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Abstract

A specification of mortality or survivorship provides respective explicit details about mortality’s or survivorship’s
relationships with one or more other variables (e.g., age, sex, etc.). Previous studies have discovered and analyzed diverse
specifications of mortality or survivorship; these discoveries and analyses suggest that additional specifications of mortality
or survivorship have yet to be discovered and analyzed. In consistency with previous research, multivariable limited
powered polynomials regression analyses of mortality and survivorship of selected humans (Swedes, 1760–2008) and
selected insects (caged medflies) show age-specific, historical-time-specific, environmental-context-specific, and sex-specific
mortality and survivorship. These analyses also present discoveries of hitherto unknown lifespan-specific, contemporary-
aggregate-size-specific, and lifespan-aggregate-size-specific mortality and survivorship. The results of this investigation and
results of previous research help identify variables for inclusion in regression models of mortality or survivorship. Moreover,
these results and results of previous research strengthen the suggestion that additional specifications of mortality or
survivorship have yet to be discovered and analyzed, and they also suggest that specifications of mortality and survivorship
indicate corresponding specifications of frailty and vitality. Furthermore, the present analyses reveal the usefulness of a
multivariable limited powered polynomials regression model-building approach. This article shows that much has yet to be
learned about specifications of mortality or survivorship of diverse kinds of individuals in diverse times and places.
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Introduction

A specification of mortality or survivorship provides explicit details

about mortality’s or survivorship’s relationships with one or more

other variables. For example, X-specific mortality or survivorship

provides explicit details about mortality’s or survivorship’s relation-

ship with variable X. Previous investigations present discoveries and

analyses of diverse specifications of mortality or survivorship, as

illustrated by discoveries and analyses of age-specific [1–40],

environmental-context-specific [10,13,17,35,41,42], historical-time-

specific [17,43–47], physical-size-specific [2,10,12,20,34,35,48–53],

sex-specific [10,35,54], birth-cohort-specific [23,36–40,44,47,55,56],

exposure-specific [12,13,44,47,57], density-specific [10,17,41,58–

60], and disease-specific [61] mortality or survivorship. These

considerations suggest that additional specifications of mortality or

survivorship have yet to be discovered and analyzed. This article

presents discoveries and analyses of hitherto unknown lifespan-

specific, contemporary-aggregate-size-specific, and lifespan-aggre-

gate-size-specific mortality and survivorship.

Lifespan is the total time span of an individual’s existence

[21,62], such that Liq = Li = tiz – ti0, where Liq refers to the lifespan

of a natural or artificial individual i at time tq, z$q, tiz is the time of

the individual’s cessation of existence, ti0 is the time of the

individual’s initiation of existence, and Li is constant for all tq in

ti0:tiz. The time of birth typically indicates time ti0, and the time of

death typically indicates time tiz, but these typical notions of time

of birth and time of death as limits of lifespan do not apply to all

kinds of individuals [10,20,63]. The lifespan aggregate includes all

the individuals that are identically characterized with respect to

lifespan and every other condition in a data set. The individuals

that are included in a lifespan aggregate begin their existence in

coexistence at the beginning of the lifespan, they coexist through

said lifespan, and they cease to exist and cease to coexist at the

conclusion of this lifespan. Therefore, a lifespan aggregate’s

composition and size are constant from the time of the initiation of

existence of this aggregate to the time of its cessation of existence.

In some cases, the lifespan aggregate consists only of a respective

single natural or artificial individual, but in many cases the lifespan

aggregate consists of more than one individual. An individual’s

lifespan aggregate is included in every contemporary aggregate of

this individual. The contemporary aggregate includes all the

individuals that are identically characterized with respect to every

condition in a data set at a point of cessation or continuation of

existence, except that these individuals share or do not share an

identical lifespan. These considerations indicate that the contem-

porary aggregate’s composition and size are time-specific and

changeable through time. Additionally, the size of an individual’s

contemporary aggregate is equal to – or greater than – the size of

this individual’s corresponding lifespan aggregate.

Every natural or artificial individual is characterized by a

lifespan, a contemporary aggregate, and a lifespan aggregate at

every point of continuation of existence (i.e., survivorship) and at

the point of cessation of existence (i.e., mortality). Previous
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investigations posit that age-specific aggregates are characterized

by a ‘‘longevity factor’’ [5–7]; this longevity factor has been

implemented in logistic models of mortality or survivorship [3,5–7]

and in frailty models of survival time [15,64]. However, lifespan-

specific, contemporary-aggregate-size-specific, and lifespan-aggre-

gate-size-specific mortality or survivorship have not been discov-

ered or analyzed in previous empirical research. Therefore, it is

useful to search for lifespan-specific, contemporary-aggregate-size-

specific, and lifespan-aggregate-size-specific mortality or survivor-

ship. This search is conducted here in empirical analyses of

mortality and survivorship of selected humans and selected insects.

Materials and Methods

Data
Deaths 161 and exposures 161 tables (last modified on 14 July,

2010) from the Human Mortalities Database are employed here in

the compilation of data on aggregate age-sex-year-specific deaths

and age-sex-year-specific exposures of males and females in ages 0

to 110+ in Sweden 1751–2008 [65]. Computer intensive analyses

impose restrictions on the size of the data file for the present

analyses. Therefore, the analytic data file is restricted here to

188,087 weighted cases with 79,164,608 events of death or

survival of all individuals born in Sweden in decennial years 1760–

1930, with deaths occurring between 1760 and 2008. The selected

aggregate data are converted here to yearly events of each

individual’s death or survival, where each individual-level case is

weighted by its corresponding number of age-lifespan-sex-specific

identical individuals (i.e., the number of sex-specific individuals

who are born in the year of birth of the criterion individual and

who die in the year of death of the criterion individual). Each case

includes data on an age-sex-year-specific event of death or survival

of one individual, year of the event, the individual’s sex, the

individual’s age at the time of the event, the individual’s lifespan,

number of age-lifespan-sex-specific identical individuals (i.e., this is

the weight variable in the analyses, and it is also the lifespan

aggregate size variable in the respective models of mortality and

survivorship), and the number of age-sex-specific individuals that

are exposed to the risk of death and prospect of survival during the

year of the event (i.e., this is the contemporary aggregate size

variable in the respective models of the selected humans’ mortality

and survivorship).

The data on mortality and survivorship of the selected insects –

Mediterranean fruit flies, Ceratitis capitata, commonly known as

medflies – were collected in 1991 at the Moscamed medflies mass-

rearing facility in Metapa, a small village located about

20 kilometers from the city of Tapachula in the state of Mexico

[9,10]. These data have been previously analyzed – using diverse

compilations and methods – in studies that have been reported in

diverse publications [9,10,27–29]. The original data file contains

information on numbers of age-cage-and-sex-specific deaths of

1,203,646 male and female medflies, where insects are distributed

in 167 cages, and where the numbers of age-cage-sex-specific dead

individuals are counted daily [66]. Computer intensive analyses

impose restrictions on the size of the data file that is analyzed here.

Therefore, the analytic data file is restricted here to cases of

physical size #5 and birth aggregate batch #2. In these selected

cases, individuals lived and died in one of thirteen cages, where the

cages averaged 3,646.3 sex-specific insects per cage at age 0 to 1

days. These aggregate data are converted here to daily events of

each individual’s death or survival, where each case is weighted by

the number of sex-cage-specific individuals that were born in the

day of birth of the criterion individual and that died in the day of

death of the criterion individual. The resultant analytic data file

includes 50,716 cases with 2,211,782 events of individual insects’

deaths or survivals. Each case includes data on an age-cage-and-

sex-specific event of death or survival of one individual, the

individual’s sex, the individual’s age at the time of the event, the

individual’s lifespan, cage specifier, number of corresponding age-

lifespan-cage-sex-specific identical individuals (i.e., number of

cage-sex-specific individuals with identical birth day and identical

death day to the criterion individual, which is the weight variable

in the analyses, and which is also the lifespan aggregate size

variable in the respective models of mortality and survivorship),

and the number of age-cage-sex-specific individuals that are

exposed to the risk of death and prospect of survival during the day

of the event (i.e., this variable is also the contemporary aggregate

size variable in the respective models of the selected insects’

mortality and survivorship).

Model-building approach
Mortality refers here to cessation of existence of an individual,

and survivorship refers here to continuation of existence of an

individual. Therefore, an explanatory model of mortality or

survivorship – i.e., a model that is dedicated to the explanation of

an individual’s cessation or continuation of existence – requires a

binary response model. Additionally, multiple specifications of

mortality or survivorship – and avoidance of the omitted variables

bias in models of mortality or survivorship [67–71] – require

multivariable models. Furthermore, previous research shows that

trajectories of specific mortality or survivorship tend to be

nonlinear [31,32]; therefore, the explanatory multivariable binary

response model of mortality or survivorship should allow for

nonlinearity. Previous research also shows that mortality and

survivorship correspond to power laws and scaling laws

[22,26,30,35,48–53,60,72–81]; therefore, the explanatory multi-

variable nonlinear binary response model of mortality or

survivorship should enable investigation of power laws and scaling

laws. The multivariable fractional polynomials regression model-

building approach [31,32,34] enables investigation of explanatory

multivariable nonlinear binary response models of mortality or

survivorship. However, by allowing more than one power

coefficient for each relevant right-hand side variable and by not

searching for precise power coefficients, this model-building

approach may disable the investigation of power laws and scaling

laws of mortality or survivorship. Related to the multivariable

fractional polynomials regression model-building approach, a

multivariable limited powered polynomials regression model-

building approach enables investigation of explanatory multivar-

iable nonlinear binary response models, power laws, and scaling

laws.

A multivariable limited powered polynomials regression model

is specified here with

Y~b0z
Xn

q~1

Xrq

k~1

½bqkf(Xq)pqgk�z
Xu

v~1

(bvWv)

where – in the present context – the left-hand side variable Y

denotes mortality M or survivorship S, b denotes a regression

coefficient, X denotes an ordinal or higher-level variable, and W

denotes a categoric variable. In this regression model, a distinct

precise power coefficient pq of a distinct variable Xq is common to

all k in each limited power series
Prq

k~1

½bqkf(Xq)pqgk�, and length rq

of each of these limited power series is distinct to each variable Xq.

These characteristics of the multivariable limited powered

polynomials regression model enable investigation of power laws,

Specifications of Mortality or Survivorship
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scaling laws, and post-estimation marginal probabilities and

derivatives for each (Xq)pq variable. In the following example of

a multivariable limited powered polynomials regression model

Y~b0zb1 X1ð Þ1:4
n o1

zb2 X2ð Þ0:5
n o1

zb3 X2ð Þ0:5
n o2

zb4 X2ð Þ0:5
n o3

zb5 X3ð Þ0:7
n o1

zb6 X3ð Þ0:7
n o2

zb7 X3ð Þ0:7
n o3

zb8 X3ð Þ0:7
n o4

zb9W1zB10W2

variable X1 has a q = 1 index, a power coefficient p1 = 1.4, a limited

power series of length r1 = 1, and one respective regression

coefficient b; variable X2 has a q = 2 index, a power coefficient

p2 = 0.5, a limited power series of length r2 = 3, and three

respective regression coefficients b; variable X3 has a q = 3 index,

a power coefficient p3 = 0.7, a limited power series of length r3 = 4,

and four respective regression coefficients b; categoric variable W1

has a v = 1 index and one respective regression coefficient b; and

categoric variable W2 has a v = 2 index and one respective

regression coefficient b. The multivariable limited powered

polynomials regression model in this example includes eleven

regression coefficients b that are distributed as follows: one

coefficient b for the intercept, eight coefficients b for the three Xq

variables and their respective limited power series, and two

regression coefficients b for the two respective W variables. The

model in this example enables investigation of power laws, scaling

laws, and respective post-estimation marginal probabilities and

derivatives for (X1)1:4,(X2)0:5, and(X3)0:7.

Statistical analyses
Analyses of mortality and survivorship of the selected humans

analyze the following multivariable limited powered polynomials

binary random effects weighted model:

Yij~b0z
XrA

k~1

½bAkf(Aij)
pAgk�z

XrL

k~1

½bLkf(Lij)
pLgk�

z
XrC

k~1

½bCkf(Cij)
pCgk�z

XrL
k~1

½bLkf(Lij)
pLgk�

z
XrH

k~1

½bHkf(Hij)
pH gk�zbF Fijzjijzeij

where Yij refers to mortality Mij or survivorship Sij of an individual

human i that continues to exist (i.e., Mij = 0 and Sij = 1) or ceases to

exist (i.e., Mij = 1 and Sij = 0) at observation j; Aij, Lij, Cij, Lij, Fij, and

Hij are respective right-hand side variables corresponding to

individual i at observation j; A denotes age, L denotes lifespan, C

denotes contemporary aggregate size, L (the Greek capital letter

Lambda) denotes lifespan aggregate size, H denotes historical time,

and F (in reference to being or not being female) denotes sex; jij

denotes a random effects component corresponding to individual i

at observation j; and eij denotes an error corresponding to

individual i at observation j. Every (Xq)pq in Model (3) is a power

transformation of a corresponding variable Xq using a correspond-

ing specific power coefficient pq (e.g., (Aij)
pA is a power

transformation of Aij). Previous research provides evidence of

unobserved heterogeneity in models of mortality or survivorship

[9,13–16,28]; by denoting a random effects component of

individual i at observation j, coefficient jij in Model (3)

accommodates and implements unobserved heterogeneity [82].

Additionally, previous research shows that regression models of

mortality, survivorship, and other phenomena are often encum-

bered by the age-period-cohort problem (also known as the ‘‘APC

conundrum’’) of separating the effects of age-groups, periods, and

cohorts in regression models [23,36–40]. Inclusion of the variables

age, lifespan, contemporary aggregate size, lifespan aggregate size,

and historical time variables as separate and distinct variables in

Model (3) shows that this model is not encumbered by the age-

period-cohort problem.

Corresponding analyses of mortality and survivorship of the

selected insects analyze the following multivariable limited

powered polynomials binary random effects weighted model:

Yij~b0z
XrA

k~1

½bAkf(Aij)
pAgk�z

XrL

k~1

½bLkf(Lij)
pLgk�

z
XrC

k~1

½bCkf(Cij)
pCgk�z

XrL
k~1

½bLkf(Lij)
pLgk�

zbF FijzfbEcEicgzjijzeij

where Yij, Aij, Lij, Cij, Lij, Fij, pq, k, bqk, jij, and eij denote as in Model

(3); Eic denotes the environmental context E of individual i, such

that c in bEc and Eic denotes a specific cage c, such that c = 1:13

cages, such that Model (4) includes one of 13 respective terms

{bEcEic}, such that one of these 13 respective terms applies to a

respective individual i.

Statistical analyses of limited powered polynomials binary

random effects weighted regression Models (3) and (4) are

conducted here using the Stata software [83]. Stata restricts the

statistical analyses of random effects binary response models to

respective analyses of logit, probit, and complementary log-log

models with a Gaussian distribution of unobserved heterogeneity.

Goodness-of-fit (GOF) of a model is indicated here by minimiza-

tion of the Akaike information criterion, AIC, and minimization of

the Bayesian information criterion, BIC [83–85]. Statistical

analyses of Models (3) and (4) consist here of data-driven stepwise

tests of improvements in GOF in respective weighted random

effects logit, probit, or complementary log-log regression analyses

of these models.

Initial steps in the stepwise analyses employ k = 1 of all n right-

hand side variables (Xq)pq of Model (3) or (4), testing diverse power

coefficients pq (using ln(Xq) for pq = 0), searching for the power

coefficient pq for each specific (Xq)pq variable that most improves

the model’s GOF, stopping respective testing of a specific (Xq)pq

when a specific change in pq for this specific (Xq)pq ceases to

improve the model’s GOF, dropping variables (Xq)pq that fail to

improve the model’s GOF, and retaining variables (Xq)pq that

most improve the model’s GOF. The distinct power coefficients pq

of respective distinct variables (Xq)pq that are retained when k = 1

are kept constant in all the subsequent GOF tests of (Xq)pq

variables with k.1. If GOF tests of (Xq)pq variables with k.1

improve the model’s GOF, then increasing k and continuing

stepwise reiterations of these tests, until no further improvements

in the model’s GOF are achieved. The best-fitting model is also

required to enable calculations of post-estimation marginal

probabilities and marginal derivatives; if these calculations are

not achieved then calculations are attempted with the most

preceding improved model until success in such calculations is

achieved. Thus, a best-fitting model here is the model whose right-

hand side variables Xq and W, power coefficients pq, and respective

limited power series coefficients k and rq minimize AIC and BIC

and enable successful calculations of post-estimation marginal
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probabilities and marginal derivatives. Statistical analyses culmi-

nate here in selections of a best-fitting model of the selected

humans’ mortality, a best-fitting model of the selected humans’

survivorship, a best-fitting model of the selected insects’ mortality,

and a best-fitting model of the selected insects’ survivorship. The

best-fitting models yield z-ratios and respective probabilities P(|z|)

for these ratios, where z = b/SE(b). Coefficients P(|z|) serve here

as respective indicators of respective specifications of mortality or

survivorship.

Results

Best-fitting models and specifications of mortality and
survivorship

The analyses yield a best-fitting multivariable limited powered

polynomials random effects logit weighted model of the selected

humans’ mortality. Table 1 presents respective b, pq, k, SE(b), z,

and P(|z|) coefficients of this best-fitting model of the selected

humans’ mortality. This model is computed on the basis of Model

(3) and – employing b coefficients from Table 1 – it is specified

with

gij~511:78{1074:55 Aij
0:16

� �
z546:12 Aij

0:16
� �2

{17:12 Lij
0:88

� �

z0:101 Lij
0:88

� �2
z0:006 Cij

0:75
� �

{ 4:39e{7ð Þ Cij
0:75

� �2

z6:19 Lij
0:30

� �
{0:35 Lij

0:30
� �2

{0:008 Hij
1:41

� �

z 1:92e{6ð Þ Hij
1:41

� �2
{ 7:97e{10ð Þ Hij

1:41
� �3

{1:13 Fij

� �
zjij

such that Mij = exp(gij)/{1+ exp(gij)}, where i denotes an individual,

j is the consecutive number for the respective consecutive

observation of this individual’s cessation or continuation of

existence, Mij denotes the logit fitted probability of mortality of

individual i at observation j, Aij denotes the individual’s age (in

years) at observation j, Lij denotes the individual’s lifespan (in years)

at observation j, Cij denotes the individual’s contemporary

aggregate size at observation j, Lij denotes the individual’s lifespan

aggregate size at observation j, Hij denotes the individual’s

historical time at observation j where j denotes a calendar year

transformed to a sequential number, Fij = 1 when the individual is

female and Fij = 0 otherwise, and jij denotes the random effects

component corresponding to individual i at observation j.

The analyses also yield a corresponding best-fitting multivari-

able limited powered polynomials random effects logit weighted

model of the selected humans’ survivorship. Table 2 presents

respective b, pq, k, SE(b), z, and P(|z|) coefficients of this best-

fitting model of the selected humans’ survivorship. This model is

computed on the basis of Model (3) and – employing b coefficients

from Table 2 – it is specified with

gij~{511:78z1074:55 Aij
0:16

� �
{546:12 Aij

0:16
� �2

z17:12 Lij
0:88

� �
{0:101 Lij

0:88
� �2

{0:006 Cij
0:75

� �

z 4:39e{7ð Þ Cij
0:75

� �2
{6:19 Lij

0:30
� �

z0:35 Lij
0:30

� �2

z0:008 Hij
1:41

� �
{ 1:92e{6ð Þ Hij

1:41
� �2

z 7:97e{10ð Þ Hij
1:41

� �3
z1:13 Fij

� �
zjij

such that Sij = exp(gij)/{1+ exp(gij)}, where Sij denotes the logit fitted

probability of survival of individual i at observation j, and all other

denotations are as in Model (5).

The analyses yield a best-fitting multivariable limited powered

polynomials random effects logit weighted model of the selected

insects’ mortality. Table 3 presents respective b, pq, k, SE(b), z, and

P(|z|) coefficients of this best-fitting model of the selected insects’

mortality. This model is computed on the basis of Model (4) and –

employing b coefficients from Table 3 – it is specified with

Table 1. Coefficients of the best-fitting multivariable limited powered polynomials random effects weighted logit model of the
selected humans’ mortality.1

Variable b Index b SE(b) z-ratio P z|) b’s 95% Confidence Interval

Constant b0 511.7836 0.577069 886.87 0.00 510.6526 512.9146

A0.16 bA1 21074.55 1.208563 2889.12 0.00 21076.92 21072.19

(A0.16)2 bA2 546.1184 0.613552 890.09 0.00 544.9158 547.3209

L0.88 bL1 217.1193 0.019416 2881.73 0.00 217.1574 217.0813

(L0.88)2 bL2 0.100631 0.00012 839.59 0.00 0.100396 0.100866

C0.75 bC1 0.006233 2.08e-05 299.18 0.00 0.006192 0.006273

(C0.75)2 bC2 24.39e-07 3.42e-09 2128.68 0.00 24.46e-07 24.33e-07

L0.3 bL1 6.186891 0.00919 673.25 0.00 6.16888 6.204902

(L0.3)2 bL2 20.34869 0.000512 2681.26 0.00 20.34969 20.34768

F bF 21.12889 0.004455 2253.37 0.00 21.13762 21.12016

H1.41 bH1 20.00784 3.58e-05 2219.24 0.00 20.00791 20.00777

(H1.41)2 bH2 1.92e-06 2.90e-08 66.06 0.00 1.86e-06 1.97e-06

(H1.41)3 bH3 27.97e-10 7.70e-12 2103.52 0.00 28.12e-10 27.82e-10

1Variables are right-hand side (rhs) variables of the best-fitting model. Variables include: A denoting age (in years), L denoting lifespan (in years), C denoting
contemporary aggregate size, L denoting lifespan aggregate size, F denoting sex, and H denoting historical time (i.e., indicated by a specific year). Coefficient b denotes
a regression coefficient of the respective best-fitting model, SE(b) denotes the standard error of b, z denotes a specific z-ratio calculated with z = b/SE(b), and P(|z|)
denotes a respective probability of |z|.
doi:10.1371/journal.pone.0084156.t001
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Table 2. Coefficients of the best-fitting multivariable limited powered polynomials random effects weighted logit model of the
selected humans’ survivorship.1

Variable b Index b SE(b) z-ratio b’s 95% Confidence Interval

Constant b0 2511.784 0.577069 2886.87 0.00 2512.915 2510.653

A0.16 bA1 1074.553 1.208563 889.12 0.00 1072.185 1076.922

(A0.16)2 bA2 2546.118 0.613552 2890.09 0.00 2547.321 2544.916

L0.88 bL1 17.11934 0.019416 881.73 0.00 17.08128 17.15739

(L0.88)2 bL2 20.10063 0.00012 2839.59 0.00 20.10087 20.1004

C0.75 bC1 20.00623 2.08e-05 2299.18 0.00 20.00627 20.00619

(C0.75)2 bC2 4.39e-07 3.42e-09 128.68 0.00 4.33e-07 4.46e-07

L0.3 bL1 26.18689 0.00919 2673.25 0.00 26.2049 26.16888

(L0.3)2 bL2 0.348686 0.000512 681.26 0.00 0.347683 0.349689

F bF 1.128888 0.004455 253.37 0.00 1.120156 1.137621

H1.41 bH1 0.007839 3.58e-05 219.24 0.00 0.007769 0.007909

(H1.41)2 bH2 21.92e-06 2.90e-08 266.06 0.00 21.97e-06 21.86e-06

(H1.41)3 bH3 7.97e-10 7.70e-12 103.52 0.00 7.82e-10 8.12e-10

1As in the footnote of Table 1.
doi:10.1371/journal.pone.0084156.t002

Table 3. Coefficients of the best-fitting multivariable limited powered polynomials random effects weighted logit model of the
selected insects’ mortality.1

Variable b Index b SE(b) z-ratio b’s 95% Confidence Interval

Constant b0 1391.92 8.754245 159.00 0.00 1374.76 1409.08

A0.13 bA1 22648.52 16.6719 2158.86 0.00 22681.2 22615.85

(A0.13)2 bA2 1295.76 8.161646 158.76 0.00 1279.76 1311.76

L0.98 bL1 216.67 0.106237 2156.94 0.00 216.88 216.46

(L0.98)2 bL2 0.095159 0.00062 153.51 0.00 0.093944 0.096374

C1.02 bC1 20.00632 0.000103 261.38 0.00 20.00652 20.00612

(C1.02)2 bC2 6.85e-07 1.55e-08 44.10 0.00 6.54e-07 7.15e-07

L0.95 bL1 20.09025 0.001541 258.58 0.00 20.09327 20.08723

(L0.95)2 bL2 0.000263 4.91e-06 53.64 0.00 0.000254 0.000273

F bF 21.82694 0.040958 244.61 0.00 21.90722 21.74667

E1 bE1 21.41705 0.096002 214.76 0.00 21.60521 21.22889

E2 bE2 0.631117 0.102214 6.17 0.00 0.430781 0.831452

E3 bE3 0.756026 0.099505 7.60 0.00 0.561 0.951052

E4 bE4 1.597167 0.09196 17.37 0.00 1.416928 1.777405

E5 bE5 2.7985 0.096029 29.14 0.00 2.610285 2.986714

E6 bE6 0.996794 0.088613 11.25 0.00 0.823116 1.170472

E7 bE7 24.41742 0.104782 242.16 0.00 24.62279 24.21205

E8 bE8 2.042812 0.100085 20.41 0.00 1.846648 2.238976

E9 bE9 3.962415 0.093918 42.19 0.00 3.77834 4.146491

E10 bE10 20.86276 0.10499 28.22 0.00 21.06854 20.65699

E11 bE11 2.069779 0.097441 21.24 0.00 1.878799 2.26076

E12 bE12 1.655298 0.08756 18.9 0.00 1.483683 1.826912

1Variables are right-hand side variables of the best-fitting model. Variables’ respective designators include: A designating age (in days), L designating lifespan (in days),
and E designating environmental context (i.e., indicated by a specific cage index). All else is as in the footnote of Table 1.
doi:10.1371/journal.pone.0084156.t003
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where Mij, Lij, Cij, Lij, Fij, and jij denote as in Model (5), Aij denotes

the age (in days) of individual i at observation j, and coefficients Eic

respectively denote the environmental context of an individual i in

one of c = 1:13 cages, such that only one of the 13 terms of

coefficients Eic applies to individual i within parentheses {} of

Model (7).

The analyses also yield a best-fitting multivariable limited

powered polynomials random effects complementary log-log

weighted model of the selected insects’ survivorship. Table 4

presents respective b, pq, k, SE(b), z, and P(|z|) coefficients of this

best-fitting model of the selected insects’ survivorship. This model

is computed on the basis of Model (4) and – employing b
coefficients from Table 4 – it is specified with

gij~{732:74z1402:49 Aij
0:16

� �
{706:62 Aij

0:16
� �2
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zjij

such that Sij = 1 - exp{-exp(gij)}, where Sij denotes the complemen-

tary log-log fitted probability of survival of individual i at

observation j, and all other denotations are as in Model (7).

Coefficients P(|z|) in Tables 1 and 3 provide evidence of

respective age-specific, lifespan-specific, contemporary-aggregate-

size-specific, historical-time-specific, environmental-context-specif-

ic, and sex-specific mortality. Similarly, coefficients P(|z|) in

Tables 2 and 4 provide evidence of respective age-specific,

lifespan-specific, contemporary-aggregate-size-specific, historical-

time-specific, environmental-context-specific, and sex-specific sur-

vivorship. Thus, as noted, the best-fitting models yield respective

evidence of respective age-specific, lifespan-specific, contempo-

rary-aggregate-size-specific, lifespan-aggregate-size-specific, histor-

ical-time-specific, environmental-context-specific, and sex-specific

Table 4. Coefficients of the best-fitting multivariable limited powered polynomials random effects weighted complementary log-
log model of the selected insects’ survivorship.1

Variable b Index b SE(b) z-ratio b’s 95% Confidence Interval

Constant b0 2732.741 7.57595 296.72 0.00 2747.59 2717.893

A0.16 bA1 1402.486 14.67483 95.57 0.00 1373.72 1431.25

(A0.16)2 bA2 2706.621 7.484498 294.41 0.00 2721.29 2691.951

L0.94 bL1 19.23612 0.212374 90.58 0.00 18.81988 19.65237

(L0.94)2 bL2 20.11759 0.001355 286.8 0.00 20.12025 20.11493

C1.02 bC1 0.004073 0.000101 40.4 0.00 0.003875 0.004271

(C1.02)2 bC2 24.03e-07 1.49e-08 226.99 0.00 24.32e-07 23.74e-07

L0.88 bL1 0.112845 0.002865 39.38 0.00 0.10723 0.118461

(L0.88)2 bL2 20.00049 1.38e-05 235.57 0.00 20.00052 20.00046

F bF 1.282721 0.041707 30.76 0.00 1.200977 1.364465

E1 bE1 0.964724 0.10298 9.37 0.00 0.762886 1.166561

E2 bE2 20.66944 0.121445 25.51 0.00 20.90747 20.43141

E3 bE3 21.03296 0.102814 210.05 0.00 21.23448 20.83145

E4 bE4 20.74903 0.115518 26.48 0.00 20.97544 20.52262

E5 bE5 21.53755 0.118571 212.97 0.00 21.76995 21.30516

E6 bE6 20.52188 0.106935 24.88 0.00 20.73147 20.31229

E7 bE7 3.253259 0.103586 31.41 0.00 3.050235 3.456284

E8 bE8 21.1545 0.141288 28.17 0.00 21.43142 20.87758

E9 bE9 22.6341 0.115133 222.88 0.00 22.85975 22.40844

E10 bE10 0.831803 0.116184 7.16 0.00 0.604087 1.059518

E11 bE11 21.1248 0.131534 28.55 0.00 21.3826 20.867

E12 bE12 20.53327 0.109138 24.89 0.00 20.74718 20.31936

1As in the footnote of Table 3.
doi:10.1371/journal.pone.0084156.t004
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mortality and survivorship of the selected humans and the selected

insects in this investigation.

Discussion

Making reference to existence of any natural or artificial

individual (i.e., individuals from apples to zithers; for example,

particles, plants, planets, viruses, insects, humans, bicycles, books,

and poems), survivorship refers here to continuation of existence,

and mortality refers here to cessation of existence. Every natural or

artificial individual is characterized by age, lifespan, contemporary

aggregate size, lifespan aggregate size, historical time, and

environmental context at every point of continuation of existence

and at the point of cessation of existence. Similarly, every sexual

individual is characterized by sex at every point of continuation of

existence and at the point of cessation of existence. These

considerations – and the specifications in the present investigation

and in past research – provide guidance to the inclusion of the

variables age, lifespan, contemporary aggregate size, lifespan

aggregate size, historical time, and environmental context in

regression models of mortality or survivorship of diverse kinds of

natural or artificial individuals in diverse times and places.

Similarly, these considerations – and the specifications in the

present investigation and in past research – provide guidance to

the inclusion of the variable sex in regression models of mortality

or survivorship of diverse kinds of sexual individuals in diverse

times and places.

As noted, respective age-specific, historical-time-specific, envi-

ronmental-context-specific, and sex-specific mortality or survivor-

ship have already been discovered and analyzed in previous

empirical research. However, respective lifespan-specific, contem-

porary-aggregate-size-specific, and lifespan-aggregate-size-specific

mortality or survivorship have not been discovered or analyzed in

previous empirical research. The present discoveries and analyses

of hitherto unknown lifespan-specific, contemporary-aggregate-

size-specific, and lifespan-aggregate-size-specific mortality and

survivorship reveal that much has yet to be learned about these

specifications among diverse kinds of individuals in diverse times

and places. Additionally, the new discoveries and analyses

strengthen the suggestion that additional specifications of mortality

or survivorship have yet to be discovered and analyzed.

As noted, previous research shows that regression models of

mortality or survivorship are encumbered by the omitted variables

bias [67–71] and by unobserved heterogeneity bias [9,13–16,28].

The present investigation suggests that addition of lifespan,

contemporary aggregate size, or lifespan aggregate size variables

to the right-hand side of regression models of mortality or

survivorship – and employment of multivariable limited powered

polynomials regression models – reduce or eliminate these biases.

Furthermore, as noted, previous research shows that trajectories of

mortality or survivorship tend to be nonlinear [31,32], that

mortality and survivorship correspond to power laws and scaling

laws [22,26,30,35,48–53,60,72–81], and that previous models of

mortality or survivorship are encumbered by the age-period-

cohort problem of separating the effects of age-groups, periods,

and cohorts in regression models [23,36–40]. The present

investigation suggests that multivariable limited powered polyno-

mials binary regression models of mortality or survivorship help

capture nonlinearity, contribute to analyses of power laws and

scaling laws, and provide a useful solution to the age-period-cohort

problem. These suggestions can now be investigated further.

This investigation and previous research elucidate – and are

elucidated by – considerations of frailty and vitality. Frailty is

typically conceptualized in negative terms conveying vulnerability,

susceptibility, weakness, debility, defenselessness, helplessness,

exposure, liability, lack, absence, decay, decline, exhaustion, or

depletion. Vitality is typically conceptualized in positive terms

conveying liveliness, vigor, strength, resistance, robustness, ani-

mation, verve, dynamism, vim, resistance, success, accomplish-

ment, achievement, or expansion. Notions of frailty and vitality

have been prevalent in many cultures throughout human

evolution and history, as exemplified by expressions of these

notions in vitalism, yinyang, élan vital, or conatus. There is ample

research on frailty in mortality or survivorship [14–16,19,64,86–

91], and there is also ample research on vitality in mortality or

survivorship [1,2,11,12,19,22,28,92–115]. Previous research posits

the existence of an ‘‘inherent vitality’’ that is defined as ‘‘the total

potential capacity of an [individual] to perform vital actions, in the

complete absence of matter or energy of exogenous derivation’’

([2], pp. 108, 147). This conception of inherent vitality – together

with general notions of frailty and vitality as well as previous

research on frailty and vitality in mortality and survivorship –

suggest that each natural or artificial individual is characterized by

lifespan-specific vitality and a corresponding lifespan-specific

frailty. Additionally, previous research focuses on attritions of

individuals from respective frailty-based aggregates – and reten-

tions of individuals in respective vitality-based aggregates –

through the life course [9,10,13–16,28,64,89,90,100,116–127],

suggesting an affinity between frailty and aggregate-size-specific

mortality and suggesting an affinity between vitality and aggre-

gate-size-specific survivorship. These suggestions are generalized

here by positing that specifications of mortality indicate corre-

sponding specifications of frailty and by positing that specifications

of survivorship indicate corresponding specifications of vitality.

These suggested generalizations reveal that much remains to be

learned about specifications of mortality, survivorship, frailty, and

vitality of diverse kinds of individuals in diverse times and places.

Author Contributions

Conceived and designed the experiments: ME. Performed the experiments:

ME. Analyzed the data: ME. Contributed reagents/materials/analysis

tools: ME. Wrote the paper: ME.

References

1. Gompertz B (1825) On the nature of the function expressive of the law of

human mortality, and on a new mode of determining the value of life

contingencies. Philosophical Transactions of the Royal Society of London 115:

513–585.

2. Pearl R (1928) The Rate of Living. New York: Alfred A. Knopf.

3. Perks W (1932) On some experiments in the graduation of mortality statistics.

Journal of the Institute of Actuaries 63: 12–57.

4. Greenwood M, Irwin JO (1939) The biostatistics of senility. Human Biology 11:

1–23.

5. Beard RE (1959) Note on some mathematical mortality models. In:

Wolstenholme GEW, Cameron MP, editors. Ciba Foundation Colloquia on

Aging: The Lifespan of Animals. Boston: Little, Brown. pp. 302–311.

6. Beard RE (1964) Some observations on stochastic processes with particular
reference to mortality studies. International Congress of Actuaries 3: 463–477.

7. Beard RE (1971) Some aspects of theories of mortality, cause of death analysis,
forecasting and stochastic processes. In: Brass W, editor. Biological Aspects of

Demography. London: Taylor & Francis. pp. 57–68.

8. Bebbington M, Lai C-D, Zitikis RA (2011) Modelling deceleration in senescent

mortality. Mathematical Population Studies 18: 18–37.

9. Carey JR, Liedo P, Orozco D, Vaupel JW (1992) Slowing of mortality rates at

older ages in large medfly cohorts. Science 258: 457–461.

10. Carey JR (2003) Longevity: The Biology and Demography of Life Span.

Princeton: Princeton University Press. 278 p.

11. Strehler BL, Mildvan AS (1960) General theory of mortality and aging. Science

132: 14:21.

Specifications of Mortality or Survivorship

PLOS ONE | www.plosone.org 7 January 2014 | Volume 9 | Issue 1 | e84156



12. Strehler BL (1977) Time, Cells, and Aging. New York: Academic Press.

13. Manton GK, Stallard E (1984) Recent Trends in Mortality Analysis. Orlando:

Academic Press. 342 p.

14. Vaupel JW, Carey JR, Christensen K, Johnson TE (1998) Biodemographic

trajectories of longevity. Science 280: 855–860.

15. Vaupel JW, Manton KG, Stallard E (1979) The impact of heterogeneity in
individual frailty on the dynamics of mortality. Demography 16: 439–454.

16. Vaupel JW, Yashin AI (1985) Heterogeneity’s ruses: Some surprising effects of

selection on population dynamic. The American Statistician 39: 176–185.

17. Wrigley EA, Oeppen JE, Schofield RS (1997) English Population History from
Family Reconstitution 1580–1937. Cambridge: Cambridge University Press.

18. Medawar PB ([1946] 1957) Old age and natural death. In: Medawar PB,

editor. The Uniqueness of the Individual. London: Methuen. pp. 17–43.

19. Medawar PB ([1952] 1957) An unsolved problem in biology. In: Medawar PB,
editor. The Uniqueness of the Individual. London: Methuen. pp. 44–70.

20. Finch CE (1990) Longevity, Senescence, and the Genome. Chicago: University

of Chicago Press.

21. Kirkwood TBL (1996) Human senescence. BioEssays 18: 1009–1016.

22. Atlan H, Miquel J, Helmle LC, Dolkas CB (1976) Thermodynamics of aging in

Drosophila melanogaster. Mechanisms of Ageing and Development 5: 371–
387.

23. O’Brien RM, Hudson K, Stockard J (2008) A mixed model estimation of age,

period, and cohort effects. Sociological Methods Research 36: 402–428.

24. Carnes BA, Olshansky SJ, Grahn D (1996) Continuing the search for a law of
mortality. Population and Development Review 22: 231–264.

25. Hamilton WD (1966) The moulding of senescence by natural selection. Journal

of Theoretical Biology 12: 12–45

26. Juckett DA, Rosenberg B (1982) The kinetics and thermodynamics of lysis of
young and old sheep red blood cells. Mechanisms of Ageing and Development

18: 33–45.

27. Koenker R, Geling O (2001) Reappraising medfly longevity. Journal of the

American Statistical Association 96: 458–468.

28. Li T, Anderson JJ (2009) The vitality model: A way to understand population
survival and demographic heterogeneity. Theoretical Population Biology 76:

118–131.

29. Milne EMG (2008) The natural distribution of survival. Journal of Theoretical
Biology 255: 223–236.

30. Rosenberg B, Kemeny G, Smith LG, Skurnick ID, Bandurski MJ (1973) The

kinetics and thermodynamics of death in multicellular organisms. Mechanisms
of Ageing and Development 2: 275–293.

31. Royston P, Altman DG (1994) Regression using fractional polynomials of

continuous covariates: parsimonious parametric modelling (with discussion).

Journal of the Royal Statistical Society Series C (Applied Statistics) 43: 429–
467.

32. Royston P, Sauerbrei W (2008) Multivariable Model-Building: A Pragmatic

Approach to Regression Analysis Based on Fractional Polynomials for
Modelling Continuous Variables. Chichester, England: John Wiley.

33. Williams GC (1957) Pleiotropy, natural selection, and the evolution of

senescence. Evolution 11: 398–411.

34. Wong E, Wang B, Garrison L, Alfonso-Cristancho R, Flum D, et al. (2011)
Examining the BMI-mortality relationship using fractional polynomials. BMC

Medical Research Methodology 11: 175.

35. Charnov EL (1993) Life History Invariants; Some Explorations of Symmetry in

Evolutionary Ecology. Oxford: Oxford University Press. 167 p.

36. Greenberg BG, Wright JJ, Sheps CG (1950) A technique for analyzing some
factors affecting the incidence of syphilis. Journal of the American Statistical

Association 25: 373–399.

37. Hobcraft J, Menken J, Preston S (1982) Age, period, and cohort as sources of
variation in demography. Population Index 48: 4–43.

38. Mason KO, Mason WM, Winsborough HH, Poole K (1973) Some

methodological issues in cohort analysis of archival data. American

Sociological Review 38: 242–258.

39. Mason WM, Feinberg SE (1985) Cohort Analysis in Social Research: Beyond
the Identification Problem. New York: Springer-Verlag.

40. O’Brien RM (2011) The age period cohort conundrum as two fundamental

problems. Quality & Quantity: 1–16.

41. Sinclair ARE (1988) Population regulation in animals. In: Cherrett JM, editor.
Ecological Concepts: The Contribution of Ecology to an Understanding of the

Natural World. Oxford: Blackwell. pp. 197–241.

42. Lindheim R, Syme SL (1983) Environments, people, and health. Annual
Review of Public Health 4: 335–359.

43. Cohen MN (1989) Health and the Rise of Civilization. New Haven: Yale

University Press.

44. Vasi F, Travisano M, Lenski RE (1994) Long-term experimental evolution in

Escherichia coli. II. Changes in life-history traits during adaptation to a
seasonal environment. The American Naturalist 144: 432–456.

45. Riley JC (2001) Rising Life Expectancy: A Global History. Cambridge:

Cambridge University Press.

46. Riley JC (2008) Low Income, Social Growth, and Good Health: A History of
Twelve Countries. Berkeley: University of California Press.

47. Lenski RE (2011) Evolution in action: A 50,000-generation salute to Charles

Darwin. Microbe 6: 30–33.

48. Brown JH, West GB (2000) Scaling in Biology. Oxford: Oxford University
Press. 352 p.

49. Calder WAI (1983) Body size, mortality, and longevity. Journal of Theoretical
Biology 102: 135–144.

50. McGurk MD (1986) Natural mortality of marine pelagic fish eggs and larvae:

Role of spatial patchiness. Marine Ecology Progress Series 34: 227–242.

51. Rossetto M, De Leo GA, Bevacqua D, Micheli F (2012) Allometric scaling of

mortality rates with body mass in abalones. Oecologia 168: 989–996.

52. Savage VM, Gillooly JF, Woodruff WH, West GB, Allen AP, et al. (2004) The
predominance of quarter-power scaling in biology. Functional Ecology 18:

257–282.

53. West GB, Brown JH, Enquist BJ (1997) A general model for the origin of

allometric scaling laws in biology. Science 276: 122–126.

54. Owens PF (2002) Sex differences in mortality rates. Science 297: 2008–2009.

55. Macunovich DJ (1999) Relative cohort size: Source of a unifying theory of

global fertility transition. Center for Policy Research 139.

56. Kermack WO, McKendrick AG, McKinlay PL (1934) Death-rates in Great

Britain and Sweden and some general regularities and their significance. The
Lancet 223: 698–703.

57. MacMahon B, Trichopoulos D (1996) Epidemiology: Principles and Methods.

Boston: Little, Brown and Company.

58. Lee RD (1987) Population dynamics of humans and other animals.

Demography 24: 443–465.

59. Malthus TR ([1798] 1992) An Essay on the Principle of Population; Winch D,

editor. Cambridge: Cambridge University Press. 392 p.

60. Gillis DM, Kramer DL, Bell G (1986) Taylor’s power law as a consequence of
Fretwell’s ideal free distribution. Journal of Theoretical Biology 123: 281–287.

61. World Health Organization, International Classification of Diseases website.

Available: http://www.who.int/classifications/icd/en/. Accessed 2013 March

12.

62. Carnes B (2011) What is lifespan regulation and why does it exist?
Biogerontology 12: 367–374.

63. Rasmussen S, Bedau MA, Chen L, Deamer D, Krakauer DC, et al,
editors(2009) Protocells: Bridging Non-living and Living Matter. Cambridge:

MIT Press.

64. Duchateau L, Janssen P (2008) The Frailty Model. New York: Springer.

65. Human Mortality Database website. Available: www.mortality.org. Accessed

2010 May 2.

66. Author received a copy of the 1991 Moscamed data from Professor James R.

Carey, Department of Entomology, University of California, Davis, California,
USA, on June 2, 1997.

67. Theil H (1957) Specification errors and the estimation of economic

relationships. Revue de l’Institut International de Statistique/Review of the

International Statistical Institute 25: 41–51.

68. Heckman JJ (1979) Sample selection bias as a specification error. Econometrica
47: 153–161.

69. Heckman JJ (1981) Heterogeneity and state dependence. In: Rosen S, editor.

Studies in Labor Markets. Chicago: University of Chicago Press. pp. 91–140.

70. Heckman JJ, Singer B (1986) Econometric analysis of longitudinal data. In:

Grilliches Z, lntriligator MD, editors. Handbook of Econometrics. New York:
Elsevier. pp. 1690–1763.

71. Greene WH (2008) Econometric Analysis. New York: Prentice-Hall.

72. Epelbaum M (1990) Sociomonetary patterns and specifications. Social Science
Research 19: 322–347.
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