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Abstract

A diverse suite of effector immune responses provide protection against various pathogens. However, the array of effector
responses must be immunologically regulated to limit pathogen- and immune-associated damage. CD4+Foxp3+ regulatory
T cells (Treg) calibrate immune responses; however, how Treg cells adapt to control different effector responses is unclear.
To investigate the molecular mechanism of Treg diversity we used whole genome expression profiling and next generation
small RNA sequencing of Treg cells isolated from type-1 or type-2 inflamed tissue following Leishmania major or
Schistosoma mansoni infection, respectively. In-silico analyses identified two miRNA ‘‘regulatory hubs’’ miR-10a and miR-182
as critical miRNAs in Th1- or Th2-associated Treg cells, respectively. Functionally and mechanistically, in-vitro and in-vivo
systems identified that an IL-12/IFNc axis regulated miR-10a and its putative transcription factor, Creb. Importantly, reduced
miR-10a in Th1-associated Treg cells was critical for Treg function and controlled a suite of genes preventing IFNc
production. In contrast, IL-4 regulated miR-182 and cMaf in Th2-associed Treg cells, which mitigated IL-2 secretion, in part
through repression of IL2-promoting genes. Together, this study indicates that CD4+Foxp3+ cells can be shaped by local
environmental factors, which orchestrate distinct miRNA pathways preserving Treg stability and suppressor function.
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Introduction

Regulatory T (Treg) cells [1] employ an arsenal of non-

overlapping mechanisms to maintain immunological homeostasis

at environmental interfaces [2] and internal organs [3], preventing

the development of hyper-inflammatory conditions [4,5]. The

suppressive functions of Treg cells are crucial, without which fatal

lympho- and myelo-proliferative autoimmune syndromes develop

[6]. Restoring immunological homeostasis with regulatory T cell-

based therapy may remedy some hyper-inflammatory conditions

[7]. Regulatory T cells also restrict de novo responses to foreign

antigens, limiting immunopathologies but sometimes at the cost of

preventing natural, or vaccine-mediated, immunity [8]. In this

context, temporarily disarming Treg functions may increase the

efficacy of vaccines and immunity to infection. Elemental to any

Treg-based therapeutic strategy is manipulating the appropriate

Treg cells. Expression of the transcription factor forkhead box P3

(Foxp3) in ab+CD4+ lymphocytes activates and represses a suite of

target genes [9] essential for Treg development and function. For

this reason, Foxp3 expression is commonly used as a marker of

Treg cells and is often used to compare Treg cells from a variety of

different diseases. It has recently emerged that Foxp3+ Treg cells

are heterogeneous and may be as diverse as the types of immune

responses they regulate [10–14]. Foxp3+ Treg cells therefore

represent a population of loosely related lymphocytes, still

requiring greater molecular characterization.

Foxp3+ cell development and function is intricately controlled

transcriptionally by epigenetic modifications influencing gene

accessibility [15] and post-transcriptionally by microRNAs

(miRNAs) [16]. miRNAs have emerged as key regulators of innate

and adaptive immune responses [17] and confer robustness and

adaptability to cells in response to environmental fluctuation [18].

Disrupting canonical miRNA biogenesis by ablating the miRNA

processing enzymes Dicer or Drosha in T cells [19–21] dysregulated

T cell proliferation, differentiation, survival and cytokine produc-

tion leading to a reduction in Foxp3+ cells and subsequent lethal

inflammation [19]. Deletion of the entire miRNA repertoire

specifically within Foxp3+ cells phenocopied Foxp32/2 mice with a

loss of Treg function and the development of fatal autoimmunity

[22,23]. These studies highlight the crucial role of miRNA-
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mediated gene regulation in Treg biology. However, which

miRNAs are required for different Tregs and Treg-associated

functions is poorly understood.

Several miRNAs (miR-21, miR-31, miR-24 and miR-210)

[24,25] directly target Foxp3 in human T cells, regulating Foxp3

expression and Treg development. Additionally, Foxp3 activates

miRNA-mediated mechanisms [25] to repress effector pathways,

including suppression of SOCS1 via induction of miR-155 [26].

These studies indicate an intricate functional relationship between

Foxp3 and miRNAs. Furthermore, Lu and colleagues [27]

recently identified a role for miR-146a in regulating the expression

of Stat1, which is required for Treg-mediated control of Th1

responses. While such individual miRNA:target interactions are of

interest, a single miRNA can target hundreds of mRNAs [28],

simultaneously regulating multiple pathways.

We hypothesized that widespread miRNA-mediated regulation

contributes to Foxp3+ cell diversity. To test this, we isolated

Foxp3+ cells from mice chronically infected with Schistosoma

mansoni, a parasitic helminth that invokes a polarised Th2

response, or Leishmania major, a parasitic protozoa controlled by

Th1-mediated immunity. Microarray analysis revealed dramati-

cally different gene expression profiles, confirming the heteroge-

neity of Foxp3+ cells. To investigate which miRNAs contribute to

the observed gene expression differences, we first deep sequenced

the small RNAome from these two Foxp3+ populations and

identified several miRNAs that were significantly differentially

expressed, relative to Treg cells taken from naı̈ve mice. These

miRNAs were analyzed further using our recently published in

silico method [29] for predicting candidate ‘regulatory hubs’. miR-

10a was identified as the strongest such regulatory hub in L. major

Foxp3+ cells, whereas miR-182 was the most critical in S. mansoni

Foxp3+ cells. Gain and loss of function experiments in vitro and in

vivo using primary Foxp3+ cells and Foxp3+ cells isolated from

Th1 or Th2 inflamed tissue confirmed many of the predicted

targets and functions for miR-10a and miR-182. We further

demonstrated that IL-4 up-regulates miR-182, potentially through

the transcription factor cMaf, which is also up-regulated by IL-4.

miR-182 critically restricted IL-2 production, possibly by its

control of Bach2 [30] and Cd2ap [31]. We also showed that IL-12/

IFNc represses both miR-10a and its candidate upstream

transcription factor Creb. Reduced miR-10a correlated with an

increase in miR-10a target genes, Nr4a3 and Fbxo30, which have

previously been shown to control IFNc. Collectively, this study

supports the concept of heterogeneity, or plasticity, within the

Foxp3+ pool and identifies candidate ‘regulatory hub’ miRNAs,

miR-10a and miR-182, which control IFNc and IL-2 through

essential gene programs.

Results

Foxp3+ Regulatory T cells employ distinct gene programs
during chronic Th2-associated (S. mansoni) or Th1-
associated (L. major) infection

Following infection with Schistosoma mansoni or Leishmania major,

robust Th2 or Th1- responses develop [32,33], accompanied by

the recruitment of Foxp3+ Treg cells [34–39]. Genome-wide

analysis of isolated Foxp3+ cells recruited to the liver of S. mansoni

(S. mansoni Foxp3+) or ear of L. major (L. major Foxp3+) infected mice

(Fig. 1A) identified distinct gene expression profiles, relative to

Foxp3+ cells isolated from the spleen of uninfected mice (Fig. 1B).

Of the differentially expressed genes, 185 (11.6%) were common

between L. major and S. mansoni, whereas 441 (27.7%; S. m.) and

967 (60.7%; L. m.) were specific to each population (Figure 1C),

indicating that, with respect to gene expression, these Foxp3+

populations were substantially different from one another. The

vast majority of the 185 common genes (Table S1) were similarly

regulated in each Treg population (Figure S1). Relative to

Foxp3+ cells from the spleen of uninfected mice, L. major Foxp3+

cells upregulated several heat shock proteins (Hsph1, Hspa8 and

Hspa1a), cytokine and chemokine-associated genes (Il23r, Il33,

IL18R1, Tgif1, Cxcl10, Rgs2, Lph2, Tnfaip3) and a range of

transcriptional regulators (Bcl6, Mxi1, Atf3, Ror-a, Rel, Irf4, Stat5a,

Tfap2a) (Figure 1 D). S. mansoni-derived Foxp3+ cells, in contrast,

upregulated genes associated with inhibition and killing (Gp49a,

Klrg1, Gzma, Nkg7, Lag3, Tigit Cd200r1 and Cd200r1l, Trail

(Tnfsf10)), integrins and adhesion molecules (Alcam, Epcam, Itga1,

Itgb8, Selplg (P-Selectin)), cytokines and chemokines (Csf1, Il10r1,

Il12rb2, Il18rap, Il1rn, Tgfbr1, Socs2, Ccl5, Ccl1, Ccl3l, Cxcl3, Cxcr6,

Cxcr3, Ccr1), and different transcriptional regulators (Tbx21, Pparc
and Irf8) (Figure 1E), many of which were also observed in a

previous report [36].

Deep sequencing of small RNA species reveals distinct
miRNA profiles between Foxp3+ cells isolated from
chronic helminth (S. m.) or protozoan (L. m.) infection

To identify miRNAs that might contribute to the different

expression profiles, we deep sequenced small RNA species from

each of the three Foxp3+ populations (S. m., L. m. and Naı̈ve) and

obtained 12–22 million reads in each sample (Table. S2). Within

S. mansoni Foxp3+ cells, 31 miRNAs were differentially expressed

(p,0.05) (Figure 2A and Table. S3). HIF1a-inducible miR-210

and 2 poly-cistronic miRNAs, miR-183 and IL-2-inducible miR-

182, were the most significantly up-regulated (Figure 2A).

Seventeen miRNAs were differentially regulated (p,0.05) in L.

major Foxp3+ cells. Only one of these miRNAs, miR-100, was up-

regulated; while miR-32 and miR-10a were the two most

significantly down-regulated (Figure 2C and Table. S3).

Notably, down-regulation of miR-10a in L. major Foxp3+ cells

was relative to ‘naı̈ve’ Foxp3+ Treg cells, and not relative to naı̈ve

T cells, as recently reported [40]. Several miRNAs were

differentially expressed in both Foxp3+ populations, including

miR-151, miR-30e, miR-15b, miR-132, miR-342, miR-10a and

Author Summary

The diversity of pathogens that the immune system
encounters are controlled by a diverse suite of immuno-
logical effector responses. Preserving a well-controlled
protective immune response is essential. Too vigorous an
effector response can be as damaging as too little.
Regulatory T cells (Treg) calibrate immune responses;
however, how Treg cells adapt to control the diverse suite
of effector responses is unclear. In this study we
investigated the molecular identity of regulatory T cells
that control distinct effector immune responses against
two discrete pathogens, an intracellular parasitic protozoa,
Leishmania major, and an extracellular helminth parasite,
Schitsosoma mansoni. The two Treg populations studied
were phenotypically and functionally different. We identi-
fied molecular pathways that influence this diversity and
more specifically, we identified that two miRNAs (miR-182
and miR-10a) act as ‘‘regulatory hubs’’ critically controlling
distinct properties within each Treg population. This is the
first study identifying the upstream molecular pathways
controlling Treg cell specialization and provides a new
platform of Treg cell manipulation to fine-tune their
function.

miRNA-mediated Control of Treg Specialisation

PLOS Pathogens | www.plospathogens.org 2 June 2013 | Volume 9 | Issue 6 | e1003451



Figure 1. Differential gene expression in CD4+Foxp3+ cells isolated from chronic S. Mansoni or chronic L. Major infected tissue. (A)
Isolation and FACS sorting of CD4+Foxp3+ cells from the liver of S. Mansoni or ear of L. Major infected mice. (B) Heat map of differential gene
expression showing biological replicates (naı̈ve Treg = 7, S. m. Treg = 4, L. m. Treg = 3 biological replicates) for the isolated Foxp3+ populations. 3944
array probes were differentially expressed at a false discovery rate (FDR) less than 0.05. The list of 3944 array probes is provided in Table S1. (C)
Number of common (overlap) and unique genes that were differentially regulated between the Sm-Foxp3+ cells and Lm Foxp3+ cells, relative to
‘Naı̈ve’ Foxp3+ cells (FDR,0.1 and fold change .1.5). (D) Immunity-associated genes up-regulated in Lm Foxp3+ cells. (E) Immunity-associated genes
up-regulated in and Sm Foxp3+ cells.
doi:10.1371/journal.ppat.1003451.g001
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Figure 2. Differentially expressed miRNAs and candidate miRNA regulatory hubs in Th1- and Th2-Treg cells. miRNAs with significantly
altered expression following (A) Schistosoma mansoni (Sm) or (C) Leishmania major (Lm) infection (Student’s t-test p-value,0.05); y-axis: log (fold-
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miR-32; however, not always in the same direction. For example,

miR-132, which regulates interferon-stimulated genes [41], was

,2-fold up-regulated in S. mansoni Foxp3+ cells, but ,6-fold down

regulated in L. major Foxp3+ cells.

We next employed in silico Monte Carlo simulation analyses to

identify which, if any, of the up- or down-regulated miRNAs in

each Foxp3+ population are predicted to target significantly more

of the down- or up-regulated mRNA transcripts, respectively, than

expected by chance (i.e. ‘regulatory hub’ miRNAs) [29]. This

approach identified miR-182 (up-regulated in S. mansoni Foxp3+

cells) as the strongest candidate regulatory hub of the network of

down-regulated genes in S. mansoni Foxp3+ cells (Figure 2B and
Table S4), and miR-10a (down regulated in L. major Foxp3+ cells)

as the strongest candidate regulatory hub of the network of up-

regulated genes in L. major Foxp3+ cells (Figure 2D).

miR-182 and miR-10a target distinct, non-overlapping
genes in Foxp3+ cells

To validate the predicted target genes of miR-182 and miR-

10a, we isolated primary Foxp3+ cells (predominantly nTreg cells),

over-expressed or inhibited miR-182 or miR-10a using miRNA

mimics or hairpin inhibitors, and measured miRNA and target

mRNA expression. Transfection at .80% efficiency (Figure S2)

increased (20-fold) or decreased (10-fold) miR-182 using specific

mimics or inhibitors (Figure 3A). In contrast to naı̈ve T cells [42],

expression of a previously reported miR-182 target, Foxo1, was

only marginally regulated by miR-182 in Treg cells failing to reach

statistical significance (Figure 3A, boxed). Of the 14 predicted

targets in S. mansoni Foxp3+ cells (Table S5), 6 were significantly

regulated (.1.5 fold) in response to miR-182 mimics or inhibitors.

Similarly, miR-10a significantly regulated Hoxa1, a previously

validated miR-10a target [43], along with 7 of the 11 genes in L.

major Foxp3+ cells predicted to be targets of miR-10a (Figure 3B
and Table S5). Collectively, using gain and loss of function for

miR-182 and miR-10a in primary Foxp3+ cells, these data identify

that miR-182 regulates 6 of the predicted genes identified in Th2-

Treg cells and miR-10a regulates 7 of the predicted genes

identified within Th1-Foxp3+ cells.

Foxp3+ Treg cells recruited to Th2 or Th1-mediated
airway inflammation up-regulate miR-182 and down-
regulate miR-10a, respectively

To validate the functional significance of these miRNA:target

interactions, and to determine whether differential expression of

miR-182 and miR-10a was restricted to Foxp3+ cells from S.

mansoni and L. major infections, we developed a Th1 and Th2-

driven airway inflammation model. This system allowed us to

eliminate pathogen influences, tissue-specific responses and any

other factors that may have contributed to the observed Treg

profiles observed above. Briefly, naı̈ve T cells

(CD4+CD44loCD62LhiCD252) from congenic and transgenic

C57BL/6 mice (CD45.1+OTII+RAG22/2) were polarized in

vitro under Th1 or Th2 conditions, secreting high levels of IFNc
or IL-5 respectively (Figure 4A), and adoptively transferred into

C57BL/6 CD45.2 Foxp3gfp mice. One-day prior to transfer (d-1)

and one and three days following transfer (d1 and d3), recipient

mice received an intra-tracheal delivery of OVA into the lower

airways (Figure 4A). Adoptively transferred cells migrated to the

lung and broncho-alveolar (BAL) spaces (Figure 4B) and caused

peri-bronchial and peri-vascular inflammation (Figure 4C).

Antigen recall assays demonstrated that recipients of Th1 cells

produced IFNc and IL-10 (Figure 4D) and increased the

expression of Inos, Mig (Cxcl9) and Ip-10 (Cxcl10) within the lung

(Fig. 4E). Mice that received Th2 cells secreted IL-4, IL-5 and IL-

9 (Figure 4D) and up-regulated Arg1, Eotaxin (Ccl11) and Gob5

(Clca3) within the lung (Figure 4E), characteristic of Th1 or Th2-

mediated airway inflammation. CD4+Foxp3+ cells isolated from

Th1- or Th2-inflammed lungs (Figure 4F) up-regulated Tbx21,

Gata3, Foxp3, Ctla4, Gitr (Tnfrsf18), Il10ra, Ebi3 and Il10 with a small

increase in Tgfb in Th1-Treg cells only (Figure 4G). As predicted,

Foxp3+ cells from Th1 inflamed lungs down-regulated miR-10a

with no change in miR-182 (Figure 4 H), similar to Foxp3+ cells

from L. major infected mice (Figure 2). Foxp3+ cells from Th2-

inflamed lungs up-regulated miR-182, with a marginal increase in

miR-10a, similar to Foxp3+ cells from mice infected with S. mansoni

(Figure 2). With the exception of Fosl and Cebpa, we also observed

a very similar target gene expression profile in Th1-Treg or Th2-

Treg cells isolated from the inflamed lung as compared to Treg

cells from L. major or S. mansoni infected mice (Figure 4I).

These data support the notion that down regulation of miR-10a

and up-regulation of miR-182 within Foxp3+ cells is associated

with Th1 or Th2 biased immune environments, respectively.

Th1-, but not Th2-, associated Treg cells can efficiently
suppress both Th1 and Th2 cells

To test whether Th1 and Th2-associated Treg cells were

functionally distinct from each other, we fluorescently-labeled

OVA-specific Th1 or Th2 Teff (CD4+CD44+Foxp32) cells

isolated from Th1- or Th2-inflamed lungs, or naı̈ve Teff cells as

a control population, and co-cultured these cells with Th1- or

Th2-Treg cells (CD4+Foxp3+) from respective Th1 or Th2-

inflamed lungs, or with Treg cells isolated from the opposing

inflammatory environment in a series of ‘cross-over’ assays. In

these assays, Th1-Treg cells potently suppressed Th1-Teff cells

(Figure S3A) and Th2-Teff cells (Figure S3B), whereas Th2-

Treg cells only suppressed Th2 cells and not Th1 cells (Figure
S3C and S3D).

miR-182 and miR-10a are required for Foxp3+ Regulatory
T cell-mediated suppression of Th2 and Th1 cell
proliferation in vitro, respectively

We next tested whether down-regulated miR-10a and up-

regulated miR-182 was functionally required for Th1- and Th2-

Treg-mediated suppression, respectively. Th1-Treg cells isolated

from the lungs of mice were transfected with miR-10a mimics

(Figure S3E), to overturn the down-regulated miR-10a observed

in Th1-Treg cells (Figure 4H). Following the observation that

miR-182 was upregulated in Th2-associated Foxp3+ cells

(Figure 4H), Th2-Treg cells were transfected with miR-182

hairpin inhibitors (Figure S3E). Mock-transfected Th1-Foxp3+

cells efficiently suppressed Th1 (Figure 5A), Th2 (Figure 5B)

and naive (Figure 5C) T cell proliferation. However, Th1-Treg

cells transfected with miR-10a mimics were compromised in their

ability to suppress Th1 cells (Figure 5A) and naı̈ve T cells

change) of miRNA expression level. Representation of predicted targets for up-regulated miRNAs among down-regulated genes following S. mansoni
(Sm) infection (B). Representation of predicted targets for down-regulated miRNAs among up-regulated genes following L. major (Lm) infection (D).
Y-axis: 2log of the empirical p-value of predicted target site enrichment over background expectation. Orange: miRNAs predicted to target
differentially expressed genes significantly more than expected by chance, full details in Table S4. Dashed line: p-value = 0.05.
doi:10.1371/journal.ppat.1003451.g002
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(Figure 5C), but retained the ability to partially suppress Th2 cells

(Figure 5B). As a further control, we transfected Th1-Treg cells

with miR-182 inhibitors, as miR-182 was not differentially

regulated in Th1-Treg cells (Figure 4H) and this did not

influence Th1-Treg mediated suppression of Th1, naı̈ve or Th2

cells (Figure 5A, B and C). Th2-Treg cells were unable to

suppress Th1 cells (Figure 5D) but were fully capable of

suppressing Th2 (Figure 5E) and naı̈ve T cells (Figure 5F).

Transfection with miR-10a mimics had no impact on Th2-Treg

mediated suppression. However, Th2-Treg cells transfected with

miR-182 inhibitors compromised their ability to suppress Th2 and

naı̈ve T cell proliferation, indicating that elevated miR-182 was

required for Th2-Treg function. Treg cells isolated from the spleen

of naı̈ve animals were unable to control OVA-specific Th1 or Th2

cells (Figure S4A and S4B), but were fully capable of suppressing

naı̈ve T cells (Figure S4C). Transfection of Treg cells from naı̈ve

mice with miR-182 inhibitors or miR-10a mimics also compro-

mised their suppressive capacity. Taken together, these data

indicate that down-regulation of miR-10a is critically required for

Th1-Treg cells to control Th1 cells and naı̈ve T cells, while up-

regulated miR-182 is required for Th2-Treg-mediated suppression

of Th2 cells and naı̈ve T cells, highlighting the divergence of these

two Treg populations, while Treg cells from naı̈ve mice were

dependent upon both tightly regulated miR-10a and miR-182.

IL-4 regulates cMaf and miR-182, while IL-12/IFNc
regulates Creb and miR-10a in natural and inducible Treg
cells

To determine the upstream factors that may contribute to miR-

182 and miR-10a expression in Treg cells, we screened for

transcription factor binding sites in the promoters of the primary

transcripts of both miR-182 and miR-10a using Pwm-Scan (as

described in the methods). We identified putative binding sites in

the miR-182 promoter for IL-4-regulated transcription factors

(TFs), including cMaf, and IL-12/IFNc-regulated TFs, including

Creb, in the miR-10a promoter (Figure S5A). Concordant with

the in-silico predictions, exposure of natural (nTreg) or in vitro

generated inducible Treg (iTreg) cells (Figure S5B) to IL-4,

mimicking a Th2 environment, up-regulated cMaf (Figure S5C),

and miR-182 (Figure S5E), similar to ex vivo Th2-Treg cells

(Figure 2, and Table S1). IL-12/IFNy treatment of nTreg and

iTreg, mimicking the Th1 environment, down-regulated Creb

(Figure S5D) and miR-10a (Figure S5F) in Treg cells, relative to

naı̈ve T cells, pheno-copying miR-10a expression in ex vivo Th1-

Treg cells (Figure 2). Following recent studies indicating that

Foxp3-mediated epigenetic modifications may be altered in

Foxp3gfp-reporter mice [44,45], we compared miR-182 and

miR-10a expression in freshly isolated nTreg cells and in vitro

generated iTreg cells from Foxp3rfp and Foxp3gfp-reporter mice,

but did not observe any appreciable difference in miR-182 or

miR-10a expression, relative to naı̈ve T cells (Figure S6).

miR-182 and miR-10a control IL-2 and IFNc in Treg cells
CD2, via Cd2ap and BACH2, regulates IL-2 production

through direct binding to the IL-2 promoter [30,31]. Following

the observation that miR-182 targeted Cd2ap and Bach2, and that

IL-4 regulated miR-182 (Figure S5), we tested whether IL-4

influenced the expression of miR-182, Bach2, Cd2ap and subse-

quent IL-2 production. IL-4 treated nTreg or iTreg cells had

reduced Bach2 and Cd2ap relative to naı̈ve T cells or untreated

Treg cells (Figure S7A, S7B). We therefore assayed for IL-2

following IL-4 treatment, to determine whether IL-4-regulated

miR-182, and subsequent changes in Bach2 and Cd2ap had any

influence on IL-2 responses. Il2 mRNA and protein levels were not

altered following IL-4 treatment alone (Figure S7E), however

inhibition of miR-182, with or without IL-4 treatment, led to a 50-

fold induction of Il2 transcription and IL-2 secretion (Figure
S7E). These data indicate that miR-182 controls IL-2 production

in Treg cells, possibly via Cd2ap and Bach2, and that IL-4 re-

enforces miR-182-mediated control of IL-2.

Previous reports have identified that Nr4a3 induces Foxp3

expression and represses IFNc [46]. Following the observation

that miR-10a targeted Nr4a3 we assayed for IFNc following miR-

10a over expression, with or without IL-12/IFNc treatment.

IL-12/IFNc treatment alone induced IFNc in Treg cells (4-fold,

Figure S7F), similar to previous reports [47,48], however IFNc
was increased 40-fold when combined with miR-10a over-

expression (Figure S7F). Interestingly, miR-10a over-expression

alone also led to an increase in IFNc (9-fold). Thus, type-2

regulated miR-182 and type-1-regulated miR-10a, respectively,

contribute to the regulation of IL-2 and IFNc responses in Th2-

and Th1-Treg cells.

Down-regulation of miR-10a and up-regulation of miR-
182 is essential for Foxp3+ Regulatory T cell-mediated
control of Th1- or Th2-driven airway inflammation,
respectively

To determine whether miR-10a and miR-182 was required for

Treg survival, migration and control of Th1 and Th2-mediated

inflammation in vivo, we designed a double adoptive transfer

system (Figure S8). Briefly, Th1- or Th2-associated Foxp3+ Treg

cells were isolated from Th1 or Th2–inflamed tissue, as above

(Figure 4). A second recipient mouse received Teff (OTII-Th1 or

OTII-Th2) cells alone or a combination of mock-transfected Treg

cells, miR-10a mimic transfected Th1-Treg cells with Th1-Teff

cells, or miR-182-inhibitor transfected Th2-Treg cells with Th2-

Teff cells. Following intra-tracheal delivery of OVA, similar

percentages of transferred Treg cells were observed in the lung of

recipient mice (Figure 6A), indicating that all Treg cells

experienced similar survival irrespective of transfection treatments.

Significant numbers of inflammatory cells were recovered from the

airspaces of mice receiving Th1 or Th2 cells (Figure 6B),

however the co-transfer of mock-transfected Treg cells significantly

reduced the number of inflammatory cells. Co-transfer of Th1

cells and miR-10a mimic transfected Th1-Treg cells, or Th2 cells

with miR-182-inhibitor transfected Th2-Treg cells failed to

suppress inflammatory cell recruitment. The requirement for

down-regulated miR-10a in Th1-Treg cells and up-regulated

miR-182 in Th2-Treg cells was also reflected by uncontrolled

IFNc or IL-5 secretion in re-stimulated lymph nodes, compared to

mice receiving mock-transfected Treg cells (Figure 6C). Mock-

transfected Treg cells potently reduced pulmonary pathology

(interstitial inflammation, mucus plugs and epithelial elongation),

which was compromised when miR-10a or miR-182 was

specifically deregulated in Th1- or Th2-Tregs, respectively

(Figure 6D). Taken together these studies highlight two diverse

Figure 3. miR-182 and miR-10a target a significant number of in-silico predicted targets in Foxp3+ Treg cells. CD4+Foxp3+ cells isolated
from naı̈ve mice and transfected with miR-182 mimics or hairpin inhibitors (A) or miR-10a mimics or hairpin inhibitors (B) to identify predicted target
gene regulation. RNA was extracted 24 hours post transfection for analysis. One of 3 individual experiments shown, with 3 biological replicates in
each experiment. p-value = 0.05. with data expressed as mean 6SEM.
doi:10.1371/journal.ppat.1003451.g003
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Figure 4. Differential miR-182 and miR-10a expression in Foxp3+ Treg cells isolated from Th2 or Th1-mediated pulmonary
inflammation. (A) Naı̈ve T cells (CD4+CD442CD62LhiCD252) from C57BL/6 CD45.1 OTII RAG22/2 were polarised under Th1 or Th2 conditions and
adoptively transferred into naı̈ve CD45.2 Foxp3gfp mice. (B) Donor cells were enumerated in the circulation (PBMC), spleen, thoracic lymph nodes
(t:LN), lung tissue and broncho-alveolar air spaces (BAL). (C) Th1- and Th2-mediated pulmonary pathology was determined in H&E stained lung
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Foxp3 populations that develop to control Th1 or Th2 inflam-

matory events. The molecular programs in these Foxp3+ Tregs are

in-part regulated by distinct upstream regulatory miRNA hubs,

miR-182 and miR-10a, which target non-overlapping and

essential genes within these diverse Foxp3+ populations.

Discussion

In this study we identified distinct populations of Foxp3+ Treg

cells recruited to Th1 or Th2 inflammatory environments

expressing unique gene and miRNA profiles. Several genes and

miRNAs were comparably regulated between the two subsets

including miR-30e, miR-15b, miR-32, miR-151 and miR-342,

with other miRNAs highlighting a clear divergence. For example

miR-132 was significantly down regulated in Foxp3+ cells from

Th1 rich surroundings (22.56 fold) and up regulated in Foxp3+

cells in Th2 environments (+2.09 fold). Using miRNA target

prediction algorithms and Monte Carlo simulations we identified

two miRNA regulatory hubs that target multiple genes contrib-

uting to the divergent gene expression profiles. Specifically, Th1

inflammation, following chronic L. major infection or acute Th1-

induced inflammation, recruited Foxp3+ Treg cells that up-

regulated a suite of genes regulated by miR-10a. In contrast,

Foxp3+ cells isolated from Th2 environments following chronic S.

mansoni infection or acute Th2-driven inflammation down-

regulated a suite of genes under the control of miR-182. These

data support the notion that Foxp3+ cells are heterogeneous, or

adaptable to their inflammatory environment [10–12,14,49] and

provide an upstream molecular mechanism contributing to

Foxp3+ heterogeneity.

Previously, T-bet has been singled out as a co-transcription

factor required for Treg cells to control anti-mycobacterial Th1

responses [12]. In our studies, Foxp3+ cells isolated from L. major

infected tissue did not up-regulate T-bet, which may be explained

by different infections, different stages of infection or different

tissues studied. In support of the latter, and in agreement with the

previous study, Foxp3+ cells isolated from Th1-inflamed lung

tissue up-regulated T-bet (,20-fold, Figure 4G), similar to

pulmonary M.Tb. Foxp3+ cells. Interestingly, T-bet was greater

than 200-fold up-regulated in Foxp3+ cells isolated from Th2-

driven inflammation or from the liver of S. mansoni infected mice

(2.6-fold). If Foxp3+T-bet+ cells are potent suppressors of Th1

responses, it is tempting to speculate that Foxp3+T-bet+ cells

contribute to a dominant Th2 environment by potently suppress-

ing Th1 responses. Similarly, Irf4, a transcription factor involved

in several T helper cell subsets [50,51], was recently identified in

Foxp3+ cells restraining Th2 responses. Irf4 however was not up-

regulated in Th2-associated Treg cells isolated from schistosome

infected mice, relative to Foxp3+ cells from the spleen of naı̈ve

mice, and was only slightly up regulated in Th1-associated Foxp3+

cells (1.68-fold). Strinkingly, Th1- Foxp3+ cells up-regulated a

collection of transcriptional regulators, including Stat-3 (1.98 fold),

Bcl6 (1.80-fold), Ap1 (2.14 fold) and Runx2 (2.02 fold). Similarly,

Th2-derived Foxp3+ cells co-expressed Blimp1 (3.78 fold), Tbx21 (T-

bet) (2.64), Hif2a (2.08 fold), E4bp4 (1.91 fold), Runx2 (1.68 fold)

and Egr2 (1.60 fold). These data suggest that there is either

significant heterogeneity, or plasticity, within Foxp3+ populations

[52] or that co-opting multiple transcription factors is common

and does not restrict control to one particular T helper subset, but

rather broadens regulatory function. Indeed, Treg cells isolated

from Type-1 inflamed tissue had the capacity to suppress Th1 and

Th2 cells, while Th2-Treg cells could only control Th2 cells. We

hypothesize that suppression of Th2 cells by Th1-Treg cells could

be mediated by TGF-b, which was slightly elevated in Th1-, but

not Th2-, Treg cells (Figure 4G) and can potently inhibit Th2

cells [53]. However, given that TGFb is highly regulated post-

translationally, surface bound or secreted bioactive TGFb may not

be increased. Alternatively, the continued ability of Th1-Treg cells

to control Th2 cells, but not Th1 cells, following over-expression of

miR-10a, is most likely due to the increased IFNc, which can also

inhibit Th2 cell responses.

Computational analysis [29] identified miR-182 in Th2-Foxp3+

cells and miR-10a in Th1-Foxp3+ cells as potential regulatory

miRNA hubs, which targeted multiple differentially regulated

genes. We focused on miR-182 and miR-10a for functional

studies, as these were the top candidate regulatory hubs from the

Monte Carlo analyses in Foxp3 cells from infected mice. In

support of this, down regulated miR-10a and up-regulated miR-

182 was also observed in Foxp3+ cells isolated from Th1- or Th2-

inflammed lungs, analogous to the chronic infection studies.

It was recently demonstrated that IL-2/STAT5 regulated miR-

182 in helper and regulatory T cells [42] targeting Foxo1 and

permitting helper cell proliferation. Despite the high consumption

of IL-2 by Foxp3+ T cells and the requirement for Foxo1, and Foxo3,

for Treg cell survival and function [54,55], a role for miR-182 in

Treg cells was not thoroughly investigated. Our systematic

approach identified putative binding sites in the promoter of

miR-182 for the IL-4-regulated transcription factor, cMaf. In

agreement with this, IL-4-treated Treg cells up-regulated cMaf,

similar to previous reports in macrophages and T cells [56,57].

Unlike naı̈ve T cells, which produce IL-4 and IL-2 and up-regulate

cMaf following IL-4 treatment, Treg cells did not produce IL-4

(data not shown) or IL-2, in part through a miR-182-dependent

pathway. The phosphorylation state of cMaf, additional pathways

including IL-2 [42] and other transcriptional regulators may also

contribute to miR-182, as cMaf transcript levels in untreated iTreg

and nTreg were indistinguishable from naive T cells, despite

elevated miR-182. Nevertheless, IL-4-treated Treg cells up-

regulated cMaf and miR-182, in line with other studies identifying

that IL-4-treated human [58,59] and murine [60] Treg cells

develop distinct and potent suppressive phenotypes. The precise

mechanism from these studies, however, was unclear.

It has long been appreciated that anergic and regulatory T cells

do not produce IL-2, through reduced JNK and ERK signaling

[61] and remodeling of the Il2 locus [62]. We identified two miR-

182-regulated genes that can control IL-2 production, Bach2, a

basic leucine zipper transcription factor [30] and Cd2ap [31]. As

predicted, the up-regulation of cMaf and miR-182 by IL-4 led to a

reduction of Bach2 and Cd2ap expression in Treg cells (Figure S5),

with no IL-2 production. Disrupting this pathway, through

inhibition of miR-182, led to an increase in Bach2 and Cd2ap

and a significant increase in transcription and secretion of IL-2,

indicating that IL-2 is critically regulated by miR-182, potentially

via control of Bach2 and Cd2ap. Although other important

molecular pathways are under the control of miR-182, including

sections. (D) PBMC, splenocytes and local lymph nodes were re-stimulated with OVA for 3 days with cytokines measured in the supernatant after 3
days. (E) RNA was isolated from pulmonary tissue and gene expression analysed by qRT-PCR and expressed as fold change relative to naı̈ve mice. RNA
was isolated from recipient CD4+Foxp3gfp+ cells (F) with mRNA (G and I) and miRNA (H) expression analysed by qRT-PCR and expressed relative to
RNA isolated from CD4+Foxp3gfp+ cells from naı̈ve mice. Data expressed as mean 6SEM. Data presented in A, B and G are representative of one of
three individual experiments..
doi:10.1371/journal.ppat.1003451.g004
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Figure 5. Up-regulated miR-182 and down-regulated miR-10a expression in Th2- and Th1-Treg cells Treg cells confers suppressive
capacity in vitro. Th1 (A & D) or Th2 (B & E) T effector (Teff, CD4+CD44+Foxp3gfp2) and Th1-Treg (A, B & C) or Th2-Treg (D, E & F) (CD4+Foxp3gfp+)
cells were isolated from the lungs of recipient mice, as in Figure 4. As a control, naı̈ve T cells (C & F) were also isolated from the spleen of OTII mice.
Teff or naı̈ve T cells (104) were labeled with cell trace violet (Invitrogen) and cultured alone, or in equal ratios (1:1) with mock transfected Treg cells,
Treg cells transfected with miR-10a mimics or Treg cells transfected with miR-182 inhibitors, as indicated, for 3 days with irradiated splenocytes
(26105) and OVA (10 mg/ml). One of 3 individual experiments is shown, with technical replicates shown in the scatter plot. Add statistical test results?
doi:10.1371/journal.ppat.1003451.g005
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those controlled by C/EBPa, Arhgef3 and Hdac9 which are also

intimately involved in Treg biology [63–66], together with

previous reports, we propose that IL-2 and IL-4 reinforce a

negative feedback loop in Treg cells, with IL-2 induced [42] and

IL-4-re-enforced miR-182 inhibiting IL-2 secretion.

miR-10a was up-regulated in ex vivo Treg cells and naı̈ve T

cells polarized into iTreg with TGFb in vitro [40,67]. We also

observed an increase in miR-10a in ex vivo nTreg and iTreg

cultures, relative to naı̈ve T cells. However, our study design

identified that miR-10a was subsequently reduced in Treg cells in

Figure 6. Up-regulated miR-182 and down-regulated miR-10a expression in Foxp3+ cells is required for Th2-Tregs to suppress Th2
response and Th1-Tregs to suppress Th1 response in vivo, respectively. In vitro-polarised Th1 or Th2 T effector (Teff) cells were adoptively
transferred with Th1-Treg (CD4+Foxp3gfp+) or Th2-Treg isolated from the lungs of mice with Th1 or Th2-driven pulmonary inflammation, respectively
and as indicated. Co-transferred Foxp3+ Treg cells were either mock transfected or transfected with miR-10a mimics or miR-182 inhibitors, as
indicated. (A) Recruitment of donor Treg cells to the lungs of recipient mice, as a percentage of total CD4+ cells in the lung. (B) Broncho-alveolar
infiltrates of mice one day following final OVA challenge. (C) Local lymph nodes were isolated and re-stimulated with OVA. IFNc or IL-5 was measured
in the supernatants after 3 days. (D) Lungs were removed, sectioned and stained with H&E for pathology. One of 2 individual experiments shown. p-
value = 0.05 with data expressed as mean 6SEM.
doi:10.1371/journal.ppat.1003451.g006
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Th1 environments. Whether splenic nTreg cells migrate to

peripheral sites or de-novo iTreg cells respond to inflammatory

events is unclear. To investigate the pathways involved in miR-10a

regulation, we identified several putative TF binding sites in the

miR-10a promoter, including the TGF-b [68], IL-2 [69], IL-12

[70] and IFNc [71]-regulated transcription factor, CREB. CREB

stabilizes Foxp3 in Treg cells [72] and is inhibited by IFNc
[71,73,74]. Creb expression was slightly elevated in ex vivo nTreg

and in vitro-generated iTreg cells, relative to naı̈ve T cells, but was

successively decreased, below naı̈ve T cell levels, following

exposure to type-1 inflammatory signals, IL-12 and IFNc.

Furthermore, miR-10a followed a similar expression pattern as

Creb, with reduced miR-10a following IL-12/IFNc treatment,

suggesting that Creb expression may influence miR-10a. Although

multiple factors can influence miR-10a and Creb expression, these

data indicate that Treg cells undergo dynamic molecular

modifications upon exposure to various inflammatory signals, in

this case along an IL-12/IFNc, Creb, miR-10a axis.

We identified several miR-10a-regulated genes in Foxp3+ cells,

including Arrdc, an a-arrestin family member that degrades

phosphorylated integrin b4 (CD104) [75] and b2-adrenergic

receptors [76], two pathways required for the development [77]

and survival [78] of Foxp3+ T cells. miR-10a also regulated the

transcriptional repressor, Bcl6, an important pathway recently

identified in iTreg cells, preventing iTreg conversion in to TFH

cells [40]. Furthermore, co-expression of Bcl6 with Blimp1, Cxcr5

and PD-1 (Pdcd1) in Foxp3+ in Treg cells identified as TFH-Reg

cells, have also been reported [11,13]. Dissimilar to these studies

we did not observe a TFH-Reg, or TFH phenotype, as phenotypic

markers of TFH cells, beyond Bcl6, were reduced or unchanged

(Cxcr5 23.22-fold, Btla 22.0 fold, unchanged Il21, Cd40l, Cd200,

Cd30l, Cd57, and Fyn). The relatively subtle changes in miR-10a

and Bcl6 in Th1-Treg cells may retain Treg function, without

conversion into TFH cells, or TFH-Reg cells. For example, we

observed that miR-10a was reduced 3.5-fold in Th1-Treg relative

to naı̈ve Treg cells, in contrast to the study identifying iTreg cell

conversion into TFH cells [40] when iTreg cells were transduced

with a miR-10a sponge to significantly sequester miR-10a.

Similarly, we observed a relatively subtle increase in Bcl6 (1.79-

fold, Table S1) compared to the ,10-fold increase in TFH-Reg

cells [11,13].

In addition to Bcl6, we identified Fbxo30 (also known as Fbxw7

and Fbw7) and the TGFb-signaling molecule, Nr4a3 [79,80] as

miR-10a-regulated genes in Th1-Treg cells. Conditional deletion

of Fbxw7 in CD4+ cells [81], or deletion of Nr4a3 and the closely

related Nr4a1, resulted in hyper-proliferation of T cells, thymic

lymphoma’s and lethal lymphoproliferation [82], a phenotype

similar to Foxp32/2 mice. Furthermore, ectopic expression of

Nr4a3 induced Foxp3 expression and repressed IFNc production

[46]. IL-12/IFNc treatment, which reduced Creb and miR-10a

expression, resulted in a small increase in miR-10a-regulated

genes, Fbxo30 and Nr4a3 and a small increase in Ifnc
transcription. Similar observations have been made in mouse

and human Treg cells, with IL-12-treatment converting Foxp3+

cells into IFNc+Foxp3+ cells [47,48]. Disrupting this molecular

pathway, by over-expressing miR-10a, coupled with IL-12/IFNc
treatment, dramatically increased Ifnc transcription, indicating

that reduced miR-10a permitted tight control over IFNc in Treg

cells, possibly via Nr4a3 [46]. IFNc secretion by Th1-Treg cells

transfected with miR-10a mimics provides a plausible explanation

as to how Th1-Treg cells retained their ability to partially control

Th2 cells following miR-10a manipulation. Collectively, we have

identified a suite of miR-10a targets in Th1-Foxp3+ cells, which

regulate G-protein coupled receptor function (Aardc3), gene

transcription (Bcl6), ion transport (Clcn5 and Rap2a), iron

metabolism (Tfrc) and TGF-b signaling (Fbxo30/Fbxw7 and

Nr4a3). Furthermore, we have identified a mechanistic pathway

of IL-12/IFNc-regulated miR-10a expression that critically

controls IFNc production in Treg cells.

In summary, Th1- or Th2-associated Foxp3+ cells developed

distinct molecular profiles, influenced by local cytokine signaling

pathways. IL-12/IFNc-influenced miR-10a controlled subsequent

IFNc production in Th1-Treg cells, while IL-4-regulated miR-182

critically prevented IL-2 production in Th2-Treg cells. In addition,

we propose that miR-182 and miR-10a function as regulatory

hubs, coordinating a variety of pathways in Th2-Treg and Th1-

Treg cells. These data strongly support the concept that different

Foxp3+ cells activate distinct gene programs, shaped by different

inflammatory signals. We also provide evidence for an upstream

miRNA-mediated pathway regulating Foxp3+ cell specialization

and functional stability.

Materials and Methods

Animals
Female C57BL/6, C57BL/6 CD45.2 Foxp3gfp [83], C57BL/6

Foxp3rfp [84], C57BL/6 CD45.1 OTII RAG22/2 6–8 weeks’ old

were bred and kept in the specific pathogen–free facility at the

National Institute for Medical Research, or National Institutes of

Health.

Ethics statement
All animal experiments were approved by UK National

Institute for Medical Research Ethical Review Panel and NIAID

animal care and use committee and carried out according to

institutional guidelines (UK National Institute for Medical

Research Ethical Review Panel), UK Home Office regulations

(Project licence no. 80/2506) and according to The NIAID animal

care and use committee in accordance with the recommendations

in the Guide for the Care and Use of Laboratory Animals of the

National Institutes of Health. A minimum of 5 mice per group was

used in each experiment, unless indicated.

Parasites and experimental infections
Percutaneous infections were carried out with 35 S. mansoni

cercariae (Biomedical Research Institute, Rockville, MD), as

previously described [85]. Mice were infected in the ear dermis

with 105 L. major metacyclic promastigotes using a 27.5 G needle in

a volume of 10 ml [38].

FACS sorting, staining and analysis
Cells were isolated from infected or inflamed tissue by

mechanical disruption followed by percoll gradient separation

and were stained with anti-mouse CD4 (RM4-5, BD Biosciences,

Pacific Blue (V450) or APC), CD3e (17A2, BD Biosciences, FITC

or Alexa flour 700), CD44 (IM7, BD Biosciences, PE-Cy7 or Alexa

flour 700), CD25 (PC61, BD Biosciences, PE or FITC) and

CD45.1 (A20, BD Biosciences, APC or PE) diluted in PBS with

0.1% FCS before analysis using a BD LSRII and TreeStar FlowJo.

In-vitro suppression assay
For proliferation/suppression assays, 104 Teff cells were labeled

with cell trace violet (Invitrogen) as per manufacturers guidelines

and stimulated with irradiated splenocytes (26105) and OVA

(10 mg/ml) for 3 days in the presence or absence of Treg cells, at

the indicated ratios before analysis using a BD LSRII and

TreeStar FlowJo.
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RNA extraction, microarray and Next Generation
sequencing

FACS purified cells were stored in RLT lysis buffer at 280uC
until RNA was extracted. For mRNA analysis, RNA was extracted

using RNeasy spin columns (Qiagen) followed by DNAse

treatment. cDNA was generated from 5 ng of total RNA using

WT-Ovation Pico system (version 1) RNA Amplification System

followed by double stranded cDNA synthesis using WT-Ovation

Exon Module. cDNA quality was determined using an Agilent

BioAnalyzer and through hybridization performance on Affyme-

trix GeneChip mouse gene 1.0 ST arrays. For miRNA analysis,

small RNA species (20–200 bp) were collected from the same

samples and used for sequencing on the ABI SOLiD sequencer

(Applied Biosystems, Santa Clara, CA). Hybridization, fluidics and

scanning were performed according to standard Affymetrix

protocols (http://www.affymetrix.com). GeneChip Operating

Software (GCOS v1.4, http://www.Affymetrix.com) was used to

convert the image files to cell intensity data (cel files). The array

data were quantile normalized and analyzed using Partek

Genomics Suite software (Partek, inc. St. Louis, Mo., v6.4-

6.09.0129). We identified differentially expressed genes using

ANOVA and t-tests. Genes with false discovery rate corrected p-

values less than 0.1 and fold change values $1.5 were considered

significant. The resulting data were analyzed with IPA (Ingenuity

Pathway Systems, www.ingenuity.com). Libraries for SOLiD

sequencing were prepared using the SOLiD Small RNA

Expression Kit (Applied Biosystems) following the manufacturer’s

protocol. Templated beads for sequencing were prepared using a

1 pM library input following the Applied Biosystems SOLiD 3

Templated Bead Preparation Guide (Applied Biosystems, Foster

City CA). Small RNA libraries were run on the ABI SOLID 3.0.

Reads were mapped to Mus musculus microRNAs (miRBase

v13.0) [86] using the Small RNA Analysis Tool v0.4 (Applied

Biosystems). Read counts below 25 (including miR-96) were

removed from further analysis with read counts between samples

normalized based on the total number of uniquely mapped reads

in each sample.

Identification of miRNA regulatory hubs
Candidate miRNA regulatory hubs were identified using Monte

Carlo simulation analysis as described previously [29]. First, we

used the seed-based target prediction algorithm TargetScanS to

determine for each miRNA the number of predicted targets

among our gene set of interest (e.g. up/down-regulated transcripts

in Foxp3+ cells in response to pathogen). We repeated this

procedure 10,000 times with a new set of randomly selected genes

from the genome each time, in order to generate a background

expectation of the number of predicted target genes for each

miRNA, which was then used to calculate an empirical p-value for

the number of predicted target genes in the gene set of interest. To

account for differences in the average 39 UTR length between the

genes of interest and the randomly selected genes in each

simulation, the number of predicted target genes was normalized

to the average 39 UTR length.

Prediction of transcription factor binding sites
The genomic locations of the miR-182 and miR-10a transcrip-

tion start sites (TSS) were identified using previously published

methods [87,88]. We defined the promoter region as 1 kb

upstream and 500 bp downstream of the TSSs. Within these

promoters, we identified putative transcription factor binding sites

using PWMSCAN [89], which searches for sequences that match

any known transcription factor binding site motif recorded in

TRANSFACv10.2. A match score with a p-value,561026 was

considered to be a high-confidence binding site prediction.

Quantitative RT-PCR for mRNA and miRNA
RNA was isolated using RNeasy mini spin columns followed

by miScript RT or Quantitect RT according to manufacturer’s

recommendations (Qiagen). Real-time RT-PCR was performed

on an ABI Prism 7900HT Sequence Detection System (Applied

Biosystems) with relative quantities of mRNA determined using

SYBR Green PCR Master Mix (Applied Biosystems) and by the

comparative threshold cycle method as described by Applied

Biosystems for the ABI Prism 7700/7900HT Sequence Detec-

tion Systems. mRNA levels were normalized to HPRT and

miRNA levels were normalized to RNU6B and then expressed

as a relative increase or decrease compared with levels in

controls.

miRNA mimic and hairpin inhibitor transfection
Treg cells were isolated, as described above and transfected with

100 nM of miR-182 or miR-10a mimics or hairpin inhibitors

(Thermo Scientific Dharmacon) or MOCK transfected using

Nucelofection reagents according to manufacturer’s recommen-

dations (Amaxa). Ex-vivo nTreg cells were cultured in rIL-2

(10 ng/ml)-supplemented media for 24 hours before washing and

use in suppression assays or transfer in-vivo. BlockiT fluorescent

oligos (Invitrogen) were used to determine transfection efficiency.

miRNA mediated impacts on mRNA expression was determined

24–48 hours post transfection.

T cell polarisation, adoptive transfer, airway inflammation
model

Naı̈ve T cells (CD4+CD442CD62LhiCD252) were FACS

purified and polarised under Th1 (IL-12, 10 ng/ml; anti-IL-4,

10 ug/ml)), Th2 (IL-4, 10 ng/ml; IL-2, 10 ng/ml; anti-IFNc,

10 ng/ml) or iTreg (TGFb, 10 ng/ml, Retinoic acid, 10 nM)

conditions in the presence or absence of OVA-pulsed irradiated

splenocytes as APC’s for seven days, as indicated.

Freshly isolated nTreg or in vitro generated iTreg cells were

washed and cultured with either IL-4 (10 ng/ml), IL-12/IFNy

(both at 10 ng/ml) or media only. Cells were harvested after

24 hours or supernatant was collected after 3 days. For adoptive

transfer experiments, recipient mice were given OVA (Sigma,

Grade V) via the trachea one day before adoptive transfer of 106

Th1 or Th2 cells. For intra-tracheal (i.t.) inoculation, mice were

anaesthetized with ketamine and medetomidine and given 20 ml of

OVA (10 mg) in PBS directly into the trachea. Recipient mice were

given OVA i.t. on day 1 and day 3-post transfer before analysis on

day 4. In some experiments, cells were isolated from recipient

mice, transfected as above, and either adoptively transferred with

newly generated Th1 or Th2 cells into a second recipient or used

in proliferation/suppression. For 2nd adoptive transfer experi-

ments, 106 newly generated Th1 or Th2 cells were co-transferred

with 106 isolated and transfected Treg cells from recipient mice.

Twenty-four hours after the OVA i.t., mice were anaesthetized

with pentobarbital. The trachea was cannulated and airspaces

lavaged with 500 ml of sterile PBS for cellular analysis. For

histopathological analysis lungs were removed, formalin (4%

paraformaldehyde in PBS) fixed embedded in paraffin and stained

with Hematoxylin and eosin (H&E). Inflammation was scored on

an arbitrary 1–4+ basis taking into account both the degree of

inflammation and its distribution. Local lymph nodes were

isolated, prepared into a single cell suspension and cultured with

OVA (10 mg/ml) for 3 days.
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ELISA
Cytokines were measured by ELISA using suppliers’ guidelines.

Capture and biotinylated detection antibodies for IL-4, IL-5, IL-

10, IFNc, IL-17A and IL-9 were from R&D Systems. The

concentration of analytes in the sample was determined from a

serial-fold diluted standard curve with OD read at 405 nm in an

ELISA reader.

Supporting Information

Figure S1 Number and direction of common regulated
genes in Lm- and Sm-Foxp3+ cells. 185 common genes that

were differentially regulated within Lm- Foxp3+ cells and Sm-

Foxp3+ cells, indicating up or down regulated expression.

(TIFF)

Figure S2 Isolation and transfection of primary Foxp3+
cells. Foxp3+ cells were isolated from the spleen or inflamed

tissue, as indicated, made into single cell suspensions (A), stained

and FACS sorted (B). Purified Foxp3 cells were transfected at

26105 cells per well with miRNA mimics or inhibitors with

BlockiT or SiGlo transfection indicators (C).

(TIFF)

Figure S3 Th1-Treg cells potently suppress Th1 and
Th2 cells in-vitro, while Th2-Treg cells only suppress
Th2 cells. Th2 or Th1 T effector (Teff, CD4+CD44+Foxp3gfp2)

and Treg (CD4+Foxp3gfp+) cells were isolated from the lungs of

recipient mice, as in Figure 4. Teff cells (104) were labeled with cell

trace violet and cultured alone, or in the indicated ratios with Th1-

Treg or Th2-Treg cells for 3 days (A–D). One of 2 individual

experiments shown. Freshly isolated Th1-Treg cells were trans-

fected with miR-10a mimics or Th2-Treg cells were transfected

with miR-182 inhibitors (E), as indicted. RNA was extracted after

24 hours and miRNA levels were quantified by RT-PCR.

(TIFF)

Figure S4 Treg cells from naı̈ve mice cannot suppress
pathogenic Th1 or Th2 Teff cells. Th1 (A) and Th2 (B) T

effector (Teff, CD4+CD44+Foxp3gfp2) cells were isolated from the

lungs of recipient mice, as in Figure 4 and Figure 5. As a control,

naı̈ve T cells (C) were also isolated from the spleen of OTII mice.

Naı̈ve Treg cells were isolated from naive mice. Teff or naı̈ve T

cells (104) were labeled with cell trace violet (Invitrogen) and

cultured alone, or in equal ratios (1:1) with mock transfected Treg

cells (B), Treg cells transfected with miR-10a mimics or Treg cells

transfected with miR-182 inhibitors, as indicated, for 3 days with

irradiated splenocytes (26105) and OVA (10 mg/ml). One of 2

individual experiments shown, with technical replicates shown in

the scatter plot.

(TIFF)

Figure S5 IL-4 regulates cMaf and miR-182, while IL-
12/IFNc regulate Creb and miR-10a expression in nTreg
and iTreg cells. In silco predicted Transcription factor binding

within the promoter of miR-182 and miR-10a using PWMSCAN

and TRANSFACv10.2. (A). FACS purified ex vivo nTreg or in

vitro generated and FACS purified iTreg cells (B) were stimulated

with IL-4 (10 ng/ml) or IL-12 (10 ng/ml)/IFNc (10 ng/ml) for

24 hours before RNA was extracted, and mRNA (C, D) or

miRNA (E, F) transcript abundance was determined by RT-PCR.

One of 2 individual experiments shown. * p-value,0.05 with data

expressed as mean 6SEM.

(TIFF)

Figure S6 nTreg or in vitro generated iTreg cells from
Foxp3rfp and Foxp3gfp mice do not differ in miR-182 or

miR-10 expression. Ex vivo isolated nTreg (A) and in vitro

generated iTreg cells (B) were FACS purified from Foxp3gfp or

Foxp3rfp reporter mice. RNA was immediately extracted and miR-

182 and mIR-10a levels were determined by RT-PCR, and

expressed relative to Foxp32 cells with data expressed as mean

6SEM.

(TIFF)

Figure S7 IL-4-regulated miR-182 and IL-12/IFNc-reg-
ulated miR-10a control IL-2 and IFNc production,
respectively. FACS purified ex vivo nTreg or in vitro generated

and FACS purified iTreg cells were stimulated with IL-4 (10 ng/

ml) or IL-12 (10 ng/ml)/IFNc (10 ng/ml) for 24 hours before

RNA was extracted and mRNA (A–E) transcript abundance

determined by RT-PCR. FACS purified nTreg and iTreg cells

were transfected with miR-182 inhibitors (E) or miR-10a mimics

(F) before treatment with IL-4 or IL-12/IFNc. Cells were

recovered after 24 hours for mRNA analysis or supernatants were

recovered after 3 days of culture for protein analysis (E). One of 2

individual experiments shown. * p-value,0.05 with data

expressed as mean 6SEM.

(TIFF)

Figure S8 Adoptive transfer system. One million Th1 or

Th2 polarised cells from C57BL/6 CD45.1 OTII RAG22/2 mice

were adoptively transferred into CD45.2 Foxp3gfp mice (Recipient

1) one day after i.t. OVA treatment. Recipient Mice were given 2

additional OVA treatments 1 and 3 days post transfer.

CD4+Foxp3gfp cells were isolated from the lungs of recipient mice

and either untreated, Mock transfected or transfected with

miRNA mimics or inhibitors (as in Figure S2). Fresh Th1 or

Th2 polarised cells from C57BL/6 CD45.1 OTII RAG22/2 mice

were generated and co-transferred with the treated CD4+Foxp3gfp

cells into a third mouse (Recipient 2), one day after OVA

challenge. Recipient 2 mice with treated with OVA i.t. 1 and 3

days post transfer and were anlaysed on day 4 post transfer.

(TIFF)

Table S1 Significantly differentially regulated genes in
Foxp3+ populations represented in Heat map (left table)
and in samples, as indicated (right 3 tables).

(PDF)

Table S2 Mapping of Deep Sequencing reads. Mapping of

data to SOLiD dataset, miRBase and the mouse genome. (A)

Uniquely mapped reads, (B) All mapped reads, (C) Representation

of other RNA species in dataset. Representative workflow of

mapping strategy. Sm = Schistosoma mansoni-derived Treg.

Lm = Leishmania major-derived Treg.

(PDF)

Table S3 Significantly differentially regulated miRNAs
in Foxp3+ populations. Fold change of significantly regulated

miRNAs.

(PDF)

Table S4 Candidate master regulatory miRNAs identi-
fied from Monte Carlo simulation.

(PDF)

Table S5 Predicted mRNA targets of miR-182 and miR-
10a identified from Monte Carlo analysis.

(PDF)
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