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Predicting bleeding risk 
in a Chinese immune 
thrombocytopenia (ITP) 
population: development 
and assessment of a new predictive 
nomogram
Mingjing Wang1,2, Weiyi Liu1, Yonggang Xu1, Hongzhi Wang1, Xiaoqing Guo1, Xiaoqing Ding4, 
Richeng Quan1, Haiyan Chen4, Shirong Zhu1,3, Teng Fan1,2, Yujin Li1,2, Xuebin Zhang1,2, 
Yan Sun1,3 & Xiaomei Hu1*

The aim of this study was to develop a model that could be used to forecast the bleeding risk of 
ITP based on proinflammatory and anti-inflammatory factors. One hundred ITP patients were 
recruited to build a new predictive nomogram, another eighty-eight ITP patients were enrolled as 
validation cohort, and data were collected from January 2016 to January 2019. Four demographic 
characteristics and fifteen clinical characteristics were taken into account. Eleven cytokines (IFN-
γ, IL-1, IL-4, IL-6, IL-8, IL-10, IL-17A, IL-22, IL-23, TNF-α and TGF-β) were used to study and the 
levels of them were detected by using a cytometric bead array (CBA) human inflammation kit. The 
least absolute shrinkage and selection operator regression model was used to optimize feature 
selection. Multivariate logistic regression analysis was applied to build a new predictive nomogram 
based on the results of the least absolute shrinkage and selection operator regress ion model. The 
application of C-index, ROC curve, calibration plot, and decision curve analyses were used to assess 
the discrimination, calibration, and clinical practicability of the predictive model. Bootstrapping 
validation was used for testing and verifying the predictive model. After feature selection, cytokines 
IL-1, IL-6, IL-8, IL-23 and TGF-β were excluded, cytokines IFN-γ, IL-4, IL-10, IL-17A, IL-22, TGF-β, the 
count of PLT and the length of time of ITP were used as predictive factors in the predictive nomogram. 
The model showed good discrimination with a C-index of 0.82 (95% confidence interval 0.73376–0.90 
624) in training cohortn and 0.89 (95% CI 0.868, 0.902) in validation cohort, an AUC of 0.795 in training 
cohort, 0.94 in validation cohort and good calibration. A high C-index value of 0.66 was reached in the 
interval validation assessment. Decision curve analysis showed that the bleeding risk nomogram was 
clinically useful when intervention was decided at the possibility threshold of 16–84%. The bleeding 
risk model based on IFN-γ, IL-4, IL-10, IL-17A, IL-22, TGF-β, the count of PLT and the length of time of 
ITP could be conveniently used to predict the bleeding risk of ITP.

Immune thrombocytopenia (ITP) is a hematological disorder characterized by a decrease in platelet numbers 
with or without potential bleeding at multiple sites1. The destruction of the platelets and an increasing risk of 
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bleeding have a close connection with immune disorder in T cells in ITP patients2. However, T helper (Th) cells 
compose a broad group of immune cells that includes T helper 1 (Th1) cells, T helper 2 (Th2) cells, T helper 
17 (Th17) cells, and T regulatory (Treg) cells. Th1/Th2 and Th17/Treg cell imbalances have been confirmed in 
ITP patients3,4. Additionally, the imbalances between these T cells result in an inflammatory state, which con-
tributes to vascular endothelial injury and platelet destruction in ITP patients. In addition, the differentiation 
of Th1 cells is induced by the cytokine IFN-γ, the differentiation of Th2 cells is induced by the cytokine IL-4, 
the differentiation of Th17 cells is induced by the cytokine IL-17, and the differentiation of Treg cells is induced 
by the cytokine TGF-β. The activities of these T cells are also regulated by the cytokines IL-1, IL-6, IL-8, IL-10, 
IL22, IL-23, TNF-α and so on5–8. Therefore, the expression of cytokines might influence the severity of platelet 
destruction and vascular endothelial injury. In other words, alterations in the above cytokines may increase the 
risk of bleeding in ITP patients. Moreover, the risk of bleeding is controlled by a complex regulatory network that 
is built from a wide diversity of interacting molecular components. Nevertheless, there is still little information 
on the relevance of these cytokines to the risk of bleeding in ITP patients. Hence, it is necessary to determine 
the relationships between these cytokines and the risk of bleeding by using a model based on multiple cytokines.

In this study, a cytometric bead array (CBA) human inflammation kit was used to detect the expression 
of IFN-γ, IL-1, IL-4, IL-6, IL-8, IL-10, IL-17A, IL-22, IL-23, TNF-α and TGF-β. Then, a predictive model was 
established by combining the expression levels of these cytokines with clinical information from patients. The 
model was used to determine the relationships between cytokines and bleeding risk. In addition, it is meaningful 
for clinicians to estimate the bleeding risk of ITP patients.

Patients and methods
Patients.  Research approval was obtained from Xi Yuan Hospital, China Academy of Chinese Medical 
Sciences’ Ethics Committee (2015XLA108-2), and all participants provided informed consent in accordance 
with the relevant regulations and guidelines. Patients in training and validation cohorts were recruited from 
the Xiyuan Hospital, China Academy of Chinese Medical Sciences and Dongfang Hospital, Beijing University 
of Chinese Medicine, between January 2016 and January 2019, and they came from all over China. All the 
patients we enrolled were diagnosed according to Chinese guidelines for treatment of adult primary immune 
thrombocytopenia9: (1) Finding thrombocytopenia during a routine blood count at least twice. Blood flm should 
be examined to exclude pseudothrombocytopenia and to check for morphological abnormalities of the blood 
cells. (2) Splenomegaly occurs infrequently in ITP patients. (3) Bone marrow examination is recommended. A 
bone marrow exam of ITP patients will show a normal or increased megakaryocyte count, with a decreased thro-
mocytogenic megakaryocyte count. (4) Exclusion of secondary thrombocytopenia. The co-morbidity of patients 
were HT and DM, and there were no patients with other diseases such as strock, heart, and hyperlipidemia. 
There were no patients used drugs such as antiplatelet, anticoagulant, ant-lipid. The patients enrolled didn’t take 
any other medication other than glucocorticoid (Prednisone) for treatment of ITP such as thrombopoietin and 
rituximab. All participating patients provided written informed consent and completed questionnaires includ-
ing personal information.

Cytokine analysis.  Two milliliter of venous blood was collected from each volunteer, then 200 μl serum 
were separated by density gradient centrifugation for cytokines analysis. The levels of cytokines (IFN-γ, IL-1, 
IL-4, IL-6, IL-8, IL-10, IL-17A, IL-22, IL-23,TNF-α and TGF-β) were detected by using a cytometric bead array 
(CBA) human inflammation kit according to the manufacturer’s instructions (BD Pharmingen, San Diego, C A, 
USA) and analyzed by AimPlex Bead-based multiparametric flow cytometry (EPICS-Elite, Beckman-Coulter, 
USA). Briefly, AimPlex Bead-based Multiplexed Immunoassays for Flow are similar in principle to a sandwich 
ELISA, with each bead population conjugated with a specific capture antibody to trap the protein of interest, 
such as a cytokine, in a sample. The amount of the analyte captured is detected via a biotinylated antibody that 
recognizes a secondary epitope in the protein, followed by streptavidin-PE treatment. The fluorescence intensity 
of PE on the beads is quantified on a flow cytometer. The concentration of a protein of interest in a sample can be 
obtained by comparing the fluorescence signals of the sample to those of a standard curve generated from serial 
dilutions of a known concentration of the analyte10,11.

Assessment of hemorrhage.  The evaluation of bleeding was based on the patient history of bleeding and 
physical examination during the first week of consultation. The examination covered 9 anatomical sites includ-
ing the skin, oral cavity, nose, gastrointestinal tract, urinary system, gynecological tract, lungs, intracranial and 
conjunctiva. Then, patients were divided into two groups according to ITP-BAT score12, no bleeding group was 
0 score, the others was bleeding group, which score was above 0.

Statistical analysis.  R software was used for statistical analysis (Version 3.5.3; https​://www.R-proje​ct.org).
The least absolute shrinkage and selection operator (LASSO) method was used to select the optimal predictive 

features among risk factors for bleeding in patients with ITP because it is fit to constrain high-dimensionality 
data13. Features without nonzero coefficients are excluded in the LASSO regression model14. Then, a predictive 
model was built based on the results of multivariate logistic regression analysis, which also incorporated the 
results of the LASSO regression model. The odds ratio (OR), 95% confidence interval (CI) and P-value were 
calculated for all features. The statistical evaluations were all two-sided. Demographic characteristics with a 
P-value ≤ 0.05 were included in the model, and variables associated with disease or treatment characteristics 
were also included. All potential predictors were applied to develop a predictive model for the risk of bleeding 
by using the cohort15.

https://www.R-project.org
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Calibration curves were used to assess the calibration of the bleeding risk nomogram. A significant test sta-
tistic would indicate that the model was not perfectly calibrated16. Then, the discrimination performance of the 
bleeding risk nomogram was quantified with the area under the receiver operating characteristic (ROC) curve 
and Harrell’s C-index. Subsequently, bootstrapping validation (1,000 bootstrap resamples) was conducted to 
calculate a relatively corrected C-index for the bleeding risk nomogram17,18. However, the clinical usefulness of 
the bleeding risk nomogram was detected by decision curve analysis, which quantified the net benefits at dif-
ferent threshold probabilities in the validation dataset19. However, the method of calculating net benefit was to 
subtract the proportion of all false-positive patients from the proportion of true-positive patients and to weigh 
the relative risk of intervention against the negative consequences of needless intervention20.

Results
Patient characteristics.  There were 100 patients of training cohort and 88 patients of validation cohort 
enrolled in this study, included persistent (3–12 months) and chronic (> 12 months) patients with the platelet 
count range of 12–78 × 109/L. All of the members were divided into bleeding and nonbleeding groups according 
to ITP-BAT score, no bleeding group was 0 score, the others was bleeding group, which score was above 0. The 
results for the expression of cytokines are shown for four groups, which were created by grouping by percentile 
(25%, 50%, and 75%). Additionally, patients were divided in three groups according to the platelet count based 
on consensus-based recommendation for target platelet counts for surgery or medical therapy in adults21. All 
patients data, including demographic and clinical characteristics, in the two groups are reported in Table 1.

Feature selection.  The 19 features (showed in Table 1) of 100 patients were reduced to eight potential pre-
dictors based on the LASSO regression model. Dotted vertical lines were drawn at the optimal values by using 
the minimum criteria and the 1 standard error of the minimum criteria (the 1-SE criteria). A lambda value 
of 0.097, with log (lambda),-3.37 was chosen (1-SE criteria) according to fivefold cross-validation (Fig. 1A,B). 
These features included the expression of IFN-γ, the expression of IL-4, the expression of IL-10, the expression 
of IL-17A, the expression of IL-22, the expression of TGF-β, the count of PLT and the length of time of ITP 
(Table 2).Then, logistic regression also performed for further verification. The results were showed in Table 2. 
Except PLT and IL-17A, the p value of the other 6 features are blew 0.05. However, PLT and IL-17A are meaning-
ful to ITP, we still use the above 8 features for further forecasting.

Prediction model.  According to the results of the LASSO regression analysis, 8 potential predictors were 
selected and analyzed by logistic regression for further forecasting. The results are shown in Table 2. Then, the 
forecast model that included the above independent predictors was developed and is presented as the nomogram 
(Fig. 2).

Accuracy of the bleeding risk nomogram.  The nonadherence nomogram was subjected to internal 
verification and external verification. The calibration curve of the bleeding risk nomogram for the prediction of 
bleeding risk in ITP patients demonstrated good agreement in training cohort and validation cohort (Fig. 3). 
The C-index for the predictive nomogram was 0.82 (95% CI 0.73376–0.90624) for the training cohort and was 
confirmed to be 0.6689 through internal bootstrapping validation and 0.89(95% CI 0.868, 0.902)in validation 
cohort, which suggested that the model had good discrimination. In addition, the AUC for the predictive nomo-
gram was 0.79 in training cohort and 0.94 in validation cohort (Fig. 4), which also showed that the model had 
a good prediction ability. In the bleeding risk nomogram, apparent performance addressed the good prediction 
capability.

Clinical application.  Decision curve analysis of the bleeding risk nomogram is presented in Fig. 5. The 
decision curve showed that if the threshold probability of a patient was > 14 and < 88%, using this bleeding risk 
nomogram to predict bleeding risk added more benefit than the scheme did. Within this range, using the bleed-
ing nomogram developed in the current study to predict bleeding risk added more benefit than the intervention-
all-patients scheme or the intervention-none scheme.

Discussion
Currently, risk nomograms are widely used as prognostic models for clinical decision-making. For ITP patients, 
bleeding risk still remains an enormous burden that affects quality of life. Although compared with patients with 
other hemorrhagic diseases, the majority of ITP patients have relatively mild bleeding symptoms, an objective 
and accurate description is still needed to study the heterogeneity of bleeding tendency in this disease. However, 
a useful model is still lacking for assessing bleeding risk. Therefore, it is necessary to construct a risk nomogram 
that can be used by clinicians to clarify and control the risk of bleeding.

However, ITP is considered to be a consequence of complex immunoregulation disorder events in T cells, 
B cells and related cytokines. Previous studies showed that the development of ITP was connected with immu-
noregulation disorder caused by Th1/Th2 and Th17/Treg cell biases and abnormal secretion by Bregs22–24. Th 
cells play a central r ole in the maintenance of the immune balance. The Th1/Th2 and Th17/Treg cytokine ax es 
are closely associated with autoimmunity. Upon antigen stimulation, CD4 + T cells can differentiate into at least 
four functional subtypes (Th1, Th2, Th17 and Treg), which have unique patterns of effector cytokine secretion2. 
Th1, Th2, Th17 and Treg cells are differentiated from Th0 cells. Th1 cells secrete the specific cytokine IFN-γ, 
Th2 cells secrete the specific cytokine interleukin-4 (IL-4), T helper 17 (Th17) cells secrete the specific cytokine 
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Training cohortn (%) Validation cohortn (%)

Bleeding No Bleeding

P

Bleeding No Bleeding

Pn = 65 n = 35 n = 43 n = 45

Demographic characteristics

Age

 18–60 51 (78.5) 29 (82.9)
0.6

31 (72.1) 39 (86.7)
0.09

 ≥ 60 14 (21.5) 6 (17.1) 12 (27.9) 6 (13.3)

Gender

 Male 23 (35.4) 10 (28.6)
0.48

14 (32.6) 15 (33.3)
0.93

 Female 42 (64.6) 25 (71.4) 29 (67.4) 30 (66.7)

Education level

 Primary school 21 (32.3) 10 (28.6)

0.78

13 (30.2) 11 (24.4)

0.75 Middle school 26 (40) 13 (37.1) 14 (32.6) 14 (31.1)

 University 18 (27.7) 12 (34.3) 16 (37.2) 20 (44.4)

Occupational

 Non-manual labor 40 (61.5) 23 (65.7)
0.68

33 (76.7) 31 (68.9)
0.41

 Physical labor 25 (38.5) 12 (34.3) 10 (23.3) 14 (31.1)

Clinical characteristics

Disease duration (months)

 3–12 11 (16.9) 5 (14.3)
0.73

21 (48.8) 16 (35.6)
0.21

 > 12 54 (83.1) 30 (85.7) 22 (51.2) 29 (64.4)

Comorbidities

 Hypertension 6 (9.2) 3 (8.5)
0.9

3 (7) 1 (2.2)
0.45

 Diabetes 1 (1.5) 1 (2.8) 2 (4.7) 1 (2.2)

 No comorbidities 58 (90.3) 31 (89.3) 38 (88.4) 43 (95.6)

Current use of GC

 Yes 40 (61.6) 21 (60)
0.87

23 (53.5) 20 (44.4)
0.4

 No 25 (38.4) 14 (40) 20 (46.5) 25 (55.6)

PLT (× 109/L)

 < 20 22 (33.9) 3 (8.6)

0.02

21 (48.8) 5 (11.1)

0.01 20–50 29 (44.6) 20 (57.1) 15 (34.9) 30 (66.7)

 51–80 14 (21.5) 12 (34.3) 7 (16.3) 10 (22.2)

IFN-γ (pg/ml)

 < 4.25 13 (20) 10 (28.6)

0.72

34 (79.1) 28 (62.2)

0.01
 4.25–5.02 18 (27.7) 9 (25.7) 6 (14) 2 (4.4)

 5.03–16.4 18 (27.7) 7 (20) 1 (2.3) 8 (17.8)

 > 16.4 16 (24.6) 9 (25.7) 2 (4.7) 7 (15.6)

IL-1β (pg/ml)

 < 1.57 15 (25.1) 10 (28.6)

0.48

22 (51.2) 24 (53.3)

0.92
 1.57–2.84 18 (27.7) 6 (17.1) 11 (25.6) 13 (28.9)

 2.85–125.31 18 (27.7) 8 (22.9) 3 (7) 2 (4.4)

 > 125.31 14 (21.5) 11 (31.4) 7 (16.3) 6 (13.3)

IL-4 (pg/ml)

 < 3.17 19 (29.2) 5 (14.3)

0.36

12 (27.9) 7 (15.6)

0.37
 3.17–3.71 15 (25.1) 11 (31.4) 7 (16.3) 6 (13.3)

 3.72–12.59 14 (21.5) 10 (28.6) 21 (48.8) 30 (66.7)

 > 12.59 17 (26.2) 9 (25.7) 3 (7) 2 (4.4)

IL-6 (pg/ml)

 < 6.02 15 (25.1) 10 (28.6)

0.26

28 (65.1) 25 (55.6)

0.44
 6.02–8.46 19 (29.2) 6 (17.1) 2 (4.7) 5 (11.1)

 8.47–9,855.8 18 (27.7) 7 (20) 7 (16.3) 11 (24.4)

 > 9,855.8 13 (20) 12 (34.3) 6 (14) 4 (8.9)

IL-8 (pg/ml)

 < 19.17 20 (30.8) 5 (14.3)

0.31

15 (34.9) 13 (28.9)

0.57
 19.17–41.49 14 (21.5) 10 (28.6) 18 (41.9) 16 (35.6)

 41.5–44,418.72 16 (24.6) 9 (25.7) 8 (18.6) 11 (24.4)

 > 44,418.72 15 (25.1) 11 (31.4) 2 (4.7) 5 (11.1)

Continued
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IL-17A, and Treg cells secrete the specific cytokine TGF-β. Breg cells are another kind of immunoregulatory cell 
that secretes the specific cytokines IL-10 and IL-2225–27.

Generally, cytokines can be divided into two types depending on their function. One type is proinflammatory, 
and the other is anti-inflammatory. The expression of proinflammatory and anti-inflammatory factors tends to 
be balanced under physiological conditions; otherwise, immune disorders occur.

Additionally, cytokines are derived from immune cells, and the secretion and function of immune cells are 
regulated by related cytokines. In other words, the occurrence and development of ITP is due to the overex-
pression of proinflammatory factors and low expression of anti-inflammatory factors, according to research28.

Since cytokines are so important in the onset of ITP, cytokines should be incorporated into bleeding models. 
However, previous hemorrhagic risk assessment models did not take cytokines into account. In this study, a 
relatively accurate predictive tool was used to evaluate bleeding risk in patients with ITP. The internal validation 
and external validation of the tool showed good discrimination and calibration capabilities; in particular, our 
high c-index measured by interval validation and AUC indicate that our model can be used widely and accurately 
to assess bleeding risk.

Regarding the risk of bleeding in ITP patients, a previous studies mainly focused on the effect of platelets, 
including the platelet count29, platelet function30, platelet activation31, and the immature platelet fraction32. 
However, these models, such as the ITP-BAT33, WHO bleeding scoring system34, Buchanan hemorrhage score35, 
and Khellaf hemorrhage score36, are based on only clinical hemorrhagic symptoms. It is difficult to assess the 
risk of bleeding in a patient if he or she bled previously, but the symptoms have disappeared or no positive 
signs of bleeding are found on physical examination. At this time, the risk of bleeding is underestimated, which 
affects treatment choice. Additionally, low platelet counts do not always indicate a high bleeding risk; therefore, 
if treatment is based only on platelet counts, overtreatment may occur, resulting in wasted medical resources 
and forcing patients to take unnecessary medical risks. In addition, platelet function detection methods include 
optical turbidimetry, the impedance method, thromboelastography, Plateletwork tests and flow cytometry37,38. 
However, these methods have some defects, such as poor replicability, a requirement for a high platelet quantity 

Table 1.   Characteristics of patients in the training and validation cohorts. GC glucocorticoid (Prednisone).

Training cohortn (%) Validation cohortn (%)

Bleeding No Bleeding

P

Bleeding No Bleeding

Pn = 65 n = 35 n = 43 n = 45

IL-10 (pg/ml)

 < 3.99 14 (21.5) 11 (31.4)

0.73

4 (9.3) 4 (8.9)

0.46
 3.99–4.75 16 (24.6) 8 (22.9) 17 (39.5) 11 (24.4)

 4.76–12.98 19 (29.2) 8 (22.9) 21 (48.8) 28 (62.2)

 > 12.98 16 (24.7) 8 (22.9) 1 (2.3) 2 (4.4)

IL-17A (pg/ml)

 < 143.65 20 (30.8) 5 (14.3)

0.06

6 (14) 7 (15.6)

0.42
 143.65–179.38 17 (26.2) 8 (22.9) 5 (11.6) 11 (24.4)

 179.39–480.2 17 (26.2) 8 (22.9) 29 (67.4) 25 (55.6)

 > 480.2 11 (16.8) 14 (40) 3 (7) 2 (4.4)

IL-22 (pg/ml)

 < 5.26 20 (30.8) 5 (14.3)

0.12

8 (18.6) 11 (24.4)

0.84
 5.26–6.8 18 (27.7) 7 (20) 17 (39.5) 14 (31.1)

 6.81–2,743.68 14 (21.5) 11 (31.4) 16 (37.2) 18 (40)

 > 2,743.68 13 (20) 12 (34.3) 2 (4.7) 2 (4.4)

IL-23 (pg/ml)

 < 2.43 16 (24.6) 9 (25.7)

0.3

11 (25.6) 15 (33.3)

0.83
 2.43–3.24 20 (30.8) 5 (14.3) 12 (27.9) 11 (24.4)

 3.25–340.81 14 (21.5) 11 (31.4) 8 (18.6) 9 (20)

 > 340.81 15 (25.1) 10 (28.6) 12 (27.9) 10 (22.2)

TNF-α (pg/ml)

 < 2.24 19 (29.2) 5 (14.3)

0.29

13 (30.2) 12(26.7)

0.49
 2.24–2.99 15 (25.1) 11 (31.4) 16 (37.2) 14(31.1)

 3–115.84 17 (26.2) 8 (22.9) 11 (25.6) 11(24.4)

 > 115.84 14 (21.5) 11 (31.4) 3 (7) 8(17.8)

TGF-β (pg/ml)

 < 6,959.06 20 (30.8) 6 (17.1)

0.05

14 (32.6) 11(24.4)

0.01
 6,959.06–12,480.82 18 (27.7) 7 (20) 19 (44.2) 5(11.1)

 12,480.83–67,139.67 17 (26.2) 8 (22.9) 8 (18.6) 15(33.3)

 > 67,139.67 10 (15.3) 14 (40) 2 (4.7) 14(31.1)
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and expensive instruments. In fact, predicting the bleeding risk in individual patients is difficult, and the inclu-
sion of various factors and multifaceted interventions may be the most effective solution. Therefore, it is very 
necessary to find an index that can comprehensively evaluate the hemostatic state of ITP patients while also being 
convenient and inexpensive. Similar to previous studies, our study showed that a low platelet count and long 
course of disease increased the risk of bleeding. In contrast to previous studies, this study took into considera-
tion the expression of cytokines.

In this study, 65% of ITP patients exhibited bleeding, including in the purpura, muscle, nose, retinal and 
gingival. Then, we obtained eight key factors that forecasted the risk of bleeding in ITP patients by risk fac-
tor analysis. This nomogram suggested that patients with high expression of IFN-γ, IL-17A, and IL-22; low 
expression of IL-4, IL-10, and TGF-β; a low platelet count, and a long course of disease had an elevated risk of 
bleeding. This result basically agreed with clinical feature findings. Therefore, it is helpful to take into account 
cytokines when predicting bleeding risk. This model will assist physicians in accessing the bleeding risk of ITP 
patients and taking interventions in time, preventing unnecessary measures in low-risk situations and avoiding 
delays or discontinuity in treatment when the most appropriate time appears. We also believe that this model 

Figure 1.   Results for demographic and clinical feature selection by the LASSO binary logistic regression model. 
Notes The optimabest parameter (lambda) of the lasso model, which is selected by the minimum criterion for 
five cross verifications, shown in (A). The binomial deviance curve was plotted depended on log(lambda). 
According to the minimum criteria and the 1-SE criteria, dotted vertical lines were drawn at the optimal 
values. (B) Showed LASSO coefficient profiles of the 19 features. A coefficient profile plot was produced based 
on the log(lambda) sequence. Vertical line was drawn at the value selected using fivefold cross-validation, 
where optimal lambda resulted in eight features with nonzero coefficients. LASSO least absolute shrinkage and 
selection operator, SE standard error.

Table 2.   Predictive factors for bleeding risk in ITP. β is the regression coefficient of eight feathers enrolled 
in logistic regression model. If β is coefficient is positive and odds ratio is above one, the feature is positively 
correlated with the probability of occurrence of bleeding. If β is coefficient is negative and odds ratio is below 
one, the feature is positively correlated with the probability of occurrence of no bleeding.

Intercept and variable

Prediction model

β Odds ratio (95% CI) P-value

IFN-γ 4.71284305 2.88 (0.569, 16.854) 0.00214

IL-4 − 2.35877965 0.41 (0.06, 2.39) 0.03499

IL-10 − 2.16067288 0.115 (0.126,4.54) 0.03162

IL-17A 0.65924361 1.933 (0.094,4.167 ) 0.45221

IL-22 − 1.77017665 0.17 (0.033, 1.534) 0.04587

TGF-β − 2.03386875 0.131 (0.142, 4.451) 0.06987

PLT − 1.18593598 0.305 (0.045, 1.227) 0.25476

Time − 0.75794663 0.469 (0.133, 1.513) 0.02765
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Figure 2.   The nomogram of bleeding risk predict model. Note To use the nomogram, an individual patient’s 
value is located on each variable axis, and a line is drawn upward to estimate the number of points received for 
each variable value. The sum of these numbers is located on the Total Points axis, and a line is drawn downward 
to the survival axes to determine the likelihood of bleeding.

Figure 3.   Calibration curves for bleeding nomogram predictions in the training cohort (A) and Validation 
cohort (B). Notes The x-axis represents the forecasted bleeding risk, while the the actual diagnosed bleeding 
shown at y-axis. The diagonal dotted line showed an ideal model for the perfect prediction ability, and the solid 
line (bias-corrected line) represents the reality performance of the nomogram. The closer fit to the diagonal 
dotted line, the better prediction ability of the nomogram.
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Figure 4.   ROC curves of bleeding nomogram in the training cohort (A) and validation cohort (B). Notes The 
y-axis represents true positive rate and x-axis shows false positive rate. The area between dotted line and the 
curve is AUC, and the larger of AUC (closed to one), is the higher of model’s accuracy. Then, the accuracy of 
bleeding risk model shows great based on AUC.

Figure 5.   Decision curve analysis for the bleeding risk nomogram. The y-axis measures the net benefit. The 
blue line represents the bleeding risk nomogram. The thin solid line represents the assumption that all patients 
were bleeding during the course of ITP progression. The thick solid line (parallel to the x-axis) represents the 
assumption that no patients were bleeding. The net benefit was calculated by subtracting the proportion of all 
patients who are false positive from the proportion who are true positive, weighting by the relative harm of 
forgoing treatment compared with the negative consequences of an unnecessary treatment. In this study, 14% 
(the intersection of blue line and thin solid line) was false positive rate and 88% (the intersection of blue line and 
thick solid line) was false negative rate.
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will be beneficial in the evaluation of drug efficacy since improvements in patients with bleeding symptoms are 
as important as improvements in platelet levels.

Limitations
There are also several limitations of our current study. First, our study did not enroll newly diagnosed patients 
(less than 3 months) and the platelet level as 80–< 100 were not included, so the bleeding risk for these patients 
cannot be evaluated. Second, children and teenagers were not included, so the difference between pediatric 
and adult patients was not be taken into consideration. Third, the cohort was not representative of all Chinese 
patients with ITP since patient race and region of origin were not considered. These factors need to be externally 
evaluated in a broader population of ITP patients.
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