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Abstract

This article discusses insights from computational models and social neurosci-

ence into motivations, precursors, and mechanisms of altruistic decision-

making and other-regard. We introduce theoretical and methodological tools

for researchers who wish to adopt a multilevel, computational approach to

study behaviors that promote others' welfare. Using examples from recent

studies, we outline multiple mental and neural processes relevant to altruism.

To this end, we integrate evidence from neuroimaging, psychology, economics,

and formalized mathematical models. We introduce basic mechanisms—
pertinent to a broad range of value-based decisions—and social emotions and

cognitions commonly recruited when our decisions involve other people.

Regarding the latter, we discuss how decomposing distinct facets of social pro-

cesses can advance altruistic models and the development of novel, targeted

interventions. We propose that an accelerated synthesis of computational

approaches and social neuroscience represents a critical step towards a more

comprehensive understanding of altruistic decision-making. We discuss the

utility of this approach to study lifespan differences in social preference in late

adulthood, a crucial future direction in aging global populations. Finally, we

review potential pitfalls and recommendations for researchers interested in

applying a computational approach to their research.
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1 | INTRODUCTION

Human beings are inherently social, and a considerable part of our thoughts, decisions, and behaviors concerns the
people around us. One social phenomenon that has received significant attention is human altruism (Declerck &
Boone, 2015; Dovidio et al., 2017; Fehr & Rockenbach, 2004; Filkowski et al., 2016; Luo, 2018). Altruism describes a
motivational state to promote someone else's welfare, even at a risk or cost to ourselves (Batson & Powell, 2003). It can
be distinguished from prosocial behaviors driven by other motivations (e.g., strategic considerations or social norm
compliance) (Böckler et al., 2016). Contrary to assumptions of classic economic theory (Neumann &
Morgenstern, 1947), people are frequently willing to forgo personal gains to benefit others. Interestingly, this willing-
ness to care about others' welfare and to act altruistically differs across people. Recent studies show that individual dif-
ferences in altruistically motivated behaviors are stable over time, generalize across specific measurement tools
(Böckler et al., 2016; Böckler, Tusche, Schmidt, & Singer, 2018; Peysakhovich et al., 2014; Yamagishi et al., 2013), and
are linked to well-being (Hui et al., 2020; Le et al., 2018; Nelson et al., 2016). The wealth of research on this topic is
hardly surprising. Societies depend on the altruistic behaviors of their members. There is a general consensus that car-
ing about others' welfare—and acting on this concern—is central to human decision-making, successful social interac-
tions, and society's functioning at large. Yet, to this day, altruism presents a fascinating puzzle as it challenges
assumptions of narrow self-interest that are central to rational choice theory. What mechanisms drive decisions to bear
substantial costs to benefit another? How do characteristics of the individual and choice setting shape other-regard and
the altruistic decision process?

Decades of empirical research have advanced our ability to answer these questions. Studies on social decision-
making have uncovered basic mechanisms of social preferences. Prior work has shed light on the role of personality
(Thielmann et al., 2020; Zhao & Smillie, 2015), social context (Bruch & Feinberg, 2017; Rand et al., 2015), social emo-
tion and cognition on the decision process (Barasch et al., 2014; Batson, 20111; Lerner et al., 2015). This progress in our
understanding is largely due to the interdisciplinary and computational nature of contemporary research on this topic.
The mutual reinforcement of fast-growing fields such as social neuroscience (Adolphs, 2010; Lieberman, 2007) and neu-
roeconomics (Konovalov & Krajbich, 2019; Reuter & Montag, 2016) has provided novel insights into motivations, men-
tal and neural computations, and contextual factors that guide altruistic behaviors. This article will review theoretical
and empirical models of other-regard in altruistic decision-making through the lens of a cross-disciplinary, computa-
tional framework. Our goal is to promote the following notion: an interdisciplinary, computational framework provides
a more foundational, more general explanation than economic, neurobiological, or psychological measures alone. It
allows making broader and more accurate predictions, and ultimately, to formulate more precise interventions through
which social decision-making can be altered. We advocate the benefits of such a framework to researchers from diverse
fields that study social decision-making and social motives and do not yet apply computational modeling to their
research questions. While certain research lines within neuroeconomics and social neuroscience have started to
embrace computational approaches, there is still tremendous potential for growth (e.g., advancing computational
models of affective responses in social decision-making). Our goal is to outline the benefits, pitfalls, and future direc-
tions of interdisciplinary, computational approaches to study altruism and social motives. Recent reviews address
related points in the context of computational strategies involved in social learning and social behavior, focusing on
reinforcement learning (RL) (Charpentier & O'Doherty, 2018; Lockwood & Klein-Flügge, 2020). Unlike prior work, we
will focus on the computational perspective on the narrow concept of altruism, specifically the processing of and caring
about another's welfare. However, the basic principles of the benefits of such an interdisciplinary, computational frame-
work extend to related concepts such as cooperation, reciprocity, and altruistic punishment (for definition and review
of neural substrates, see Filkowski et al., 2016; Reuter & Montag, 2016; Rilling & Sanfey, 2011).

The structure of the article is as follows. In Section 2, we introduce the interdisciplinary, computational framework
of contemporary research on altruism. To this end, we will briefly review popular experimental measures that permit
the use of formal mathematical models of social preferences. It provides background information that we will refer to
in subsequent parts of the article. To illustrate the utility of a computational framework, Section 3 highlights some spe-
cific insights from a recent neurocomputational model of altruism (focusing on popular drift diffusion models [DDMs]).
Section 4 introduces alternative computational models of altruism and social motives (focusing on RL). Section 5 dis-
cusses processes that guide altruistic decision-making and their substrates in the brain. We will review these processes
in light of whether altruistic decisions are different from other kinds of value-based decisions. The focus will be on
affective and cognitive social processes relevant to understanding others (empathy and mentalizing). Section 6 outlines
promising future directions of the neurocomputational framework of altruistic decision-making. We highlight open
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questions regarding lifespan changes in altruism and the integration of specific components of the decision process.
Finally, Section 7 discusses some methodological and practical challenges of an interdisciplinary, computational frame-
work and offers recommendations.

2 | PROMISES OF AN INTERDISCIPLINARY, COMPUTATIONAL
FRAMEWORK

2.1 | Synthesizing theories, measures, and analysis tools from different research
disciplines

Studies on human altruism have benefitted from the successful cross-fertilization of social psychology, neuroscience, and
behavioral economics. Traditionally, these research disciplines focus on different facets of social behaviors and levels of
description. Simply put, these research disciplines differ regarding how and what aspects of social decisions they examine.
For instance, neuroimaging studies have concentrated on identifying brain networks reliably recruited during altruistic and
strategic social decision-making (Cutler & Campbell-Meiklejohn, 2019). Seminal psychological research has extensively
studied emotional, cognitive, and contextual factors that can motivate altruistic behaviors, such as empathy or perceiving
others in need or distress (Batson, 2011). Finally, economics traditionally focuses on observed behavior to reveal other-
regard (“revealed preferences”), with less emphasis on the underlying mental processes. Economic game theory has proven
a powerful theoretical framework to describe and predict these observed social behaviors (Camerer, 2011; van Dijk & De
Dreu, 2020).2 It provides a common and parsimonious model applicable to a broad range of social behaviors and research
questions (for an introduction to game theory and areas of applications, see Samuelson, 2016). Contemporary research on
human altruism takes advantage of the multilevel perspectives from these different disciplines. Bridging the gap between
distinct research traditions has enabled the field to utilize their respective strengths, insights, and explanatory power.

In many ways, these advances were facilitated by the widespread use of measures and analysis tools from neighbor-
ing disciplines. Research on human altruism has been the focus of many research fields that traditionally employ differ-
ent assessment tools. For example, psychology regularly uses questionnaires that measure people's general prosocial
tendencies (“traits”) (Rushton et al., 1981) or assess real-world prosocial behaviors like spontaneous helping,
volunteering, or donations (Bethlehem et al., 2017; Gaesser et al., 2020; Smith, 1981). Donations have also been popular
in early neuroimaging studies (Genevsky et al., 2013; Hare et al., 2010; Ma et al., 2011; Tusche et al., 2016). More
recently, crowdfunding has been an exciting way to study ecologically valid altruism (André et al., 2017;
Bretschneider & Leimeister, 2017; Genevsky et al., 2017; Giudici et al., 2018; Ryu et al., 2020). Other measures that
require hypothetical distributions of resources have their roots in social psychology and economics. Choices between a
preselected set of fixed distributions allow characterizing individuals' social value orientation (McClintock & Van
Avermaet, 1982; Murphy et al., 2011; Van Lange, 1999). For instance, choices may reveal an individual's preference for
maximization of her own payoffs, relative gains over that of another (winning), or joint payoffs (collective efficiency or
“social welfare”). The examples illustrate the long tradition and the broad range of measures used to study altruistic
motivations and underlying mental and neural processes.

Applications of each assessment tool have yielded important theoretical and empirical insights. However, the accel-
eration of cross-disciplinary, computational research on altruism over the last decades is in large part due to the wide-
spread use of tasks from (behavioral) game theory (henceforth “games”). Games are traditionally used in behavioral
and experimental economics but have also been successfully utilized in other fields like psychology, sociology, and biol-
ogy (McNamara & Leimar, 2010; Murnighan & Wang, 2016; Pruitt & Kimmel, 1977). Games model social behavior in
interdependent social settings. Numerous games have been developed to model behavior in different classes of social
situations that people encounter in the real world (Kelley et al., 2003). There are many reasons for the popularity of this
measurement tool. Games are standardized experimental tasks, usually posed in abstract terms (stripped of the contex-
tual richness of real-world decision problems), require participants to make simple choices concerning resource distri-
bution, specify exactly how choices relate to payoffs and outcomes, and resulting payoffs are usually realized right away
(“incentivized” choices) (Camerer, 2011; Pruitt & Kimmel, 1977). These paradigms are easy to implement, easy to
understand, allow for large numbers of repetitions, and specify precise variables. For these reasons, games have been
frequently used in neuroimaging studies on altruism (Harbaugh et al., 2007; Moll et al., 2006; Morishima et al., 2012).
Experimental games have yielded crucial insights into the neural and psychological processes underlying social
decision-making and other-regard (for a recent overview, see van Dijk & De Dreu, 2020).

TUSCHE AND BAS 3 of 29



2.2 | Experimental games and formal models of altruistic decision-making

One significant advantage of game-theoretical paradigms is that they permit the use of formal models to study social
decision-making. Formal mathematical models can describe how specific considerations (variables) interact and are
integrated to yield observed behaviors (Crockett, 2016). The widespread use of mathematical models and computational
analysis tools is likely the biggest innovation in the field of social decision-making—including research on altruism—
over the last two decades. There is some debate that spans across disciplines about what constitutes (and distinguishes)
formal, mathematical, and computational models (Diederich & Busemeyer, 2012). We define computational models as
a mathematical model that relies on computer simulation to study the workings of a complex system (Roberts &
Hutcherson, 2019). For reasons of simplification, we refer to formal models as an umbrella term. Formal models have
been used to study numerous psychological and neural processes that can guide prosocial behaviors. For example,
researchers have gained important insights into the processes underlying impression formation (e.g., “deserving of
help?”), social learning (e.g., “will they reciprocate?”), or biases due to group memberships (e.g., “us” vs. “them”) (for a
recent synopsis, see Hackel & Amodio, 2018).

To illustrate how the combination of formal models and standardized experimental games have invigorated studies
on altruistic decision-making, we next turn to the dictator game. The dictator game is a canonic game-theoretical para-
digm frequently used to study altruistic decision-making in the laboratory (Engel, 2011; Pisor et al., 2020) (for an over-
view of the origins of this game, see Guala & Mittone, 2010). Its classic form requires participants to unilaterally divide
a fixed amount of money between themselves and another person. Payoffs are determined solely by the decision-maker
(allocator or “dictator”), and the recipient must accept the proposed split. Choices are usually incentivized, and alloca-
tors and recipients receive the payoffs immediately after the experiment. In anonymous settings with no chance of
future interactions (one-shot game), strategic concerns do not have to enter the decision process. Allocating nothing to
the recipient maximizes the decision-maker's income. Nevertheless, a considerable fraction of individuals violates the
income maximization hypothesis of rational choice theory (Scott, 2000) and allocate something to the other person. On
average, allocators are willing to give up 28% of the “pie” (Engel, 2011). Various factors related to the individual and
the choice setting have been identified that systematically moderate generosity levels in this game (Engel, 2011; Hen-
rich et al., 2005; Larney et al., 2019). Behavior in this task is widely assumed to reflect the value that an individual
places on others' well-being (altruism) and the willingness to conform to social fairness norms (Guala & Mittone, 2010).
Recent findings also suggest that behavior in this task can indicate people's more general propensity to engage in altru-
istically motivated behaviors (Böckler et al., 2016; Böckler, Tusche, Schmidt, et al., 2018; Böckler, Tusche, &
Singer, 2018).

Since its conception (Forsythe et al., 1994; Kahneman et al., 1986), various modified versions of the dictator game
have been put forward. Neuroimaging studies on social preferences require many repetitions (trials) to reliably assess
noisy measures of brain function (Huettel et al., 2004). Applications of computational models also require numerous
observations and trials (Section 7 discusses potential challenges related to this issue). Adaptations of the dictator game
are well suited to address this need. Participants may be asked to repeatedly accept (or reject) a proposed monetary allo-
cation that affects payoffs for themselves and another person (group/charity). Alternatively, participants may choose
between two offers that either benefit the other at the expense of oneself (altruistic) or oneself at the cost of another
(selfish) (Figure 1a) (Hein et al., 2016; Hutcherson et al., 2015; Shuster & Levy, 2020; Tusche & Hutcherson, 2018).
Across versions, the dictator game captures critical features of economic reasoning that guide social behaviors in real
life: in altruistic choice settings, we often have to trade off others' welfare against personal benefits. Presented with the
option to help someone or not, we might consider factors such as our gain, the benefit for another individual (group),
or the fairness of the outcome (e.g., “How much better/worse am I off than the other(s)?”). These choice-relevant con-
siderations are captured in the dictator game in the form of specific variables, each expressed in numeric values ($Self,
$Other, and j$Self-$Otherj, see Figure 1a). This feature of the dictator game enables the use of formal mathematical
models.

2.3 | Utility of formal models of altruism

A formal mathematical framework provides several important advantages to study social decision-making and other-
regard (for excellent overviews, see Crockett, 2016; Hackel & Amodio, 2018; Roberts & Hutcherson, 2019). First, formal
models enable making precise quantitative predictions of decisions across people, contexts, and time. In other words, a
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well-trained model can produce specific and accurate predictions about social behaviors for individuals (groups) and
settings other than those used to estimate the model in the first place (out-of-sample predictions). This feature has obvi-
ous value for numerous applied settings. Second, formal computational models allow comparing observed behavior—
choices and reaction times—to optimality (Bogacz et al., 2006). We use optimality here to refer to decisions that would
maximize certain social preferences (e.g., others welfare, max($Others); own gains, max($Self); or fairness, min(j$Self-
$Otherj)). This application has yielded important insights into altruistic decision-making. For instance, neuro-
computational models of altruism suggested that a significant portion of generous choices may represent mistakes
rather than individuals' actual altruistic preferences (Hutcherson et al., 2015). Third, by fitting a formal model to
observed behavior, researchers can estimate “hidden” components of the altruistic decision process that might not be
easily inferred from behavioral observation alone. In other words, models allow decomposing observed behavioral data
into several latent mental processes (Forstmann et al., 2011). Here, in addition to actual latent variable inferences, esti-
mates of the free parameters of a model play a crucial role. In a nutshell, these estimates represent a set of parameter
values that best account for the real data (e.g., choice, gaze patterns, or brain data) for a given model (Wilson &
Collins, 2019).3 For instance, the estimates of a parameter can quantify the relative weight that individuals place on dis-
tinct considerations that guide decisions (e.g., “other welfare” or “fairness”) (Figure 1b). Models thus enable researchers
to capture the precise utilities that people ascribe to others' welfare or equity concerns. These parameter estimates can
provide important insights. Imagine observing a generous choice in a standardized experimental task (e.g., a modified
dictator game). The observed behavior (generous) may have resulted from different motives: the allocator might care lit-
tle about their own payoffs in this low stake choice setting, care heavily about others welfare, care heavily about maxi-
mizing the fairness of the outcome (which by chance is realized by the generous choice option), or a combination of
these components. People's insights into their underlying motives and their relative input into the decision process may
be limited. Estimated parameters of a model can discriminate between these interpretations (e.g., by examining the
weights of self-regarding motives [$Self], others gain [$Other], or fairness [j$Self-$Otherj] on choices that best describe
the observed behavior). They thus provide an alternative way to study social motives and complement classic
approaches of simply asking people for their preferences and motivations (Insko & Schopler, 2013). Fourth, these esti-
mated parameters of computational models can be linked to functional and structural brain measures. This enables
researchers to reveal the neural underpinnings of “hidden” (latent) factors of altruistic decision-making. A neurally
informed model of altruistic choice, in turn, enables researchers to predict how changes in the brain will affect observ-
able behaviors. Fifth, neurocomputational models allow testing for common mechanisms of the decision process across
choice domains (both on the behavioral and neural levels). Recent studies have started to identify unifying principles
that generalize across different decision problems (Krajbich et al., 2015; Soutschek et al., 2016; Tusche &

FIGURE 1 Game-theoretical paradigm and computational model of altruistic choice. (a) Altruistic choice in a modified dictator game

(“choose the option that you prefer”). (b) Computational model of altruism (multi-attribute extension of a drift diffusion model). The model

characterizes the decision process as the accumulation of a noisy value signal that evolves dynamically over time (t). The value signal

represents the relative desirability of available choice options (relative decision value, RDV). Blue and red lines represent trajectories of the

value signal in favor of Option A or B, respectively. The value signal results from a linear combination of weighted features of the decision

problem (e.g., gains for self, others, and fairness; represented as numerical values in each trial: $Self, $Other, j$Self-$Otherj). A decision is

reached when the value signal crosses a critical threshold (upper or lower barrier, b or b0). Fitting the model to the observed behavior

(choices and reaction times) yields parameters that characterize the decision process. Potential parameters include the weights that

individuals place on each choice-relevant feature (wSelf, wOther, WFair); non-decision time (NDT; accounts for sensory and motor-related

processes unrelated to the value comparison process itself); the decision threshold; or the start point of the value signal (accounts for initial

biases in favor of one available alternative). Drift diffusion models of altruism have been shown to capture generous choices, reaction times

(Krajbich et al., 2015), and even neural responses in altruism tasks (Hutcherson et al., 2015; Tusche & Hutcherson, 2018)
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Hutcherson, 2018). For example, Krajbich et al. (2015) showed that a formal model of dietary decision-making accu-
rately predicted choices and reaction times in a social choice task (dictator game). This evidence points towards a com-
mon mechanism that underlies different types of decisions. Designing novel interventions that target common
principles may hold solutions to effectively improve behavior across a range of domains in which people frequently
struggle to align decisions with “virtuous” goals. For instance, shared mechanisms underlying food and social decisions
may be targeted to support goals related to eating healthier and being more generous. In that regard, computational
models can have important implications for policy and practitioners. We will further discuss the notion of common
decision mechanisms across social and dietary choices—and their neural substrates—in Section 3.2.

2.4 | Modeling social preferences: DDMs of altruistic choice

In essence, models force researchers to formalize their attempts to describe the altruistic decision process. Over the last
decades, several mathematical models have been developed to characterize how social motives drive behaviors. Popular
models of social preferences capture people's utility for fairness (also referred to as inequality aversion) (Bolton &
Ockenfels, 2000; Fehr & Schmidt, 1999; Morishima et al., 2012), collective gains (“social welfare”) (Charness &
Rabin, 2002), spitefulness and altruism (Levine, 1998), the consistency of altruistic preferences (Andreoni &
Miller, 2002), and the impact of social identity on social motives (Akerlof & Kranton, 2005; Bénabou & Tirole, 2011;
Chen & Li, 2009).

Here, we will discuss one popular class of models that inspired recent neurocomputational models of altruism: drift
diffusion models (DDMs) (Bogacz et al., 2006; Ratcliff & McKoon, 2008; Ratcliff et al., 2016). Diffusion models represent
one example from the broader family of sequential-sampling models (Forstmann et al., 2016; Ratcliff et al., 2016). They
have a long history of predicting simple perceptual decisions and account for reaction times and brain activation
(Gold & Shadlen, 2003; Heekeren et al., 2008). Only recently have these models found their way into the domain of
social decision-making (Roberts & Hutcherson, 2019). Diffusion models provide a window into the underlying decision
process. In a nutshell, the model assumes that decisions result from the noisy moment-by-moment accumulation of a
value signal (Figure 1b). You may think of the value signal as a reflection of the relative “attractiveness” of the available
choice options. In our example (Figure 1b), it is based on a weighted sum of three choice-relevant considerations (vari-
ables): payoffs for oneself, others, and the outcome's fairness (Hutcherson et al., 2015; Tusche & Hutcherson, 2018).
The model assumes that the decision-maker (and her brain) continuously accumulates noisy information about the
choice options until an internal decision boundary is reached. In other words, when enough evidence has accumulated
in favor of one option (and the value signal reaches the respective threshold), a decision in favor of this option is made.
Thresholds in this model are subjective, capturing the notion that people can adjust their decision criteria (higher deci-
sion thresholds resulting in slower but more accurate choices; lower thresholds can be reached faster by the accumulat-
ing value signal but might be more error-prone). This computational model has been shown to capture observed
patterns of choices, reaction times, and brain activation during altruistic decisions (Hutcherson et al., 2015), all within
one powerful analytical framework.

3 | INSIGHTS FROM A NEUROCOMPUTATIONAL MODEL OF ALTRUISTIC
CHOICE

So far, we have discussed that game-theoretical paradigms permit the use of formal models of social preferences, advan-
tages of a computational framework, and a recent (neuro)computational model of altruism (DDM). Let us bring these
components together by way of example. For illustration, we turn to a recent neuroimaging study on altruism
(Tusche & Hutcherson, 2018). In this study, participants performed an adapted version of a dictator game while their
brain responses were measured using functional magnetic resonance imaging (fMRI). In each trial, participants choose
between a proposal that affected their own monetary outcome and that of an anonymous partner, and a default of $20
for both. Compared to the default allocation, accepting or rejecting the on-screen proposal could benefit the participant
or the partner, yielding selfish or generous choices. The researchers assumed that participants mostly considered three
factors (variables) to guide their decisions: payoffs for oneself ($Self), payoffs for the other ($Other), and the fairness of
the outcome (j$Self-$Otherj). Each of these variables was expressed in terms of a specific numeric value in each trial.
As discussed earlier, formal models provide a precise, quantitative description of how these considerations are
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transformed into observed behaviors (generous or selfish choices). To this end, the researchers fitted a multi-attribute
extension of the DDM to observed behavior—choices and reaction times (Ratcliff & McKoon, 2008; Ratcliff et al., 2016;
Ratcliff & Smith, 2004). The model captured choices, reaction times, and neural data during altruistic choice with high
accuracy, mirroring previous evidence (Hutcherson et al., 2015). More importantly, this neurocomputational model of
altruism provided novel insights, some of which we will highlight in the following.

3.1 | Goal-dependent changes in altruistic choice

People might behave generously in one situation but not in others. Computational modeling approaches offer insights
into the mechanisms underlying the variance in altruistic behaviors across contexts. Let us consider evidence from the
neuroimaging study introduced above (Tusche & Hutcherson, 2018). Participants in this study made altruistic decisions
under three conditions. They were asked to think about the impact of their choice on their partner (directing attention
to other's welfare), or the ethics of their choice (directing attention to the fairness of the outcome), or to choose as they
naturally would (baseline condition). Not surprisingly, observed generosity levels differed across choice settings. People
behaved more altruistically when prompted to deliberate consequences for another individual or social norms. The
computational model sheds light on the precise mechanisms underlying altered generosity. It yielded estimates rep-
resenting the weight that individuals placed on each variable (e.g., others gain) in a particular choice setting. The
researchers found that the instructed goals systematically altered these weights: contexts that directed attention to a cer-
tain choice feature, say others gain, yielded increased weight for this goal-consistent consideration, capturing its
increased input on the altruistic decision process. On the contrary, the weight of goal-inconsistent features on choices
decreased (e.g., one's own gain). Neuroimaging data provide further support for this computational model of altruistic
choice. The study found that the brain encodes relevant choice features (gains for self, others, and fairness) and inte-
grated decision values. Notably, neural information on these choice features varied as a function of contextual goals.
These changes in neural information closely matched the predictions of the DDM. Taken together, the neuro-
computational model explains how people flexibly align social behaviors with current goals and how it is implemented
in the brain. It provides us with a formal algorithmic model (Love, 2015) of goal-dependent choice in altruism. More
generally, it explains why people can be extremely generous and cooperative in some contexts but not in others.

3.2 | Unifying mechanisms across decision problems

Formal models also allow comparing the decision process across different domains. Seminal empirical evidence sug-
gests that there are unifying principles that generalize across various decision problems (Krajbich et al., 2015). For illus-
tration, let us go back to the neuroimaging study by Tusche and Hutcherson (2018). The study probed for
commonalities (and differences) in two domains: altruistic and dietary choice. Both choice tasks involved the experi-
mental manipulation of contextual goals. Similar to the altruism task (see above), participants completed a food choice
task under different attentional goals (“focus on taste,” “focus on health”). A multi-attribute extension of a DDM was
again fitted to observed behavior , separately for each choice context. The results demonstrate a unifying principle
underlying goal-consistent behavior in both domains. Successful regulators increased the input of goal-consistent con-
siderations on choice (e.g., a food's healthiness when pursuing health goals) and decreased the contributions of goal-
inconsistent features (e.g., taste). Interestingly, individuals differed in the ability to recruit this mechanism. Individuals
who effectively aligned the inputs of altruistic variables with current goals were also better at recruiting this mechanism
during dietary choices. The study also linked this unifying mechanism to activation patterns in the dorsolateral prefron-
tal cortex (DLPFC) (Figure 2). These findings reveal basic mechanisms of regulatory success that can impact altruistic
decision-making, as well as other choice domains. It provides us with a neurally informed, mechanistic understanding
of why some people seem to have an easier time aligning behaviors with their goals (e.g., “be more altruistic,” “eat
healthier”). Notably, the model also identified components of the decision process that were specific to altruistic choice.
For example, goal-consistent changes in concern for others gains recruited the temporoparietal junction (TPJ)
(Figure 2). This brain area is widely believed to play a role in understanding others. Taken together, these findings point
to generic mechanisms in altruism that generalize to other domains, as well as processes specifically relevant to altru-
ism and social choice settings (but not dietary choice). Neural evidence and formal models can inform each other to
tease these components apart and inform us about their interactions.
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4 | OTHER COMPUTATIONAL MODELS OF SOCIAL DECISIONS: RL

We outlined one popular computational model (DDM) and its utility to study altruistic behavior observed in the dicta-
tor game. The choice of a formal model—and the behavioral measures to which the model is fitted—will heavily
depend on the specific research question. Summarizing the variety of computational approaches and paradigms to
study social decision-making exceeds the scope of this paper (for a review relevant to social cognition, see Rusch
et al., 2020). To exemplify the range of applications of formal models of social choice, we briefly highlight one topic that
has received a lot of attention: social learning (for reviews, see Charpentier & O'Doherty, 2018; Lockwood & Klein-
Flügge, 2020; Olsson et al., 2020); Bolenz et al. (2017) review lifespan differences in social learning and decision-
making).

Many social choice tasks—including games—are designed to minimize social learning. Let us consider the example
of the dictator game. Participants are fully aware of the rewards for themselves and others associated with their deci-
sions. The number of choices (trials) is often limited, and people usually interact with a “new” partner in every round.
Moreover, choices are often anonymous, with little or no information about the other person. These features distinguish
behavior observed in these games from real-world decisions in interactive, repeated, and dynamic settings. Outside of
the laboratory, people often make an initial assessment based on the limited information available and then adjust it
based on subsequent interactions or observations. In other words, people learn. Through trial-and-error, they update
their beliefs and expectations about others (e.g., their preferences, motives, or moral character; Hackel &
Amodio, 2018) or social rewards linked with choices. Studying the impact of these processes on social preferences
requires selecting appropriate computational models.

RL represents the most popular family of models to capture learning and adaptive decision-making. The RL frame-
work can be used in non-social contexts and social settings that involve interactions with other individuals. In a nut-
shell, RL models provide a window into how people learn from feedback in repeated interactions or observations to
make decisions. Paradigms used to study this process often introduce a mismatch of expected and actual outcomes. Peo-
ples' attempts to minimize this mismatch in following interactions and decisions represent people's learning. We do not
intend to provide a thorough overview of RL or formal mathematical notations. A comprehensive introduction to the
theoretical framework, models, and neural underpinning can be found in Joiner et al. (2017), Lee and Seo (2016), and
Olsson et al. (2020). An in-depth discussion is provided by Sutton and Barto (2018). Neural underpinnings of social
learning related to social cognition (see Section 5) and decision-making are outlined in Olsson et al. (2020) (also see
Cheong et al., 2017). Researchers interested in actually using RL models find guidance and best practices in Lockwood
and Klein-Flügge (2020) and Zhang et al. (2020). In the following, we will highlight applications of RL in research on
altruism and social motives.

The RL framework has been used in studies on altruism, social motives, social rewards, and their neural correlates
(e.g., Fareri et al., 2015; Kuss et al., 2013; Kwak & Huettel, 2016; Rosenthal et al., 2019; Vanyukov et al., 2019). The rele-
vance of social learning in altruism is obvious. To support others, we need to understand how our decisions affect the
people around us. Interestingly, people vary in the degree to which they learn about the benefit (or harm) of their
choices for themselves and others (Kwak et al., 2014; Lockwood et al., 2016; Sul et al., 2015). Individuals with better
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learning about rewards for others report more engagement in real-world altruistic behaviors (Kwak et al., 2014). This
result links biases in social learning with self-reported social preferences outside of the laboratory. RL can also help us
understand how people update their expectations about generosity and effects on giving in the dictator game (Pereda
et al., 2017). Moreover, RL models have provided insights into neurocomputational underpinnings of other-regard and
peoples' propensity for altruistic behavior (e.g. Kuss et al., 2013; Sul et al., 2015). In sum, modeling traditions like RL
shed light on how social learning shapes behavior towards the people around us.

Interestingly, RL can be combined with sequential sampling models like DDMs (for a review of theoretical ground-
ing and mutual benefits, see Mileti�c et al., 2020; for a tutorial and a recent software solution, see Pedersen &
Frank, 2020). Integrating traditionally separate modeling traditions into a unified framework provides an exciting
future direction for computational approaches to study altruism and social motives. For instance, it might provide a
mechanistic account of how the processes driving decision making (e.g., processing speed or response caution captured
in DDMs) are adjusted during social learning (as captured in RL models).

5 | SOCIAL PROCESSES IN A VALUE-BASED FRAMEWORK OF
ALTRUISTIC CHOICE

5.1 | Multiple components of altruistic decision-making

In Section 3, we examined recent evidence on generic and domain-specific components of altruistic decision-making through
the lens of neurocomputational models. These results shine a light on a fundamental question: how “special” is altruistic
decision-making? The extent to which dedicated mental processes and brain systems guide social decisions is heavily
debated (Lockwood et al., 2020). The alternative notion of common processes subserving value-based decision-making more
generally is intuitive. In complex and constantly changing environments, we are faced with countless decision settings. Spe-
cialized mental and neural computations for all possible types of scenarios seem inefficient. Consistent with this notion,
there is a wide consensus that basic mechanisms of value-based decision-making are integral across various settings, regard-
less of whether they involve other people or not (for an excellent introduction to the value-based framework of decisions,
see Pärnamets et al., 2020). Yet, lesion studies and evidence from clinical populations hint at some level of specificity for
computations for social behavior (Corradi-Dell'Acqua et al., 2020; Overgaauw et al., 2020; Rosenthal et al., 2019). Here, we
adopt the following position: altruistic decisions arise through the cooperation of multiple distinct but interrelated mecha-
nisms (Cutler & Campbell-Meiklejohn, 2019; Suzuki & O'Doherty, 2020). Some of these mechanisms generalize across a
wide variety of settings and decision problems. Prominent examples of generic processes include valuation and cognitive
control. Other components of the decision process and their neural substrates become more central when the topic is other
people. A fast-growing number of studies point to the role of social cognition, affect, and social context on altruistic decisions
in the brain. For further illustration of this notion, we turn to evidence from neuroimaging studies.

Over the last two decades, neuroscience research has examined how social motives and decisions are processed in
the brain. The fast-growing number of empirical neuroimaging studies has given rise to several recent systematic
reviews (Filkowski et al., 2016; Luo, 2018) and meta-analyses (Bellucci et al., 2017; Cutler & Campbell-Meiklejohn, 2019;
Gabay et al., 2014; Zinchenko, 2019). There is broad agreement that prosocial decision-making requires a number of
different mental and neural computations. This applies to altruistically and strategically motivated prosocial behaviors
(Cutler & Campbell-Meiklejohn, 2019). For example, there is a widespread consensus that social decision-making
evokes the processing of desired outcomes. Simply put, decisions result from assigning and comparing values for all
choice options. Computing subjective values of choice alternatives recruits brain areas such as the ventromedial pre-
frontal cortex (VMPFC) and the ventral striatum (VS) (Figure 2). This value network's engagement in social and altruis-
tic decisions is well documented (for recent overviews and meta-analyses, see Bellucci et al., 2020; Cutler & Campbell-
Meiklejohn, 2019; Ruff & Fehr, 2014; Suzuki & O'Doherty, 2020). In fact, empirical evidence suggests that this brain
network's functional role generalizes across various rewards (Sescousse et al., 2013) and decision problems (Bartra
et al., 2013; Clithero & Rangel, 2014; Tusche & Hutcherson, 2018). Damage to the core areas of the brain's valuation
network (VMPFC) diminishes altruistic giving (Krajbich et al., 2009).

Notably, these value signals are subject to modifications from other brain networks and mental processes. Inputs
into value computations can come from generic cognitive mechanisms or processes relevant to social cognition. One
prominent example of the former is executive control and its role in accommodating, for example, contextual goals or
salient social norms. Here, the prefrontal cortex, particularly the DLPFC (Figure 2), has been frequently implicated in
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altruistic choice (Bellucci et al., 2020; Carlson & Crockett, 2018). Neurocomputational models have started to reveal the
precise mechanism of goal-dependent changes in value signals in the DLPFC (Tusche & Hutcherson, 2018) (e.g., see
Section 3.2). Neuroimaging studies have also identified inputs from “social” brain networks on value computations dur-
ing altruistic choice (Hare et al., 2010; Park et al., 2017). Some of these brain regions, such as the medial prefrontal cor-
tex (MPFC) and TPJ, are part of the mentalizing network (discussed below) (Figure 2). For instance, seminal studies
have linked brain structure and activation in the TPJ to individuals' decisions to forgo their own gains in favor of others'
benefits (Morishima et al., 2012; Strombach et al., 2015; Tankersley et al., 2007). Other brain areas, such as the anterior
insula (AI) or the mid cingulate cortex (MCC), are involved in the processing of social emotions such as empathy
(Figure 2). In the following, we will review the impact of these social processes on altruistic choice.

5.2 | Affective and cognitive social processes in altruism

5.2.1 | Conceptual distinctions between mentalizing and empathy

Certain cognitive and affective processes play a more prominent role in social settings in which our decision affects the
welfare of people around us. This is hardly surprising. To effectively align behaviors with individuals and social groups,
we need to understand other peoples' thoughts, feelings, and hidden goals. As humans, we are remarkably skilled in using
these adaptive mental tools that can be broadly referred to as social cognition. Social cognition is not one uniform concept.
It encompasses multiple psychological processes that enable us to navigate social settings successfully (Frith, 2008).
Broadly speaking, social cognition includes processes used to decode and encode the social world, including information
processing about oneself, other people, or social norms (Beer & Ochsner, 2006). Social neuroscience has been instrumental
in identifying and delineating the neural underpinnings of various features of social cognition. Here, we will focus on two
social processes that can guide altruistic decisions: empathy and mentalizing. Empathy refers to the ability to share the
emotions of another person (e.g., suffering or joy) (“feeling with”) (De Vignemont & Singer, 2006; Decety &
Jackson, 2004). Empathic concerns about others' welfare have been proposed to be an evolutionary outcome of empathy
(De Waal, 2008). Mentalizing refers to a cognitive process of inferring and reasoning about others' mental states, such as
their desires, beliefs, thoughts, or intentions (Frith & Frith, 2006; Premack & Woodruff, 1978). Mentalizing does not
require affective involvement, distinguishing it from social emotions such as empathy (for a detailed discussion, see Singer
& Tusche, 2014). To date, there is still a certain lack of agreement on the concepts and taxonomy (Schurz et al., 2020).
Mentalizing is sometimes referred to as cognitive empathy, theory of mind, or perspective-taking (Koster-Hale &
Saxe, 2013; Tusche et al., 2016; Warrier et al., 2018). Likewise, empathy is sometimes used as an umbrella term
encompassing affective and cognitive processes that enable us to understand others (Zaki, 2017).

Despite the variation in terms and taxonomies, there is widespread agreement that mentalizing and empathy are
involved in altruistic decision-making. Psychological theories such as the empathy-altruism hypothesis have long
acknowledged the impact of these social processes (Batson, 2011). Seminal research showed that instructing people to
take others' perspectives—via cognitive mentalizing or affective empathy—increases altruistic behaviors (Batson, 2011;
Oswald, 1996). Likewise, downregulating social emotions like empathy through moral disengagement (e.g., by ignoring
or dehumanizing others in need) has been linked to antisocial and selfish behaviors (Bandura, 2016). The functional
role of empathy and mentalizing in prosocial decision-making is intuitive. Putting ourselves in another person's shoes
enables us to understand what others go through. These processes can evoke social motives and alter the weight that
individuals place on others' welfare, providing a bridge to novel computational models of altruism.

5.2.2 | Separable neural core networks of empathy and mentalizing

Incorporating social processes in (neuro)computational models of altruism requires conceptual specificity. This is not triv-
ial. As discussed earlier, our ability to understand others' inner states—their thoughts, goals, and feelings—is a complex,
multi-dimensional process. While empathy and mentalizing often work hand-in-hand in our daily lives, they can exert dis-
tinct effects on social behaviors (Preckel et al., 2018; Singer & Klimecki, 2014; Singer & Tusche, 2014; Tusche et al., 2016).
Delineating these processes on the behavioral level can be challenging. Here, evidence from social neuroscience has pro-
vided crucial insights. Several meta-analyses suggest that empathy and mentalizing draw on partly dissociated networks in
the brain. Empathy reliably recruits the AI and MCC (Figure 2) (Bellucci et al., 2020; Fan et al., 2011; Kurth et al., 2010;
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Lamm et al., 2011) (for evidence on secondary brain networks and domain-specificity, see Ding et al., 2020; Jauniaux
et al., 2019; Timmers et al., 2018). Notably, the AI and MCC are also recruited during first-hand experiences of emotional
states. Evidence on shared neural codes for empathy for others and the first-hand experience of affective states (Corradi-
Dell'Acqua et al., 2016) has interesting implications: to understand others' feelings, we rely on the representations in the
brain evoked when we experience these feelings ourselves. Meta-analyses and reviews have also identified core brain net-
works activated during mentalizing. Inferring other's mental states frequently activates the TPJ, posterior superior temporal
sulcus, temporal poles, and MPFC (Figure 2) (Bellucci et al., 2020; Bzdok et al., 2012; Krall et al., 2015; Mar, 2011;
Molenberghs et al., 2016; Schurz et al., 2014; Schurz et al., 2017; Van Overwalle, 2009). Thus, while empathy and
mentalizing are closely related on a conceptual and functional level, separable core networks in the brain suggest distinct
processes with unique inputs into social behaviors (Bzdok et al., 2012; Singer & Tusche, 2014). This evidence closely mat-
ched evidence from neuroimaging studies on altruistic choice. Differential recruitment of empathy and mentalizing is
linked to variance in altruistic behaviors across people and contexts. Neural substrates of empathy and mentalizing in altru-
ism are consistent with meta-analytical findings on core brain networks of empathy and mentalizing reviewed above (Hare
et al., 2010; Hein et al., 2010; Masten et al., 2011; Mathur et al., 2010; Morelli et al., 2014; Morishima et al., 2012; Rameson
et al., 2012; Telzer et al., 2011; Waytz et al., 2012) (for a recent comparison of meta-analytical maps for empathy,
mentalizing, and prosociality, see Bellucci et al., 2020).

5.2.3 | Delineating social inputs into altruistic decision-making

Early studies on social processes in altruistic choice often focused on one particular feature of social cognition
(e.g., mentalizing). However, studying these processes in isolation limited researchers' ability to delineate process-
specific inputs into altruistic choices. More nuanced assessment tools—partly informed by neuroimaging evidence—
have also helped the field to overcome this challenge. Significant strides have been made in developing measures of dis-
tinct features of social cognition in the form of tasks and questionnaires (Adolphs & Tusche, 2017; Jordan et al., 2016;
Kim & Hommel, 2019; Preckel et al., 2018). For example, the novel EmpaToM task simultaneously assesses empathy,
mentalizing, compassion, and social meta-cognition (Breil et al., 2021; Kanske et al., 2015; Kanske et al., 2016). The task
uses video-based scenarios as naturalistic, dynamic stimuli to evoke these processes and includes control conditions,
overcoming prevalent methodological concerns in social neuroscience (Schilbach et al., 2013). Researchers can use
these new paradigms to disentangle the contributions of empathy and mentalizing to altruistic decision-making.

For example, a recent neuroimaging study examined how distinct features of social cognition drive variance in
altruistic choice (Tusche et al., 2016). The study combined a charitable donation task, the EmpaToM task, self-reports,
formal models, and functional brain data (fMRI). The researchers identified three mental processes that drive variance
in people's altruistic behavior: feeling with others in need (empathy), taking others' perspectives (mentalizing), and
attention shifts (visually orienting towards relevant information). Formal models allowed quantifying the degree to
which each individual relied on distinct processes during altruistic decision-making. The estimates of mathematical
models revealed that the relative input of empathy and mentalizing on altruistic choices varied across people. In other
words, some people relied heavily on affective empathic responses to guide their decisions. Other subjects were more
likely to engage “cold” cognitive processes related to mentalizing (e.g., reason about others' needs, desires, or inten-
tions) to guide their behavior. The study also linked variance in these two social processes to dissociable neural compu-
tations during the decision process. Brain responses in the AI (but not the TPJ) encoded empathy for beneficiaries
during altruistic choice. Neural activation in the TPJ (but not AI) predicted the degree of mentalizing in the donation
task. These findings are consistent with meta-analytic evidence on functional segregation of both social processes on
the neural level (reviewed in Section 5.2.2). Notably, variance in the degree to which individuals used empathy and
mentalizing to guide altruistic decisions generalized to social settings that do not require decisions. The latter was cap-
tured in behavior and brain responses in the EmpaToM task. The results suggest that people's general propensity to
recruit empathy or to mentalize in social settings determines their contributions to altruistic decisions.

5.2.4 | Implications of deconstructing affective and cognitive social inputs into altruism

Findings such as these are essential for several reasons. First, understanding distinct processes that guide social behav-
iors contributes to our ability to answer a fundamental question: How can we make people more altruistic? Delineating
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the factors and processes that drive variance in altruism across people and context is necessary to develop more effective
means of increasing prosocial behaviors. For instance, the results by Tusche et al. (2016) suggest that improving the
affective or cognitive capacity for understanding others (empathy or mentalizing) are two viable routes to increase
human prosociality. A recent large-scale intervention study tested this prediction (Böckler, Tusche, Schmidt,
et al., 2018). The study found that particularly mental interventions that cultivate social affective processes boosted
altruistically motivated behaviors. This held true for a range of altruistic measures, including game-theoretical tasks
(dictator game), hypothetical resource allocations (social value orientation), spontaneous helping, or donations to real-
world charities. Evidence from neurally informed interventions can inform policymakers and the general public about
how to increase global cooperation. Second, information on people's propensities to engage specific processes to guide
altruistic choices (e.g., dispositional empathy and mentalizing) may allow selecting interventions that “fit” with the
individual. Third, distinguishing process-specific computations is essential for developing complete theoretical and neu-
roscientific accounts of altruistic decision-making. For instance, meta-analytical evidence can shed light on brain areas
reliably recruited during altruistic and strategic social decisions (Cutler & Campbell-Meiklejohn, 2019). However, they
provide limited insights into the concrete variables (what) and computations performed in individual regions or neural
networks (how). A computational framework of studies can complement meta-analytic evidence.

6 | SYNTHESIS AND FUTURE DIRECTIONS

6.1 | Integrating social affect and cognition into neurocomputational models of
altruism

Significant strides have been made in research on human altruism. Fast-growing fields like neuroeconomics have
pushed applications of a neurocomputational framework to understand social decision-making. Research in social neu-
roscience has started to unravel the impact of distinct facets of affective and cognitive social processes on prosocial
behaviors. Integrating these two research lines provides an exciting path forward. We propose two tangible
advancements.

First, a computational framework can help to reduce the ambiguity of concepts studied in social and affective
research on altruistic choice. Despite significant progress, conceptual and neural components of social affect and cogni-
tion are still underspecified. Social processes relevant to altruism (e.g., empathy) represent complex, multilevel phe-
nomena (e.g., the valence and arousal associated with an affective state). To date, we know little about how these
components are encoded in the brain and, more importantly, contribute to decision-making. Mapping parameters of
computational models on discrete components of the social process may offer crucial insights (Roberts &
Hutcherson, 2019). This mapping can be direct, linking a specific model parameter to a concept, or indirect through a
mediating psychological mechanism (Figure 3). This operationalization in a neurocomputational framework enables
researchers to test predictions of the models, which in turn can inform theories (for a review on how computational
modeling approaches like DDMs enable studies on affect, see Roberts & Hutcherson, 2019). Neurocomputational frame-
works of social affect and cognition are still in their infancy. However, recent work in the domain of social learning
(Lockwood & Klein-Flügge, 2020; Rosenthal et al., 2019) and strategic decision-making (Hill et al., 2017; Rusch
et al., 2020) highlights the potential for neurocomputational approaches to study social processes in altruism.

This brings us to our second point. There is a wide agreement that multiple computational processes occur in paral-
lel during altruistic decision-making. Our understanding of where these processes are computed in the brain has
advanced significantly over the last decade. For instance, we highlighted several brain regions involved in value compu-
tation, cognitive control, and social processes like empathy or mentalizing in altruism (Figure 2). We also reviewed
prior evidence on the neural underpinnings of key variables that guide value computations during altruistic choice
(e.g., gains for oneself or others). How these components are integrated in the brain to produce coherent behaviors is
less established (Suzuki & O'Doherty, 2020). Examining patterns of connectivity between brain areas that encode dis-
tinct choice-relevant computations may shed light on this question. Simply put, brain areas involved in altruistic choice
do not act in isolation. They are embedded in interconnected networks. There is a trend in neuroimaging research to
move away from narrow localization towards analyzing distributed brain networks. Suppose we aim to probe how
other-regard is integrated into altruistic decision-making. Researchers can examine connectivity patterns between brain
regions that perform other-regarding computations (e.g., TPJ) and those believed to encode the integrated subjective
value of available choice options (e.g., VMPFC, Figure 2) (Hare et al., 2010; Park et al., 2017). Several analysis tools exist
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to examine functional connectivity patterns in the brain (e.g., psycho-physiological interaction analysis [PPI], Friston
et al., 1997; dynamical causal modeling [DCM], Friston et al., 2003). Meta-analytic evidence suggests that PPI repre-
sents a reliable methodological approach to examine functional integration in the brain (Smith et al., 2016). Likewise,
empirical evidence highlights the test–retest reliability of the DCM approach to study connectivity patterns in the brain
(Frässle et al., 2015). One significant advantage of DCM is that it allows inferences about the directionality of the con-
nectivity (e.g., from brain area A to area B). Functional and structural properties of neural networks can also be linked
to estimates of formal models of social preferences. This approach has been shown to reveal social motives that guide
altruistic decisions. For example, in a study that used DCM, functional coupling from the MCC to AI has been linked
to empathy-driven altruistic motivations (modified dictator game) (Hein et al., 2016). Positive connectivity from the AI
to VS has been linked to prosocial decisions driven by reciprocity motives. Reciprocity in this context refers to the moti-
vation to respond in kind (i.e., the desire or expectation that a generous behavior will be returned). In other words, the
results suggest that distinct social motives have different neurophysiological representations in the brain at the level of
functional networks (Hein et al., 2016). These results echo our earlier argument: while resulting behaviors (generous
choice) look alike, underlying social motives can be revealed through a multi-disciplinary computational framework.
More generally, the combination of computational modeling, neuroimaging, and connectivity analysis will likely
advance studies on how distinct computations are integrated in the brain to guide behaviors (for a general discussion
beyond altruism, see Suzuki & O'Doherty, 2020). This approach may also inform us about how network configurations
change due to situational or dispositional differences in empathy and mentalizing in altruism (or other key computa-
tional variables).

6.2 | Neurocomputational models of altruism across the lifespan

Other-regarding behaviors emerge during infancy (Dunfield et al., 2011), and lifespan changes in childhood and adoles-
cence have inspired a good deal of research (for an overview, see Eisenberg et al., 2007). Only recently, the field has
started to examine age-related changes in altruism in late adulthood. Understanding other-regard in the elderly is
essential for one apparent reason: global populations continue to grow older. By 2050, one in six people may be aged
65 or older (Kamiya et al., 2020). Consequently, changes in social preferences in late adulthood have significant social
and economic consequences. Promising behavioral evidence suggests that we may become more prosocial as we age
(for a recent overview, see Mayr & Freund, 2020, but see Bailey et al., 2020; Rieger & Mata, 2015; Wiepking &
James, 2013). This effect holds when researchers control for differences in wealth across age groups (Kettner &
Waichman, 2016). For example, charitable giving and volunteering increase across adulthood up to 70 years (Freund &
Blanchard-Fields, 2014). While intriguing, these findings do not tell us why and how other-regard changes across the
adult lifespan. We argue that an interdisciplinary, computational framework is uniquely suited to provide answers to
these questions.

Preliminary research on altruism in the elderly draws on various measures like donations (Bekkers &
Wiepking, 2011), surveys (Bekkers, 2010), and economic games (e.g., dictator game) (Engel, 2011; Kettner &
Waichman, 2016; Matsumoto et al., 2016; Rosi et al., 2019) (for a review of age-related changes in economic games, see

FIGURE 3 Mapping affective science concepts to estimates of computational models. Reprinted from Roberts and Hutcherson (2019)

(Fig. 1), Copyright 2019, with permission from Elsevier
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Lim & Yu, 2015). However, studies combining the perspectives and analysis tools from neuroscience, psychology, and
behavioral economics are still rare. To illustrate the potential of a multi-level approach, we turn to the example of a
recent study that bridged this gap. The results suggest that reduced reward activity in the brain in response to self-gains
and increased reward activity to others' gains may underlie age-related changes in altruism (Hubbard et al., 2016). In
other words, neural evidence suggests that the elderly may genuinely care more about others' well-being. We propose
that incorporating formal models can provide even more insight into other-regard. For instance, formal models could
quantify age-related changes in contributions of gains for oneself and others and link these estimates of model parame-
ters to the brain's functional and structural properties. Model-based approaches also allow researchers to delineate the
role of distinct social motives (e.g., maximizing others' gain vs. fairness). A recent behavioral study combined data from
an economic game and computational modeling to examine age-related differences in other-regarding motives (Cho
et al., 2020). The study used formal models (Dufwenberg & Kirchsteiger, 2004; Fehr & Schmidt, 1999) to delineate how
young and older adults take intention- and outcome-based fairness into consideration during social decision-making.
The parameter estimates of formal models suggest that older adults focus more on fair outcomes to guide their decisions
and less on other's intentions. These findings explain why observable behaviors change as we grow older. Specifically,
the results illuminate age-related changes in the relative importance of choice features and motives. In sum, we propose
that an interdisciplinary, neurocomputational framework can advance our understanding of age-related changes in
altruism.

Social neuroscience offers another window into lifespan changes of altruism and why the elderly may genuinely
care more about others' welfare. Popular accounts suggest that the motivation to make strong emotional connections
with others increases in older people (socioemotional selectivity theory; Carstensen et al., 2003). Consequently,
researchers have examined emotional processes relevant to altruism throughout adulthood. This includes the emotional
consequences of helping others (Bjälkebring et al., 2016) and emotional precursors of social decisions like empathy.
Older individuals report greater empathy and empathic concern for others than their middle-aged and young counter-
parts (Sun et al., 2018; Sze et al., 2012), which partly accounts for age-related increases in prosocial behavior (Sze
et al., 2012) (for a nuanced review on age-related changes in facets of empathy and mentalizing, see Beadle & De la
Vega, 2019). These findings fit into a growing body of evidence that distinct facets of social cognition age differently.
Empathy seems to be intact in old age, and empathic concern for others' well-being is even elevated (Reiter et al., 2017;
Wieck & Kunzmann, 2015). Other components such as mentalizing or meta-cognition decline in late adulthood (Reiter
et al., 2017; for evidence on age-differences when inferring others' intentions, see Reiter et al., 2021). Neuroimaging evi-
dence on the aging brain provides insights into the neurobiological underpinning of these differential trajectories of
social processes in late adulthood and decision-making (for reviews, see Beadle & De la Vega, 2019; Lighthall, 2020).
Research on this topic is still in its infancy. Preliminary evidence suggests that core brain areas involved in affective
processing seem to maintain their structural integrity during healthy aging (Mather, 2012). In light of this evidence, it
would seem plausible that older adults rely more heavily on affective processes to guide altruistic decisions. Consistent
with this notion, empathy-inducing messages increased altruism in a dictator game in the elderly more than in younger
adults (Beadle et al., 2015). In sum, neuroimaging studies, together with formal models of altruism, are uniquely suited
to elucidate the origins of process-specific inputs into social decisions in the elderly.

7 | CHALLENGES AND RECOMMENDATIONS

Below we outline potential pitfalls and practical advice regarding four topics pertinent to a multidisciplinary, computa-
tional framework of altruism: (1) challenges of interdisciplinary research, (2) implementing a computational model
(focusing on popular open-source software solutions), (3) theoretical and methodological properties of models (focusing
on model validity and parameter recovery), and (4) potential methodological issues regarding the data used to fit a
model (focusing on psychometric properties of task-based observations and estimates of computational models).

7.1 | Interdisciplinarity

So far, we have highlighted the benefits, insights, and future directions of an interdisciplinary, computational frame-
work of altruism and social motives. However, such an approach is not without challenges. Differences in conceptuali-
zation and terminology across disciplines can hamper advances in altruism research (Clavien & Chapuisat, 2013; El
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Mallah, 2020; West et al., 2007). For instance, scientists from different disciplines might use the same term to refer to
different facets of a complex concept or use different terms to refer to the same phenomenon (West et al., 2007). Finding
a common “language” is not easy and requires commitment (and time). Moreover, limited insights into measures and
methodological approaches of other research fields can lead to misconceptions of results. A prime example of this
potential pitfall is reverse inference in neuroscientific research (Poldrack, 2006). The same brain area can support differ-
ent mental processes and functions. Reverse inference refers to situations in which the engagement of a particular pro-
cess (e.g., empathy) is inferred from the mere activation of a specific brain area (e.g., the AI, see Figure 2). Serra (2020)4

provides an overview of this issue from the viewpoints of economics and neuroeconomics (for a discussion focusing on
social neuroscience, see Al�os-Ferrer, 2018). We advocate that linking brain data to interpretable parameters of formal
models can help provide conceptual clarity and facilitate the interpretation of brain responses. Research disciplines also
differ in their attitudes regarding the acceptability of deceptive research practices. Deception can take different forms
(e.g., related to project goals or hypotheses). Let us consider the example of the actual presence of other people in exper-
imental paradigms in which subjects (supposedly) interact with others. The logistical complexity and costs of recruiting
numerous individuals to a laboratory session can be substantial. This is particularly true for game-theoretical paradigms
with many repetitions (usually dozens or hundreds of trials, often with different interaction partners across repetitions).
These repetitions are vital for many applications of computational models but can generate practical challenges for
researchers. Deceptive methods such as engaging members of the research team or computer scripts (mimicking other
people's behavior) represent pragmatic approaches and increase experimental control. This practice is widely accepted
in psychology but not economics (Krasnow et al., 2020; Serra, 2020). A primary practical concern is that subjects' suspi-
cion of deception may alter the behavior of interest. Recent evidence indicates that suspicion of deception does not
adversely affect subsequent behavior (Krasnow et al., 2020). However, it illustrates how differences in research practices
can complicate crosstalk across research fields. Empirical probes into the validity of underlying concerns are one vital
step to overcome this challenge.

7.2 | Implementing a model: selection of a software solution

How can researchers actually implement a computational framework in their work? Given the focus of our review, we
use DDMs to address this question. Below, we provide a practical path for scientists interested in adopting this family
of computational models and highlight points that deserve critical reflection. Several open-source software packages
exist for diffusion model data analysis (Box 1). Each of these software tools implements vital steps of the computational
analysis approach: load the data, build a model, fit a model to data, generate methods for assessing model fit, and simu-
lations, among others (we discuss model fit and simulations in Section 7.3). Tutorials and example datasets provide
guidance and practical advice for each step. Readily available, user-friendly analysis tools lower the barriers for compu-
tational applications in studies on altruism and social neuroscience more generally. However, they also present
researchers with an interesting challenge: choosing the most appropriate software package for their research question
and data.

Settling on one software solution—designed to implement particular models in a specific way—requires careful the-
oretical and methodological deliberation. For example, some users may prefer a Bayesian approach to implement their
model (for a general discussion of the advantages of Bayesian data analysis and tutorial, see Kruschke, 2014). Differ-
ences in underlying assumptions can also guide researchers' selection. Let us consider the choice between a non-
hierarchical and hierarchical model solution (Box 1). Non-hierarchical approaches fit models separately to each subject
(assuming that they are entirely independent of each other) or for the whole group (assuming that all subjects are iden-
tical). Hierarchical (Bayesian) models, on the other hand, support the simultaneous estimation of individual subject
parameters and the group distribution that they are drawn from. In other words, the parameters of a model are esti-
mated at different hierarchical levels. Participants within a group are assumed to be similar—but not identical—to each
other (Wiecki et al., 2013; for evidence of the risks of ignoring hierarchical data structure, see Boehm et al., 2018). This
assumption has practical consequences. Hierarchical models require fewer data per subject or experimental condition.
Thus, when the number of observations per individual is limited, hierarchical models may appeal to potential users (for
a tutorial to fit hierarchical Bayesian models, see Lin & Strickland, 2020). Research on the recommended number of tri-
als for diffusion modeling analysis is ongoing (Lerche et al., 2017). We encourage potential users to examine current evi-
dence before applying a specific computational model or, if applicable, when designing a research project. Other
practical considerations may guide the choice of a software solution. For instance, researchers may be more comfortable
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with the language of a toolbox (e.g., Python, Matlab, or R). Alternatively, they may care about the efficiency with which
models can be built, simulated, and fitted, or base their choice on the usability and handling of the programs.

A detailed discussion of the advantages of available programs is beyond this paper's scope. As a starting point,
Table 2 in Shinn et al. (2020) offers a brief comparative outline of popular DDM toolboxes. Here, we highlight one
potential selection criteria: the flexibility of the software package to adapt to diverse data, paradigms, and models. Ear-
lier, we outlined a DDM with a limited set of parameters (see Figure 1b). However, DDMs can be extended to model a
variety of experimental paradigms and hypotheses. Generalized drift diffusion models promise a useful framework to
encapsulate extensions for flexible model designs (for a recent software package, see Shinn et al., 2020). This software
solution may be valuable for projects suitable for exploring new model mechanisms or involving innovative experimen-
tal designs. Researchers interested in applying different computational models (beyond “traditional” DDMs) may also
explore recent toolboxes like the DMC, ChaRTr (Box 1), and hBayesDM package (hierarchical Bayesian modeling of
decision-making tasks) (Ahn et al., 2017). They support a broad range of models applicable to various decision-making
paradigms, including social exchange tasks (like economic games), inhibition tasks, or reversal learning tasks. Many
packages also generate trial-by-trial estimates (e.g., HDDM, hBayesDM). This feature allows for seamless integration
with model-based analyses of brain data to identify neural underpinnings of latent variables. Researchers interested in
applying computational models to brain data will likely embrace analysis approaches that provide this feature.

In sum, selecting a software solution can be based on various theoretical, methodological, and practical consider-
ations. We urge researchers to consult the documentation and tutorials to learn more about a software program's spe-
cific analytical approach and assumptions. This is an essential step to determine the appropriateness of the approach
for their project. Our second point is more practical in nature. Most open-source toolboxes do not require a background
in mathematics or advanced programming skills. Often users execute single lines of code to implement individual steps
of the modeling approach. Well-designed tutorials provide hands-on training on their implementation. Nevertheless,
some familiarity with programming will likely facilitate computational modeling and increase researchers' comfort
levels. To more experienced users, technical programming skills provide further advantages. Open-source software
packages allow researchers to inspect, modify, and extend the underlying functions and tailor them to their projects'
specific needs. We encourage interested researchers to take advantage of open education resources on popular lan-
guages like R or Python.5 Moreover, online and summer schools on computational modeling can support building basic
technical skills and increasing the comfort level with computational analysis approaches.6

7.3 | Model validation and model selection

Suppose that the appropriate analysis tool is selected, and a model is implemented successfully. Researchers now face
the challenge of determining the validity and utility of the model. One crucial question is whether the model provides
an adequate account of the observed behavior. In other words, does the model ‘fit’ the empirical observations that
researchers want to explain (e.g., the choices, reaction times, or neural responses)? Let us consider the example of the

Box 1 Open-source software packages for drift diffusion analysis

Toolboxes for (non-hierarchical) models:

• DMAT (Diffusion Model Analysis Toolbox; Vandekerckhove & Tuerlinckx, 2008)
• Fast-dm-30 (Voss et al., 2015)
• EZ-Diffusion (Wagenmakers et al., 2007)
• ChaRT (Chandrasekaran & Hawkins, 2019)

Toolboxes for hierarchical Bayesian models:

• HDDM (hierarchical drift diffusion model; Wiecki et al., 2013)
• DMC (dynamic models of choice, Heathcote et al., 2019)
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diffusion model analysis. At its core, it represents the search for a set of estimates for the free parameters of a model
(e.g., Figure 2b) that yields a close match between predicted and observed data (Voss et al., 2015). If the estimated
parameters account for the observed events, the model is validated (but see below for other important considerations).
However, if the fit is inadequate, researchers should be cautious in drawing conclusions based on the estimated param-
eters of the model (for a general introduction to good practices in cognitive modeling, see Heathcote et al., 2015). Open-
source toolboxes (e.g., Box 1) offer different means to quantify the fit between predicted and observed data for the
parameter search. In addition to statistical means to assess model fit, they also provide plotting functions for visual
checks. These visualizations can be extremely helpful to identify systematic deviations from the actual data (e.g., for
specific individuals, experimental conditions, or types of events). If these misfits are consequential for the model
(e.g., fail to account for crucial experimental conditions), researchers will likely consider alternative models or an itera-
tive process of refining a model (e.g., see Heathcote et al., 2019). This brings us to the topic of model selection.

In essence, model selection requires researchers to evaluate whether the model performs better than alternative
models. Choosing between competing models is not trivial. Models can differ on many levels. For instance, models vary
in what they deem essential and, consequently, in their complexity. Simply put, models include essential features and
omit “unnecessary” details. Imagine a choice between a simple model (characterized by a smaller number of variables
and free parameters) and a more complex model. Simpler models are usually preferable. This notion is based on con-
cerns that the risk for overfitting can increase with higher complexity (Vandekerckhove et al., 2015). Overfitting refers
to situations in which a model describes a particular dataset very well (including noise) but fails to generalize to new
data. Even a perfect model fit is insufficient if the model does not account for other observations that supposedly cap-
ture the same cognitive process. One common methodological approach to test for a model's ability to generalize to
“new” data is cross-validation (for an introduction, see Berrar, 2019; for a tutorial in R, see Song et al., 2021). Alterna-
tively, popular metrics for model comparisons like the Akaike information criterion (AIC; Akaike, 1974) and Bayesian
information criterion (BIC; Schwarz, 1978) assess the goodness of fit in relation to the complexity of a model (effectively
penalizing models with more free parameters; for discussion of differences of AIC, BIC, and other selection methods,
and recommendations for their respective use, see Aho et al., 2014; Evans, 2019). Researchers will select a model with
more parameters if it provides a substantially better account of the observed data—despite this penalty—than a model
with fewer parameters. Pitt and Myung (2002) provide a comprehensive overview of criteria for model selection (includ-
ing a more nuanced description of complexity beyond the number of parameters). A discussion of model complexity in
diffusion modeling can be found in Lerche and Voss (2016). We urge researchers to use methods like AIC and BIC as
one helpful tool—among many—when choosing between competing models. While the use and interpretation of these
metrics seem straightforward, they ought to be considered together with other methodological and theoretical proper-
ties of a model.

Another method to assess model performance is to evaluate how well simulations can recover the estimated param-
eters of a model (parameter recovery; for review of the broader issue of model recovery and model falsification, see Pal-
minteri et al., 2017). Here, researchers start with a set of estimated parameters of the model. Based on these known
parameter values, simulations generate new synthetic data. The model is then fit to the synthetic data (as if they had
been collected in an actual research project), yielding a new set of parameters. Researchers can now assess the match
between these “recovered” parameter estimates and the ones used to simulate the data in the first place. Researchers
could consider simplifying the model if a model fails to recover known parameter values (i.e., eliminate free parame-
ters). Both model fit and parameter recovery will depend on numerous details of a project. For example, the recoverabil-
ity of parameters systematically varies as a function of the number of trials and subjects (e.g., Pedersen & Frank, 2020).
Ongoing research efforts on these factors promise practical recommendations for researchers interested in applying
computational models (e.g., regarding choosing the minimum sample size and trials required to estimate parameters
reliably). Simulations can also be helpful during the preparation of a research project or the development of a new para-
digm. For example, they can indicate whether researchers have “enough” data to estimate the parameters of a model
reliably.

Theoretical considerations are equally important when assessing the utility of candidate models. We will summarize
some widely accepted recommendations (for details, see Fum et al., 2007). For starters, models should be plausible. In
other words, variables and assumptions of a model should be justifiable in light of psychological or biological evidence.
Researchers may also deliberate on features of the theoretical and practical utility of a model. Models based on general
cognitive theories—covering a broad range of phenomena—are preferable over models designed to account for specific
behaviors observed with certain constrained paradigms. Moreover, the predictions made by different models can guide
model selection. If faced with multiple models that describe the observed behavior, models that make bold, surprising,
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or risky predictions may ultimately be more valuable to researchers. Predictions made by a model should also be precise
(making it easy to falsify them). In sum, researchers applying computational models to their research will likely
encounter many different candidate models explaining and reproducing their empirical data. Here, criteria related to a
model's theoretical utility provide a viable path forward.

7.4 | Psychometric properties of measures

We want to highlight one final methodological challenge that broadly relates to the question: what data should
researchers collect? Earlier, we introduced various research fields that traditionally rely on different measures to study
altruism. The psychometric properties of some of these measures have recently been questioned. These concerns raise a
critical question for neurocomputational research on altruism and social motives: are the measures valid (capture what
we intend to measure?) and reliable (stable under repeated measures)? Especially the reliability of task-based observa-
tions has come under scrutiny. Evidence from different domains points towards poorer reliability of task-based mea-
sures than for questionnaires (Enkavi et al., 2019; Frey et al., 2017). The weaker reliability of many observational
behavioral measures is likely due to methodological and conceptual reasons (for discussion, see Dang et al., 2020;
Hedge et al., 2018).

Given our advocacy for the utility of game-theoretical tasks, this issue has important implications for computational
models of social preferences. For instance, poor stability of task-based observations over repeated measurements ques-
tions their utility for capturing individual differences or lifespan changes in social preferences. How reliable are behav-
ioral observations in the dictator game and computational parameters estimated from observed behaviors? The answer
to this question will likely depend on details of the projects (e.g., number of choice trials, the delay between repeated
measures, or characteristics and size of the subject sample). Providing concrete recommendations about acceptable psy-
chometric properties is therefore difficult. Moreover, research on the reliability of parameters of formal models is still
in its infancy. Preliminary evidence regarding the psychometric properties of diffusion model parameters seems promis-
ing (Lerche & Voss, 2017; Schubert et al., 2016; Shahar et al., 2019; von Krause et al., 2021). Increased availability of
(dictator game) data—and estimates from computational models—in the context of open science initiatives like OSF
(https://osf.io/) will likely advance our understanding of psychometric properties of behavioral measures, their depen-
dence on features of the project, and facilitate practical recommendations for researchers. Preregistration of studies
using computational modeling offers another avenue to address the crisis of confidence facing various measures of
social preferences. Box 2 outlines guidelines and unique challenges for computational modelers when preregistering
their work plans (for general guidelines for preregistration, see Nosek et al., 2019).

There are causes for cautious optimism. First, recent findings suggest high internal consistency (α = 0.91) and mod-
erate test–retest reliability for the dictator game (r = 0.60) (McAuliffe et al., 2018). Second, initial evidence suggests sat-
isfying reliability for the main parameters of diffusion models (rs > 0.70, Lerche & Voss, 2017). The reliability of
computational parameters (DDM) also did not significantly differ from “raw” observed behaviors (response times) in
self-regulation tasks (Enkavi et al., 2019). Given the interpretability of DDM parameters, Enkavi et al. (2019) conclude
that researchers may therefore prefer using computational parameters. Third, where possible, adopting a latent variable
approach presents a way to improve the psychometric properties of individual measures. Multiple noisy measures can
be integrated into latent variables. Researchers can use data-driven approaches (e.g., principal component analysis,
exploratory factor analysis) or previously identified latent factors (Böckler, Tusche, Schmidt, et al., 2018; McAuliffe
et al., 2019; Peysakhovich et al., 2014). Initial evidence suggests that latent variables of altruism are stable over time
(rs = 0.77–0.90 over nine months; Böckler, Tusche, Schmidt, et al., 2018). The results mirror evidence of more robust
latent factor scores in other domains (e.g., latent state–trait model of drift rate parameters, Schubert et al., 2016; self-reg-
ulation, Eisenberg et al., 2019; risk-preferences, Frey et al., 2017). This notion has important implications. Latent vari-
ables may be more suitable for trait-like assessments of individual differences in altruism that generalize across time
and settings. Specific behavioral measures may be more appropriate for studying decision processes as they unfold or
contexts that enhance or diminish certain social motives (e.g., fairness, other-regard) (for a similar argument, see Dang
et al., 2020).

A latent variable approach also addresses another potential concern: different measures may capture different facets
of a complex psychological construct. For instance, self-reports and behavior observed in common tasks seem to repre-
sent distinct (but interrelated) components of prosociality (Böckler, Tusche, Schmidt, et al., 2018) (for initial evidence
on discriminant, convergent, and weak ecological validity of common altruistic measures like the dictator game, see
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Böckler et al., 2016; Galizzi & Navarro-Martinez, 2019; Peysakhovich et al., 2014; Yamagishi et al., 2013). Evidence
linking different measures with specific components of a complex construct does not negate the value of multi-
disciplinary frameworks. It merely emphasizes the need for researchers to consider the validity of potential measure-
ment tools to align them with the specific psychological construct of interest. It also stresses that different measures
cannot be used interchangeably without careful inspection of whether they measure similar things.

We focused on psychometric properties of behavioral choice tasks like the dictator game and estimates of diffusion
models. However, other measures commonly used to study altruism are also subject to critical evaluation of their psy-
chometric properties. This includes questions regarding the (ecological) validity of social cognition tasks
(e.g., EmpaToM task, see Hildebrandt et al., 2021; Kanske et al., 2015) or the reliability of neuroimaging data (Elliott
et al., 2020; Fröhner et al., 2019; Noble et al., 2021). Consequently, our main recommendation concerns a broad array
of measures used to study altruism and social motives. Researchers need to pay attention to the psychometric properties
of the measures used to fit computational models. Faulty, incomplete, or imprecise data will impact the utility of formal
models. Sophisticated computational analysis tools cannot substitute careful task design, thoughtful selection, and
appropriate use of the measures used to capture the concepts of interest.

8 | CONCLUSIONS

Despite these caveats, we argue that the benefits of an interdisciplinary, computational approach to altruism outweigh
its challenges. Formal modeling approaches of altruism are potent tools in studying social motives of behavior and their
neural underpinnings in the brain. They yield refined insights into the mechanisms of altruistic decision-making and
provide researchers with powerful ways to test competing theories. We showcase exciting ways in which the inter-
section of social neuroscience and computational models can complement each other and advance our understanding
of social behavior. Drawing on examples of DDMs, we highlight how a cross-disciplinary, neurocomputational
approach can disentangle the specific processes that drive variance in altruism across people and contexts. These
models enable researchers to empirically test why, how, and when individuals will behave altruistically towards others
(or not). They also allow identifying unifying mechanisms that drive various types of decisions. It provides crucial
insights into whether dedicated mental processes and brain systems guide (pro)social choices. Interdisciplinary fields
like neuroeconomics and social neuroscience have started to embrace cross-disciplinary computational approaches.

Box 2 Getting started with preregistration for computational modelers

Comprehensive theoretical and practical guidelines on preregistration:

• “Robust modeling in Cognitive Science”—Lee et al. (2019)
• “Robust standards in Cognitive Science”—Crüwell et al. (2019)
• “Preregistration in complex contexts: A preregistration template for the application of cognitive models”—

Crüwell and Evans (2019)

Diverse discussions on best practices and preregistration (e.g., points of agreement and disagreement, practical
extensions, or theoretical considerations):

• Back-to-back special issues of Computational Brain and Behavior
• Blog post

Popular Repositories commonly used:

• OSF—most popular across research disciplines
• AsPredicted—mainly used within psychology
• AEA—mainly used within economics
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Yet, to date, many research questions remain unanswered. How are various components of the decision process inte-
grated in the brain to produce coherent behaviors? How do social preferences and altruistic choices change across the
lifespan (especially during late adulthood)? We advocate for the utility of an interdisciplinary, computational approach
to address these questions and develop a unified framework of altruistic and social behavior. We also made practical
recommendations regarding these models and their potential pitfalls to open a path for researchers interested in
adopting computational methods in their research. In sum, we argue that multi-disciplinary perspectives and computa-
tional modeling have advanced our collective understanding of other-regard and social decisions that affect the people
around us.
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ENDNOTES
1 Comprehensive overview and historic perspective on behavioral research on social emotions and cognition in human
prosociality.

2 Discusses applications of experimental games in studies on social decision-making beyond altruism (e.g., intergroup
polarization and conflict, cross-cultural differences in cooperation and norm enforcement, computational models
related to the formation and updating of social preferences and beliefs).

3 Beginner-friendly, pragmatic, and details-oriented introduction on how to relate computational models to data
(including behavioral choice, eye-tracking, neuroimaging data).

4 Accessible introduction to challenges and limitations of inter-disciplinary approaches at the cross-sections of econom-
ics, neuroscience, and modeling approaches.

5 Free online courses on programming languages and computational modeling are offered by Coursera, https://www.
coursera.org/; Datacamp provides video tutorials and coding challenges on R, Python, and analysis approaches,
https://www.datacamp.com/; Codeacademy offers introduction tutorials on R and Python, among others (https://
www.codecademy.com/catalog/all).

6 For example, https://neuromatch.io/academy/.
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