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Abstract: Diarrhea, such as steatorrhea, could result from fat absorption disorders, which could be
caused by many factors, including Escherichia coli infection. However, it is not clear how E. coli affects
fatty acid absorption in animals. Lipopolysaccharide (LPS), as one of the main pathogenic components
of E. coli, is the main cause of the virulence of E. coli. Therefore, we used LPS to explore the underlying
mechanism of E. coli that causes the inhibition of fatty acid absorption in the intestine. In this study,
we found that LPS caused apoptosis of intestinal epithelial cells in mice. Further, caspase-3 activation
caused the inhibition of fatty acid absorption in the intestinal porcine enterocyte cell line (IPEC-J2).
However, direct treatment of LPS did not induce any significant change in fatty acid absorption in
IPEC-J2. We then prepared conditioned medium of LPS-treated porcine macrophage cell line (3D4/2)
for incubating IPEC-J2, as LPS initiates inflammation by activating immune cells. The conditioned
medium decreased fatty acid absorption and caspase-3 activation in IPEC-J2. While inhibiting the
activation of caspase-3 in IPEC-J2, conditioned medium no longer caused serious deficiency of fatty
acid absorption. As IL-1β, IL-6, and TNF-α in conditioned medium increase significantly, IPEC-J2
was treated with IL-1β, IL-6, and TNF-α, respectively. Only TNF-α induced caspase-3 activation in
IPEC-J2. Reducing the secretion of TNF-α in 3D4/2, there was no obvious activation of caspase-3
in IPEC-J2, and fatty acid absorption recovered effectively. Based on the above results, we hold the
opinion that LPS does not suppress fatty acid absorption directly in the intestine, but may work on
macrophages that secrete cytokines, such as TNF-α, inducing caspase-3 activation and finally leading
to the inhibition of fatty acid absorption in intestine.
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1. Introduction

Diarrhea could be induced by fatty acid (FA) malabsorption, which is one of the main reasons
leading to malnutrition in children [1]. In recent research, it was found that children with celiac disease
carried more Escherichia coli in their feces [2], and E. coli infection is one of the common causes inducing
steatorrhea [3]. However, the mechanism by which E. coli induces diarrhea by blocking FA absorption
is not clear.

Lipopolysaccharide (LPS) is found in the outer membrane of many (but not all) gram-negative
bacteria, contributing greatly to the structural integrity of the bacteria [4]. LPS mainly comprises three
parts: O antigen (or O polysaccharide), core oligosaccharide, and Lipid A [5,6]. Lipid A, anchoring
LPS into the bacterial membrane, is responsible for much of the toxicity of gram-negative bacteria [6].
Therefore, LPS has often been studied in research of the mechanisms by which bacteria act on the
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body. LPS, as the prototypical endotoxin, is recognized by the CD14/TLR4/MD2 receptor complex,
causing uncontrolled activation of mammalian immune systems with production of inflammatory
mediators [7]. For instance, in macrophages, LPS promotes the secretion of pro-inflammatory cytokines,
including IL-1β, IL-6, and TNF-α, inducing an inflammation reaction [8]. Once bacterial cells are lysed
by the immune system, fragments of membrane containing LPS released into circulation can cause
fever, diarrhea, and possibly fatal endotoxic shock (also called septic shock) [9,10]. Because of such
severe inflammation, LPS gives rise to cell death, such as via apoptosis [11,12].

FAs are the main nutrients for the body and participate in various life activities.
Glycerophospholipids, containing two molecules of FAs, are the main structural component of
biological membranes, which can be divided into sub-regions of cells according to their function [13].
Triglycerides, containing three molecules of FAs, are the major form of energy storage, both in
animals and plants [14]. Furthermore, “fat-soluble” vitamins rely on lipids to complete the process of
absorption [15]. FA absorption in diet relies on enterocytes, a kind of polarized intestinal epithelia with
dense microvilli [16]. Microvilli form brush borders rich in transporters for nutrient transportation, such
as scavenger receptor cluster of differentiation 36 (CD36, also named fatty acid translocase) and fatty
acid transporter protein 4 (FATP4) for long-chain FA (LCFA) transportation. It is considered that CD36
facilitates FA and cholesterol absorption in enterocytes [17], in addition to contributing to inflammatory
responses and atherothrombotic diseases [18]. FATP4 is largely expressed in the brush border of
intestinal epithelial cells and mainly participates in the transmembrane transport of dietary fatty
acids [19]. Studies have shown that FATP4 can significantly promote the absorption of fatty acids [19,20].
Dietary fats are emulsified and resolved into smaller lipid molecules, mainly 2-monoacylglycerol and
free fatty acids, by bile and pancreatic lipase in the intestine [21]. FAs are absorbed into enterocytes
through FATP4 and CD36, resynthesized as triglycerides, and further combined into chylomicrons
with apolipoproteins [22,23]. Chylomicrons are secreted into lymphatic vessels and flow into the blood
through the hepatic portal vein, and triglycerides in chylomicrons are finally transferred into various
tissues of the body [24]. Once excessive FAs are absorbed, chylomicronemia clearly appears in the
blood [25].

In the present study, fatty acid malabsorption in the intestine was induced by LPS (5 mg/kg) in
circulation. To explore the underlying mechanism, we designed the experiments in vitro. The results
showed that the conditioned medium containing cytokines from LPS-treated macrophages caused
apoptosis activation, followed by the decrease of CD36 and FATP4 expression, and the inhibition of
fatty acid absorption in intestinal epithelial cells.

2. Material and Methods

2.1. Animals and Design of In Vivo Experiments

C57BL/6 mice and Sprague-Dawley (SD) rats were housed under 12 h light and 12 h dark for one
week with food and water available ad libitum. The animal experimental protocols were approved
by the Animal Care and Use Committee of Zhejiang University (Ethic Committee approval number:
ZJU20160396).

Mice were injected with 100 µL sterile saline solution containing 5 mg/kg of E. coli LPS
(Sigma–Aldrich, St. Louis, MO, USA) intraperitoneally. After one night, the mice were given
50 µg Bodipy-C16:0 (Life Technologies, CA, USA) or 200 µL olive oil, orally. The whole small intestines
of Bodipy-C16:0-given mice were collected to estimate FA absorption by fluorescence intensity 3
h later. The blood was collected and the serum was separated by centrifugation at 4 ◦C, 2000× g,
for 15 min. Tissue and contents of the intestines of the mice given olive oil were collected 3 h later for
further experiments.

Rats were injected with 1 mL sterile saline solution containing 5 mg/kg of E. coli LPS (Sigma–Aldrich,
St. Louis, MO, USA) intraperitoneally. After a night, the rats were given 2 mL olive oil. The blood
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of the rats was collected 3 h later, and the serum was separated by centrifugation at 4 ◦C, 2000× g,
for 15 min.

2.2. Cell Culture and Design of In Vitro Experiments

IPEC-J2 and 3D4/2 were cultured in DMEM-Ham’s F12 (1:1) with 10% FBS and antibiotics
(100 U/mL penicillin and 100 U/mL streptomycin sulfate). Cells were cultured at 37 ◦C with 5% CO2

in air. 3D4/2 were treated with or without 10 µg/mL of LPS (Sigma–Aldrich, St Louis, MO, USA) for
48 h to collect the supernatant as a conditioned medium (CM-LPS and CM-CON). IPEC-J2 cells were
treated with CM for 12 h to analyze the FA absorption and apoptosis in vitro.

2.3. Intestinal Morphology Analysis

Tissues fixed with paraformaldehyde overnight were embedded in paraffin, and sections (5 µm)
were stained with hematoxylin-eosin (H&E) staining. Images of paraffin section of the jejunum were
obtained using a Leica DM3000 Microsystem (Leica Camera AG, Wetzlar, Germany). The villi height
and crypt depth were measured using the Leica Application Suite version 3.7.0. Values of villi height
or crypt depth were the average of 3 measurements for each mouse.

Histopathological lesions of jejunum were scored according to the previous image analysis
method [26]; a pathologist and 5 scientists with basic histological experience scored the severity and
extent of inflammation caused by LPS as judges.

2.4. Gut Permeability Assessment

Diamine oxidase (DAO) is an endoenzyme in enterocytes, and D-lactic acid is a bacterial metabolite
in the intestine. As intestinal permeability increases, serum levels of DAO and D-lactic acid clearly
rise. Hence, DAO and D-lactic acid can often be regarded as markers for gut permeability [27,28].
Serum concentration of DAO and D-lactic acid were measured using commercial mouse ELISA kits
(Fankewei, Shanghai, P.R. China) according to the manufacturer’s instructions.

FITC-dextran 4 (FD4) (Sigma–Aldrich, Shanghai, P.R. China) was administered at 20 mL/kg body
weight by oral gavage after LPS or saline administration overnight. One hour later, the mice serum
was separated, and the serum fluorescence was measured by a Molecular Devices SpectraMax M5
plate reader (excitation 485 nm, emission 535 nm, San Jose, CA, USA). The serial dilution method was
applied to dilute 40 mg/mL of FD4 with physiological saline in order to draw the standard curve,
and the serum FD4 concentration was calculated according to the standard curve.

2.5. Immunohistochemistry

Tissues fixed with paraformaldehyde overnight were embedded in paraffin and sliced in sections
of 5 µm thickness. Sections were dewaxed in xylole and rehydrated in graded alcohol in preparation
for immunohistochemistry (IHC). IHC was performed as per the previous study [29]. The primary
antibody of M1 macrophage marker, anti-CD11c (Servicebio, Wuhan, China), was used. Images of the
paraffin section of the jejunum were obtained using a Leica DM3000 Microsystem (Leica Camera AG,
Wetzlar, Germany).

2.6. Apoptosis and Pro-Inflammatory Cytokine Treatment on IPEC-J2 Cells

Caspase-3 is the executor of apoptosis in the caspase-dependent pathway [30]. PAC-1 (APExBIO,
Houston, USA), a caspase-3 activator, was added to IPEC-J2 cell culture for 12 h. Z-DEVD-FMK
(APExBIO, Houston, TX, USA), a caspase-3 inhibitor, was added to IPEC-J2 cell culture 2 h before the
cells were treated with LPS. IL-1β, IL-6, and TNF-α in the culture supernatant of 3D4/2 were measured
using commercial porcine ELISA kits according to the manufacturer’s instructions. Recombinant
protein of IL-1β, IL-6, and TNF-α (all from R&D systems, Minneapolis, USA) was added to the IPEC-J2
cells culture for 24 h. Lenalidomide hydrochloride (LH) (APExBIO, Houston, TX, USA), a TNF-α
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inhibitor, was added to 3D4/2 cell culture, and the mRNA expression of TNF-α in 3D4/2 was then
analyzed to optimize treatment concentration. The collected supernatant of 3D4/2 culture were treated
with incubated IPEC-J2 cells, and FA absorption and apoptosis of IPEC-J2 were then analyzed.

2.7. Western Blot Analysis

The separated tissues of jejunum in mice were homogenized using a Whole Protein Extraction
Kit (KeyGen Biotech, Nanjing, P.R. China), and protein concentrations were quantified using a BCA
Protein Quantification Kit (KeyGen Biotech, Nanjing, P.R. China). The total protein of IPEC-J2 cells
was prepared using Protein Loading Dye (Sangon Biotech, Shanghai, P.R. China).

Equivalent proteins were separated using 15% SDS-PAGE, electro-blotted onto polyvinylidene
fluoride membranes, and then blocked with 5% fat-free milk. Then, membranes were incubated
overnight at 4 ◦C with primary antibodies for CD36, FATP4, caspase-3, and β-actin (all purchased
from Proteintech Group, Wuhan, P.R. China), and subsequently incubated with goat-anti-rabbit IgG
secondary horseradish peroxidase-conjugated antibody (CST, Boston, MA, USA) for 1 h at room
temperature. The protein blots were photographed using a Tanon 4200SF Chemiluminescent Imaging
System (CliNX, Shanghai, P.R. China). Intensity of blots was quantified using ImageJ software.

2.8. RNA Isolation and qRT-PCR

Total RNA isolation and cDNA synthesis by reverse transcription were performed using the
TRIzol reagent and a reverse transcriptase kit (Thermo Fisher Scientific, Boston, MA, USA). The mRNA
levels of individual genes were determined using a SYBR PCR Master Mix (Roche, Basel, Switzerland)
in the ABI StepOne Plus™ Real-time PCR System (Applied Biosystems, Foster City, CA, USA). Data
was analyzed by the 2−∆∆Ct method and normalized based on GAPDH as the reference gene. The
primers used in this experiment are listed in Table 1.

Table 1. Sequences of the primers for amplifying target genes.

Gene Forward Primer (5′-3′) Forward Primer (5′-3′)

m *-Il-1β TCCAGGATGAGGACATGAGCAC GAACGTCACACACCAGCAGGTTA
m-Il-6 CCACTTCACAAGTCGGAGGCTTA CCAGTTTGGTAGCATCCATCATTTC

m-Tnf-α TATGGCCCAGACCCTCACA GGAGTAGACAAGGTACAACCCATC
m-Gapdh TGTGTCCGTCGTGGATCTGA TTGCTGTTGAAGTCGCAGGAG
p #-Il-1β GAGCTGAAGGCTCTCCACCTC ATCGCTGTCATCTCCTTGCAC

p-Il-6 TTCACCTCTCCGGACAAAAC TCTGCCAGTACCTCCTTGCT
p-Tnf-α TTCCAGCTGGCCCCTTGAGC GAGGGCATTGGCATACCCAC
p-Cd36 CCATACCCTATTCCTACCAC AGGCTGCATCTGTACCATTA
p-Fatp4 TATGGTGTGGAGGTGCCAGGAA CCGCAGGTCTGTCTTCTGTAGC
p-Gapdh CAAGGAGTAAGAGCCCCTGG GGTACATGACGAGGCAGGTC

* m means mice, # p means pig.

2.9. Fluorescence Microscopy

In this study, a bodipy-labeled fluorescent, Bodipy-C16:0 (D3822, Invitrogen, Shanghai, P.R. China),
was used to measure the absorption of LCFA in IPEC-J2. The cells cultivated on confocal dishes were
incubated in 1.5 mL working solution containing 5 µmol/L Bodipy-C16:0 for 10 min. Then, the cells
were fixed in 4% paraformaldehyde solution for 15 min. After washing with saline, the cells were
incubated in a ready-to-use DAPI (4 µg/L) reagent (Servicebio, Wuhan, P.R. China) for 10 min in
the dark and examined with a Zeiss LSM 780 confocal microscope (Zeiss, Jena, Germany) or a IX71
inversion fluorescence microscope (Olympus, Tokyo, Japan) with excitation of 485 nm and emission of
528 nm. The pictures were analyzed using ZEN 2012 software (Zeiss, Jena, Germany).
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2.10. Statistical Analysis

The Student’s t-test and one-way analysis of variance (ANOVA, post-hoc Tukey’s tests) were
conducted using GraphPad Prism version 5.01 (GraphPad Software, Inc., San Diego, CA, USA) to
compare the two means and the three means of the measured variables, respectively. Data are presented
as mean ± SD. Statistically significant results were determined at the 0.05 confidence level (p < 0.05).

3. Results

3.1. LPS Leading to FA Absorption Inhibition In Vivo

We first noted that LPS induced a reduction in the feed intake of rats (Figure 1A), and mental
sluggishness and diarrhea in mice (Figure 1C). After the LPS-treated rats and mice were given olive oil
orally, the plasma of rats did not show chylomicronemia and contained lower triglyceride (Figure 1B).
The intestinal contents of mice seemed to contain more unabsorbed FAs in the cloudy supernatants
(Figure 1C). To confirm the effect of LPS on FA absorption in vivo, the fluorescence intensity of the
whole intestine was detected after mice were given bodipy-labeled FAs orally. The lower integrated
density appeared in the intestines with congestion and swelling (Figure 1D,E), but more fluorescence
was detectable in the intestinal contents (Figure 1F) after LPS administration given to mice overnight.
Further, we found that the main proteins involved in transportation of FAs in the intestine, CD36 and
FATP4, also decreased overall in response to LPS (Figure 1G). Taken together, these results indicate
that LPS inhibits FA absorption in vivo.
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Figure 1. Lipopolysaccharide (LPS) induces fatty acid (FA) uptake inhibition in vivo. The group of 
CON and LPS: rats and mice were treated with or without LPS. (A) Feed intake in rats after LPS i.p. 
injection 24 h later (n = 4). (B) The apparent (left) and the triglycerides concentration (right) of serum 
in rats given olive oil (2 mL) orally (n = 3). (C) The physiological status (a), fecal matter (b), and 
supernatant of intestinal contents (c) of mice. (D) The entire small intestine of mice under white light 

Figure 1. Lipopolysaccharide (LPS) induces fatty acid (FA) uptake inhibition in vivo. The group of
CON and LPS: rats and mice were treated with or without LPS. (A) Feed intake in rats after LPS i.p.
injection 24 h later (n = 4). (B) The apparent (left) and the triglycerides concentration (right) of serum
in rats given olive oil (2 mL) orally (n = 3). (C) The physiological status (a), fecal matter (b), and
supernatant of intestinal contents (c) of mice. (D) The entire small intestine of mice under white light
(upper) and localization of Bodipy-C16:0 in the entire small intestine under blue light (lower) (Scale
bar: 500px). (E) Integrated density of Bodipy-C16:0 in the entire small intestine (n = 3). (F) CD36 and
FATP4 protein level in the intestine tissues were analyzed by western blotting (n = 3). Results were
normalized with β-actin level. (G) Fluorescence of Bodipy-C16:0 in supernatant of intestinal contents
in mice. Data were shown as mean ± SD, ** p < 0.01.
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3.2. Inhibition of FA Absorption Caused by Apoptosis

It has been well established in many studies that LPS induces apoptosis by activating the caspase-3
signal pathway in various cells [31]. Thus, we hypothesized that LPS suppressed FA absorption in vivo,
caused by the activation of the apoptosis signal in enterocytes. As expected, the apoptosis signal was
detectable in jejunal epithelial cells in LPS-treated mice using TUNEL staining (Figure 2A). To investigate
whether apoptosis affected FA absorption in enterocytes, we next conducted apoptosis activation using
PAC-1, an activator of caspase-3, that exhibited more cleaved caspase-3 in IPEC-J2 (Figure 2B). We then
found that the mRNA and protein levels of CD36 and FATP4 decreased under apoptosis activation
(Figure 2B,C). Furthermore, the fluorescence intensity of Bodipy-C16:0 representing FA absorption
showed a significant decrease in PAC-1-treated IPEC-J2 (Figure 2D,E). Overall, this suggests that FA
absorption inhibition may be caused by apoptosis in enterocytes.
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Figure 2. Apoptosis induces FA uptake decrease in IPEC-J2. (A) TUNEL staining of jejunum tissue 
slices in mice (n = 3, magnification: 200×). The white arrows mark the point of apoptotic signal. (B) 
Western blot analysis of full-length caspase-3 (FL Caspase-3), cleaved caspase-3 (C Caspase-3), CD36 
and FATP4 expression in IPEC-J2 treated with or without PAC-1. Results were normalized with β-
actin level (n = 3). (C) qPCR analysis of CD36 and FATP4 expression in IPEC-J2 with or without PAC-

Figure 2. Apoptosis induces FA uptake decrease in IPEC-J2. (A) TUNEL staining of jejunum tissue
slices in mice (n = 3, magnification: 200×). The white arrows mark the point of apoptotic signal.
(B) Western blot analysis of full-length caspase-3 (FL Caspase-3), cleaved caspase-3 (C Caspase-3),
CD36 and FATP4 expression in IPEC-J2 treated with or without PAC-1. Results were normalized with
β-actin level (n = 3). (C) qPCR analysis of CD36 and FATP4 expression in IPEC-J2 with or without
PAC-1. Results were normalized with Gapdh level and expressed as fold of control (n = 3). (D,E) Images
of IPEC-J2 with or without PAC-1 treatment under green optical filter and FA uptake was evaluated by
intracellular fluorescence intensity of BODIPY C16 by fluorescence microscope (n = 3). Data are shown
as mean ± SD, * p < 0.05 and ** p < 0.01.
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3.3. No Effect on Fatty Acid Absorption in IPEC-J2 after LPS Treatment

To explore whether LPS inhibits FA absorption by activating apoptosis directly in IPEC-J2,
we detected cleaved caspase-3 after LPS was added to IPEC-J2, while there was no obvious difference in
the levels of cleaved caspase-3 between LPS-treated IPEC-J2 and control cells (Figure 3A). Furthermore,
LPS treatment did not affect the protein expression of CD36 and FATP4 (Figure 3 A,B), and the
fluorescence intensity of Bodipy-C16:0 appeared similarly between control cells and LPS-treated
IPEC-J2, which also showed a similar morphology (Figure 3C,D). Hence, we consider that LPS did not
inhibit FA absorption directly in IPEC-J2.
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Figure 3. LPS has no direct effect on FA uptake in IPEC-J2. (A,B) Western blot analysis of FL Caspase-
3, C Caspase-3, CD36, and FATP4 expression in IPEC-J2 treated with or without LPS. Results were 
normalized with β-actin level (n = 3). (C) Images of IPEC-J2 with or without LPS treatment under 
green optical filter (magnification: 20×) or blue-fluorescence (scale bar: 20 μm). (D) Fluorescence 

Figure 3. LPS has no direct effect on FA uptake in IPEC-J2. (A,B) Western blot analysis of FL Caspase-3,
C Caspase-3, CD36, and FATP4 expression in IPEC-J2 treated with or without LPS. Results were
normalized with β-actin level (n = 3). (C) Images of IPEC-J2 with or without LPS treatment under green
optical filter (magnification: 20×) or blue-fluorescence (scale bar: 20 µm). (D) Fluorescence intensity
of Bodipy-C16:0 in IPEC-J2 with or without LPS treatment (n = 3). Data are shown as mean ± SD,
ns means p > 0.05.

3.4. Injury of Jejunal Epithelium Caused by LPS Intraperitoneal Injection in Mice

It has been widely proved that LPS damages tissues by inducing inflammation [32,33]. Consistent
with previous studies, LPS destroyed intestinal morphology in vivo. Small intestinal tissue sections
from LPS-treated mice exhibited atrophic and shed villi (Figure 4A), along with serious damage of
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intestinal tissue according to histopathologic scores (Figure 4B). The length of intestinal villi and crypt
were measured to analyze the capacity of nutrient absorption in vivo [34]. It was found that the ratio
of villi height to crypt depth deceased because of shorter villi and deeper crypts in LPS-injected mice
(Figure 4C). To test the effect of LPS on intestinal physical barrier integrity and inflammation response
in mice, indexes reflecting intestinal permeability and inflammation were measured. The level of
serum DAO, D-lactic acid, and FD4 appeared to be much higher (Figure 4D–F), and the mRNA level of
pro-inflammatory factors, IL-1β, IL-6, and TNF-α also increased in LPS-treated mice (Figure 4G–I). M1
macrophages in jejunum were detected because of their abilities of producing various inflammatory
factors [35]. Immunohistochemistry results showed that there were more M1 macrophages in jejunum
of LPS-treated mice (Figure 4J). From the above results, it is evident that LPS has access to intestinal
tissue damage, which may be mediated by inflammation.
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Figure 4. LPS injuries to intestinal morphology of jejunum. (A) H&E staining of the jejunum in mice
treated with or without LPS (scale bar: 100 µm). (B) Histology of jejunums was scored based on
histopathologic grading (n = 6). (C) The villous height and crypt depth of the jejunum were measured,
and the ratio of villous height vs crypt depth was also analyzed (n = 6). (D–F) the DAO, D-lactic acid,
and FD4 concentrations in serum of mice were measured (n = 6). (G–I) the mRNA expression of Il-1β,
Il-6, and Tnf-α was analyzed by RT-qPCR in mice (n = 6). Results were normalized with Gapdh level
and expressed as fold of control. (J) Immunohistochemical staining of M1 macrophages in jejunum with
an antibody against CD11c (scale bar: 50 µm). Data are shown as mean ± SD, * p < 0.05 and ** p < 0.01.
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3.5. Apoptosis and Fatty Acid Absorption Inhibition in IPEC-J2 Induced by CM-LPS

As LPS stimulates macrophage secreting cytokines, mainly IL-1β, IL-6, and TNF-α, to initiate
inflammatory response, we next explored whether macrophages mediated the progress in which LPS
induced apoptosis and FA absorption inhibition in vitro. First, 3D4/2 were treated with or without
LPS to collect the cell culture as conditioned medium (CM-LPS and CM-CON). Then, the conditioned
medium was used to treat IPEC-J2 to analyze apoptosis and FA absorption.

Caspase-3 was clearly cleaved after treatment with CM-LPS in IPEC-J2 (Figure 5A). CM-LPS
treatment also led to lower protein expression of CD36 and FATP4 in IPEC-J2 compared with CM-CON
(Figure 5A). IPEC-J2 treated with CM-LPS showed lower fluorescence intensity of Bodipy-C16:0 than
that of CM-CON (Figure 5B). Together, these data suggest that CM-LPS leads to apoptosis and FA
absorption inhibition in IPEC-J2. To validate whether CM-LPS induces FA absorption inhibition due
to activating caspase-3, an inhibitor of caspase-3, Z-DEVD-FMK, was used to treat IPEC-J2. Cleaved
caspase-3 did not appear significantly in the presence of Z-DEVD-FMK after CM-LPS treatment in
IPEC-J2 (Figure 5C). Furthermore, the protein expression of CD36 and FATP4 under Z-DEVD-FMK
treatment also partly recovered compared with only CM-LPS treatment (Figure 5C). Z-DEVD-FMK also
ameliorated the reduction of fluorescence intensity of Bodipy-C16:0 caused by CM-LPS (Figure 5D).
Taken together, these results indicate that LPS inhibited FA absorption mediated by CM-LPS activating
caspase-3 in IPEC-J2.
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Figure 5. CM-LPS of PAMs induces apoptosis and FA uptake inhibition in IPEC-J2. 3D4/2 were treated
with or without 10 µg/mL of LPS (Sigma–Aldrich, St Louis, MO, USA) for 48 h to collect the supernatant
as a conditioned medium (CM-LPS and CM-CON), and then the conditioned medium were used to
incubate IPEC-J2. (A) Western blot analysis of FL Caspase-3, C Caspase-3, CD36, and FATP4 expression
in IPEC-J2 treated with CM-CON, CM-LPS, or nothing. Results were normalized with β-actin level
(n = 3). (B) Fluorescence intensity of Bodipy-C16:0 in IPEC-J2 treated with CM-CON, M-LPS, or noting
was captured by laser scanning confocal C microscope technology (scale bar: 10 µm). (C) Western blot
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analysis of FL Caspase-3, C Caspase-3, CD36, and FATP4 expression in IPEC-J2 treated with CM-LPS
under Z-DEVD-FMK presence or absence or nothing. Results were normalized with β-actin level (n = 3).
(D) Fluorescence intensity of Bodipy-C16:0 in IPEC-J2 treated with CM-LPS under Z-DEVD-FMK
presence or absence or nothing was captured by laser scanning confocal microscope technology (scale
bar: 10 µm). Data are shown as mean ± SD, * p < 0.05 and ** p < 0.01 compared with CM-CON.

3.6. TNF-α Present in CM-LPS Inducing Apoptosis of IPEC-J2

To further explore the underlying mechanism by which LPS induces apoptosis in IPEC-J2, the
cytokines, IL-1β, IL-6, and TNF-α were detected in 3D4/2. Consistent with previous studies [36], the
gene expression of Il-1β, Il-6, and TNF-α in 3D4/2 increased after LPS treatment for 6 h (Figure 6A–C).
Then, IL-1β, IL-6, and TNF-α in CM were measured by ELISA. Each of these three cytokines were more
evident in CM-LPS than in CM-CON (Figure 6D–F). To confirm whether caspase-3 activation in IPEC-J2
was induced by the three cytokines, IL-1β, IL-6, and TNF-α were used to treat IPEC-J2, respectively.
Of the three, only TNF-α aggravated cleaved caspase-3 production in IPEC-J2, which showed a
tendency of positive correlation with TNF-α concentration (Figure 6G). These results demonstrate that
TNF-α in CM-LPS induces caspase-3 activation in IPEC-J2.
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Figure 6. TNF-α induces caspase-3 activation in IPEC-J2. (A–C) The mRNA expression of Il-1β, Il-6
and Tnf-α was analyzed by RT-qPCR in PAMs treated with LPS (n = 3). Results were normalized
with Gapdh level and expressed as fold of control. (D–F) The concentrations of IL-1β, IL-6, and TNF-α
in culture supernatant of LPS-treated PAMs were measured by ELISA kits (n = 3). (G–I) The three
cytokines were administrated on IPEC-J2 with 0, 5, 25, and 50 ng/mL directly. Caspase-3 activation in
IPEC-J2 was detected by western blotting. Data are shown as mean ± SD, * p < 0.05 and ** p < 0.01.

3.7. Preventing the Secretion of TNF-α Leading to Better Fatty Acid Absorption

To ascertain whether FA absorption inhibition in IPEC-J2 is caused by TNF-α in CM-LPS, the
lenalidomide hydrochloride (LH), an inhibitor of TNF-α, and LPS, were used together to incubate
3D4/2. When 10 µM LH was added, the mRNA level of Tnf-α in 3D4/2 showed the most obvious
decrease compared with 0.5 µM and 1 µM LH (Figure 7A). Hence, CM-CON and CM-LPS with or
without 10 µM LH were used to treat IPEC-J2, respectively. IPEC-J2 with CM-LPS and 10 µM LH
administration exhibited less cleaved caspase-3 than that only treated with CM-LPS (Figure 7B). Then,
the indexes representing FA absorption were measured. As expected, the protein expression of CD36
and FATP4 recovered partly (Figure 7B), and IPEC-J2 showed higher fluorescence intensity than that
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of only CM-LPS treatment (Figure 7C). Taken together, these results indicate that TNF-α in CM-LPS
induces FA absorption inhibition in IPEC-J2.
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Figure 7. TNF-α induces FAs uptake inhibition in IPEC-J2. Lenalidomide hydrochloride (LH), an
inhibitor for TNF-α, was administrated on PAMs to prevent TNF-α secretion. (A) The mRNA expression
of Tnf-αwas analyzed by RT-qPCR in LPS-treated PAMs with 0.5, 1, and 10 µM at the same time (n = 3).
PAMs treated with nothing as blank, PAMs treated with LPS (10 µg/mL) or LH (1 µM) as control.
Results were normalized with Gapdh level and expressed as fold of blank. (B) Western blot analysis of
FL Caspase-3, C Caspase-3, CD36, and FATP4 expression in IPEC-J2 treated with CM-CON or CM-LPS
under LH presence or absence. Results were normalized with β-actin level. (C) Fluorescence intensity
of Bodipy-C16:0 in IPEC-J2 was captured by laser scanning confocal microscope technology (scale bar:
10 µm). Data are shown as mean ± SD, * p < 0.05, ** p < 0.01 compared with blank, ## p < 0.01 compared
with LPS control.

4. Discussion

In this paper, we show the underlying mechanism by which LPS inhibits FA absorption in vivo.
First, we noted that LPS caused apoptosis of enterocytes with TUNEL staining, consistent with the
results of others. For example, LPS was used to induce apoptosis to analyze the features of LPS
receptor subunits [37], and to verify Clostridium tyrobutyricum protected intestinal barrier function
from LPS-induced apoptosis in IPEC-J2 cells [38]. The zymogen feature of caspase-3 is necessary
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because, if unregulated, caspase-3 activity would injure cells indiscriminately [39]. As an executioner
caspase, the caspase-3 zymogen has virtually no activity until it is cleaved by an initiator caspase after
apoptotic signaling events have occurred [40]. Caspase-3 has been found to be necessary for its typical
role in apoptosis, where it was responsible for chromatin condensation and DNA fragmentation [41].
We found that PAC-1 activated caspase-3 in IPEC-J2, inducing FA absorption inhibition and a decrease
in the protein expression of CD36 and FATP4. For caspase-3 related to DNA fragmentation, a possible
mechanism may be that caspase-3 activation inhibited FA absorption through cleaving the genes of
CD36 and FATP4.

LPS did not show any effect on FA absorption and CD36 and FATP4 expression, in vitro after LPS
was added to the cell culture of IPEC-J2. Ghoshal et al. treated Caco-2 cells with 0.1 mg/mL unlabeled
LPS overnight to assess the ability of LPS absorption [42]. In that study, such a high dosage of LPS also
did not affect the function of Caco-2 cells, which is similar to the results of our study. Based on this
pattern, we suspect that maybe LPS inhibited FA absorption indirectly.

LPS could be recognized by the TLR4 of immune cells, such as macrophages, to activate
inflammatory signaling pathways and release pro-inflammatory factors, including IL-1β, IL-6,
and TNF-α [43]. TNFR1, expressed in most tissues, is involved in death signaling as
a death-domain-containing member of the TNFR superfamily [44]. TNFR1 captures TNF
receptor-associated death domain (TRADD) in cytoplasm, and TRADD binds the Fas-associated
protein with death domain (FADD) to recruit the cysteine protease caspase-8 [45]. A high concentration
of caspase-8 induces its autoproteolytic activation and subsequent cleaving of effector caspases, such
as caspase-3, finally leading to cell apoptosis [46]. An intestinal inflammatory injury mouse model
contains a large number of M1 macrophages that can secrete pro-inflammatory factors [47], which is
consistent with our experimental results. We noticed that the CM from the 3D4/2 with LPS stimulation,
containing amounts of TNF-α, inhibited FA absorption in IPEC-J2. Moreover, IPEC-J2 cells partly
recovered the function of FA absorption after the progress of TNF-α secretion was suppressed. These
results conform to the previous research on TNF-α inducing apoptosis [48].

Due to the limited situation, no further study has been conducted on the reason for the reduction
of CD36 and FATP4 expression caused by caspase-3. This might be due to the fragmentation of genes
caused by activation of caspase-3, as noted above. In addition, the molecular weight of integrated CD36
is about 88 kD, but it was noticed that some WB revealed with anti-CD36 appear in two bands in the
above results. Kim et al. found that CD36 could be modified into smaller molecules by ubiquitin [49],
which may be the reason leading to the WB appearing in two bands. Finally, we foun that 3D4/2,
without LPS stimulation, secreted a small amount of TNF-α. Other studies also report that macrophages
can secrete limited cytokines without any treatment, such as in the research of Dlugosz et al. [50] and
Sharma et al. [51]. It is possible that macrophages that secreted cytokines that caused CM in the control
group inhibited FA absorption in IPEC-J2.

As one of three main nutrients, FAs participate in many physiological processes, such as storing
energy, making up biological membranes, promoting nervous system development, etc. Lack of
polyunsaturated FAs is associated with metabolic diseases early in life [52].

Inflammatory reaction is necessary to drive away pathogens during infections; a number of
pro-inflammatory factors, including IL-1β, IL-6, and TNF-α, are secreted by macrophages. Such
pro-inflammatory factors could mediate tissue damage; in particular, TNF-α can directly recognize
death domain to active caspase-8/3 pathways, leading to apoptosis [45,46]. Prolonged exposure to low
concentrations of TNF-α can result in cachexia, a wasting syndrome, which can be found in cancer
patients [53].

In bodies of infants, which are not yet well developed, inflammation may result in malnutrition,
potentially leading irreversible consequences without timely control. It is necessary to emphasize the
importance of controlling inflammatory processes at the right level and not only destroying pathogens
in the case of non-reversible damage caused by nutrient malabsorption.
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5. Conclusions

The aim of this study was to investigate the potential mechanism of LPS inhibiting FA absorption
in intestinal epithelium in vivo. LPS had no significant effect on fatty acid absorption when directly
acting on intestinal epithelial cells. According to the results, it appears that LPS inhibits FA absorption
in vivo due to the overexpressed TNF-α in macrophages through LPS stimulation. In particular,
LPS induces 3D4/2 secreting TNF-α, and TNF-α then activates caspase-3 in enterocytes, leading to the
decrease of protein expression of CD36 and FATP4, and the subsequent inhibition of FA absorption.
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