10.1016/j.joca.2014.04.010
https://doi.org/10.1371/journal.pone.0196203
https://doi.org/10.1371/journal.pone.0196203
https://doi.org/10.1016/j.jbiomech.2019.109450
https://doi.org/10.1007/s13398-014-0173-7.2
https://doi.org/10.1007/s13398-014-0173-7.2
https://doi.org/10.1007/s10439-019-02280-7
https://doi.org/10.1007/s10439-019-02280-7

228 AFARA et al.

35Tiulpin, A., J. Thevenot, E. Rahtu, P. Lehenkari, and S. Publisher’s Note Springer Nature remains neutral with re-
Saarakkala. Automatic knee osteoarthritis diagnosis from gard to jurisdictional claims in published maps and institu-
plain radiographs: a deep learning-based approach. Sci. tional affiliations.

Rep. 2018. https://doi.org/10.1038/s41598-018-20132-7.

BIOMEDICAL
ENGINEERING
SOCIETY


https://doi.org/10.1038/s41598-018-20132-7

	Machine Learning Classification of Articular Cartilage Integrity Using Near Infrared Spectroscopy
	Abstract
	Abstract
	Abstract
	ASec4
	Introduction
	Materials and Methods
	Sample Preparation and Experimental Protocol
	NIR Spectroscopy
	Histological Analysis and Tissue Grading
	Spectral Pre-processing
	Classification Models and Parameter Tuning

	Results
	Discussion
	Discussion
	References




