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Abstract

Case-control Genome-Wide Association Studies (GWAS) provide a rich resource for study-

ing the genetic architecture of complex diseases. A key is to elucidate how the genetic

effects vary by the environment, what is traditionally defined by Gene-Environment interac-

tions (GxE). The overlooked complication is that multiple, distinct pathophysiologic mecha-

nisms may lead to the same clinical diagnosis and often these mechanisms have distinct

genetic bases. In this paper, we first show that using the clinically diagnosed status can lead

to severely biased estimates of GxE interactions in situations when the frequency of the

pathologic diagnosis of interest, as compared to other diagnoses, depends on the environ-

ment. We then propose a pseudo-likelihood solution to correct the bias. Finally, we demon-

strate our method in extensive simulations and in a GWAS of Alzheimer’s disease.

Introduction

We are interested in using data from a case-control Genome-Wide Association Studies

(GWAS) to estimate how an “environmental variable” modifies the effect of a genetic variant

on a specific, pathologically defined disease state. However, the complication is that in many

GWAS, the cases are a heterogenous group, where multiple distinct pathologically defined dis-

ease states have led to a common set of symptoms and a shared clinical diagnosis. In these sce-

narios, a genetic variant will appear to interact with the environmental variable if the genetic

variant affects the pathologically defined disease state of interest and the environmental vari-

able is related to the proportion of cases with that disease state.

The issue of heterogeneity among cases is, perhaps, most pronounced in neurologic and psy-

chiatric disorders, where the clinically defined status is based primarily on descriptive criteria and

is typically made in absence of biomarker measurements, imaging data, and biopsies. Our specific

motivating study is a GWAS of late-onset Alzheimer’s disease (AD), a neurodegenerative disorder
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that is clinically characterized by progressive mental decline. Here, we are interested in identifying

genetic variants specifically associated with a high abundance of amyloid deposits and neurofib-

rially tangles in the brain, which we refer to as “histopathologically defined AD.”[1] Specifically,

we are interested in whether carrying the ApoE ε4 variant, which in the study is considered the

“environmental variable”, modifies the effect of SNPs residing in Toll-Like Receptors (TLR) and

Receptor for advanced glycation end products (RAGE) on histopathologically defined AD.

Importantly, ApoE ε4 status is likely to be associated with the proportion of the GWAS cases who

have histopathologically defined AD. Recent biomarker studies of AD [2] reported that 36% of

ApoE ε4 non-carriers and 6% in ApoE ε4 carriers clinically diagnosed with AD do not have evi-

dence of amyloid deposition. We provide a more detailed description of ApoE ε4, other the risk

factors for AD and the heterogeneity of the disease in the Discussion section.

We are interested to test an association between single nucleotide polymorphisms (SNPs)

residing in Toll-Like Receptors (TLR) and the true AD diagnosis, i.e. our goal is to identify the

genetic that might have lea to amyloid plaques with associated cognitive decline. TLRs play a

key role in an innate immune response to invading pathogens and are also important for trig-

gering the adaptive immune responses. Dysregulation of human toll-like receptor function has

been shown in aging [3]. Specifically to the etiology of AD, TLRs act through modification of

the inflammatory state of microglia/macrophages [1]. Receptor for advanced glycation end

products (RAGE) has been identified as receptor for amyloid-beta peptide [4].

There is an extensive literature on how the estimates of the main genetic effect can be biased in

situations when disease status is misclassified, i.e. the clinical and pathologic diagnoses do not cor-

respond [5]. We extend the literature by investigating the impact of misdiagnosis on estimates of

the Gene-Environment interaction (GxE). In case-control studies, the effects of covariates have

been traditionally assessed using logistic regression analysis [6]. Recently, however, Chatterjee and

Carroll [7] noticed and proved that the assumptions of Hardy-Weinberg Equilibrium and Gene x

Environment independence can be leveraged in the appropriate retrospective analyses to gain sta-

tistical efficiency. We adopt the principals derived by Chatterjee and Carroll [7] and develop a

pseudo-likelihood model in settings when a case defined based on the clinical diagnosis might not

be the case in terms of the true diagnosis defined pathophysiologically.

Our paper is organized as follows. First, in the Material and Methods section we present the

setting, notation, and proposed pseudo-likelihood approach. Next, the Simulation Experi-

ments section describes the simulation experiments conducted to compare the resulting per-

formance of the proposed method with the performance of standard logistic regression using

clinically defined disease. In the same section, we apply our method to the motivating study of

AD. The Discussion section concludes the paper.

Materials and methods

We define G be the genotype, e.g. SNPs measured at multiple locations. Let X be the environ-

mental variables that interact with G and let Z be other environmental variables. We assume

that the genotype is independent of all environmental variables and the genotypes follows

Hardy-Weinberg Equilibrium: G~Q(g,θ). If θ is the frequency of minor allele a when the major

allele is A, then the Hardy-Weinberg Equilibrium model [8] according to the number of

minor alleles is

PrðG ¼ gjyÞ ¼

2� y� ð1 � yÞ; if g ¼ Aa

y
2
; if g ¼ aa

ð1 � yÞ
2
; if g ¼ AA

8
><

>:
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We define DCL = {0, 1} be observed clinical disease status defined based on a set of symp-

toms. Suppose that the same set of symptoms can be caused by two distinct pathophysiologic

mechanisms. Let D be the true disease status defined based on the underlying pathology,

where D = 1 indicates the disease of interest, while D = 1� is the nuisance disease. For ethical

and/or budgetary reasons it might not be possible to measure the underlying pathology, hence

D is latent. Instead, an evaluation is performed on a subset of patients or in an external reliabil-

ity study. We define τ(X) = pr(D = 1|DCL = 1,X) to be the frequency of the true diagnosis of

interest within the clinically diagnosed set that varies by the environment X. We let probabili-

ties of the clinical and true diagnoses in the population to be pdcl ¼ prðDCL ¼ dclÞ and πd = pr

(D =d), respectively.

The clinical and true diagnoses are related prðDCL ¼ dclÞ ¼
P

d■prðDCL ¼ dcljD ¼ d■Þ�
prðD ¼ d■Þ, which indicates that the probabilities of the clinical diagnosis are weighted sums

of frequencies of the true diagnoses. If pr(DCL = dcl|D = d,X = x,G = g) = pr(DCL = dcl|D =d),

then DCL is a surrogate of D. In this setting, prðDCL ¼ dcljG;XÞ ¼
P

d■prðDCL ¼ dcljD ¼ d■Þ�
prðD ¼ d■jX;GÞ; hence if there is no relationship between (X,G) and D, neither there is one

between (X,G) and DCL.

We first consider a binary setting where the risk parameters are defined in terms of D = 1

vs. D = 1� and D = 0 combined. Then the risk model is defined in terms of coefficients B =

(β0,βG,βX,βZ,βG×X) by

log
prðD ¼ 1jG ¼ g;X ¼ x;Z ¼ zÞ

prðD ¼ 1� or 0jG ¼ g;X ¼ x;Z ¼ zÞ

� �

¼ b0 þ bG � g þ bX � x þ bZ � z þ bG�X � g � x: ð1Þ

In the second setting that we consider the risk model is defined separately for D = 1 vs.

D = 0 in terms of B = (β0,βG,βX,βZ,βG×X) and for D = 1� vs. D = 0 in terms of B� ¼
ðb
�

0
; b
�

G; b
�

X; b
�

Z; b
�

G�XÞ by

log
prðD ¼ 1jG ¼ g;X ¼ x;Z ¼ zÞ
prðD ¼ 0jG ¼ g;X ¼ x;Z ¼ zÞ

� �

¼ b0 þ bG � g þ bX � x þ bZ � z þ bG�X � g � x;

log
prðD ¼ 1jG ¼ g;X ¼ x;Z ¼ zÞ
prðD ¼ 1�jG ¼ g;X ¼ x;Z ¼ zÞ

� �

¼ b
�

0
þ b

�

0
� g þ b

�

X � x þ b
�

Z � z þ b
�

G�X � g � x ð2Þ

In Eq (2) B and B� might share coefficients, e.g. if bZ ¼ b
�

Z .

The observed data are collected using a case-control design where genetic and environmen-

tal variables are measured after the disease status is ascertained. However, the data will be ana-

lyzed as a random sample. To facilitate this analysis, we let δ = 1 be an indicator of selection

into the study and consider the imaginary Bernoulli sampling with prðd ¼ 1jDCL ¼ dclÞ /

ndcl=pdcl . Define kdcl ¼ b0 þ logðndcl=pdclÞ and k�dcl ¼ b
�

0
þ log ndcl

pdcl

� �
with a parameter set O =

(κ0,β0,βG,βX,βZ,βG×X,θ) For model (1) we define

S d; dcl; g; x; z; O
� �

¼
exp½Iðd ¼ 1Þ � fkdcl þ bG � g þ bX � x þ bZ � z þ bG�X � g � xg�

1þ expfb0 þ bG � g þ bX � x þ bZ � z þ bG�X � g � xg
� Qðg; yÞ;
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and for model (2) we define O ¼ ðk0; b0; bG; bX; bZ; bG�X; b
�

0
; b
�

G; b
�

X; b
�

Z; b
�

G�X; yÞ:

S d; dcl; g; x; z; O
� �

¼
Iðd ¼ 1Þ � expfkdcl þ bG � g þ bX � x þ bZ � z þ bG�X � g � xg þ Iðd ¼ 1�Þ � expfk�dcl þ b

�

0
� g þ b

�

X � x þ b
�

Z � z þ b
�

G�X � g � xg
1þ expfb0 þ bG � g þ bX � x þ bZ � z þ bG�X � g � xg þ expfb�

0
þ b

�

0
� g þ b

�

X � x þ b
�

Z � z þ b
�

G�X � g � xg

� Qðg; yÞ:

In addition we let gdcl jdðXÞ ¼ prðDCL ¼ dcljD ¼ d;XÞ:
Consider probability, Pr(DCL,G|X,Z,δ = 1) and define a function L(dCL,g,x,z;O) as follows.

Lðdcl; g; x; z; OÞ ¼
Sð0; 0; g; x; z; OÞ þ gdcl j1ðgÞ � Sð1; dcl; g; x; z; OÞ

P
g■;dcl■fSð0; 0; g■; x; z; OÞ þ gdcl■ j1ðg■Þ � Sð1; dcl■; g■; x; z; OÞg

: ð3Þ

The pseudo-likelihood

QN
i¼1
Lðdcli ; gi; xi; zi; OÞ ð4Þ

can be used in place of the likelihood function based on arguments provided in the Appendix.

Define C(dcl,g,x,z;O) to be the derivative of log{L(dcl,g,x,z;O)} with respect to O and

LNðOÞ ¼
PN

i¼1
CðDCL

i ;Gi;Xi;Zi; OÞ;

I ¼ n� 1E
@LNðOÞ

@O

� �

;

L ¼
P

dcl
ndcl
n
E CðDCL

i ;Gi;Xi;Zi; OÞjDCL ¼ dcl
� 	

� EfCðDCL
i ;Gi;Xi;Zi; OÞjDCL ¼ dclgT ;

where all expectations are taken with respect to the actual retrospective sampling scheme. Der-

ivations shown in the Appendix demonstrate that under suitable regularity conditions there is

a consistent sequence of solutions to LnðOÞ ¼ 0 with the following property

n1
2 Ô � O
� �

¼)Normal 0; I � 1ðI � LÞI � 1f g:

Remark 1: The intercept parameter kdcl is a function of the probability of disease in the pop-

ulation. Hence, if the probability of clinical diagnosis in the population is known or a good

bound can be specified, this information can be used while estimating parameters. This cannot

be done in the usual logistic regression setting.

Results

Simulation experiments

The goal of the simulation study is to examine potential differences in the effect estimates of the

genetic and environmental variables in their relationship to the 1) observed clinical diagnosis

using the usual logistic regression model (uLR) and pseudo-likelihood model (pMLE) [7]; and 2)

to the true disease status by using our pseudo-likelihood approach (pMLE-DX) that takes into

account that only a proportion of the clinically diagnosed cases have the true disease. In

pMLE-DX parameters are estimated based on Eq (4). Parameters are compared by their Bias and

Root Mean Squared Error (RMSE). Simulations are performed using MatLab version R2017a.

In each setting we simulate 500 datasets with n0 = n1 2 {1000,3000,5000,10000,50000}. We

let the genotype (G) be a Bernoulli random variable with frequency 0.10 to mimic a SNP and

Gene-environment interactions when a case might not be the case
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allow its effect to follow a recessive or dominant model. We set our other parameters to be sim-

ilar to the values observed in our GWAS of AD. The binary variable X = {ε4+,ε4−}, which rep-

resents the ApoE ε4 status according to presence or absence of ε4 allele that occurs in

approximately 14% of the population.

The proportion of the nuisance disease within the clinical diagnosis is defined as pr(D = 1�|

DCL = 1,ε4−) = 0.36 and pr(D = 1�|Dcl = 1,ε4+) = 0.06. The clinical diagnosis of late onset AD

is defined for ages 65 and older. We simulated age (Z1) to be Bernoulli with frequency 0.50 e.g.

corresponding to a median split. Sex (Z2) is Bernoulli with frequency 0.52 to reflect what we

observed in the motivating data example of AD.

Setting A. We first examine a setting when the nuisance disease and controls are equiva-

lent in that the risk parameters are defined for the disease of interest vs. the combination of

controls and nuisance disease as in Eq (1). The risk coefficients are b0 ¼ � 1;bG ¼ 0:406;

bZ2
¼ � 0:083;bε4 ¼ 2:079;bG�ε4 ¼ 0:41. In this setting, the frequency of the true disease sta-

tus is pr(D = 1) = 46%, pr(D = 1|ε4−) = 40%, pr(D = 1|ε4+) = 82%. Table 1 presents properties

of the risk parameter estimates in the datasets with n0 = n1 = 3,000. Additionally, shown in S1

Table are studies with n0 = n1 2 {1000,5000,10000,50000}. When the presence of the nuisance

disease is ignored (uLR, pMLE), b̂ε4 and b̂G�ε4 are biased with elevated RMSE. For example, in

a study with n0 = n1 = 3,000, the bias in b̂ε4 is -0.31 in uLR and pMLE, while the bias is reduced

to 0.005 by pMLE-DX. RMSE is 0.33 in uLR and pMLE, while it is reduced to 0.12 by pMLE-

DX. Similarly, bias in b̂G�ε4 is 0.56 in uLR and pMLE, while pMLE-DX reduces the bias by

more than half. RMSE of b̂G�ε4 is 2.5x larger when the presence of the nuisance disease is

ignored. Notably, estimates of bZ1
and bZ2

are biased in uLR and pMLE. When sample size

Table 1. Bias and RMSE in parameter estimates when βG×ε4 6¼ 0.

Parameters True value Clinical disease status is the outcome With consideration of

clinical-pathological

diagnoses relationship

Usual logistic

regression

Pseudo-likelihood

method (pMLE)

Pseudo-likelihood

method

(pMLE-DX)

Bias RMSE Bias RMSE Bias RMSE

n0 = 3,000 and n1 = 3,000

β0 -1 0.46 0.46 0.98 0.98 -0.0002 0.07

βG 0.406 -0.13 0.16 -0.13 0.16 -0.008 0.13

bZ1
1.098 -0.35 0.35 -0.35 0.35 0.003 0.08

bZ2
-0.083 0.02 0.06 0.02 0.06 -0.004 0.08

βε4 2.079 -0.31 0.33 -0.31 0.33 0.005 0.12

βG×ε4 0.693 0.56 2.4 0.26 0.91 0.22 0.93

Pr(G = 1) 0.10 -0.0004 0.004 0.02 0.02

The Bias and Root Mean Squared Error (RMSE) in parameter estimates from simulations using the usual logistic

regression with clinical diagnosis as the outcome (uLR), the pseudo-likelihood approach (pMLE), and our newly

proposed pseudo-likelihood approach that accounts for misdiagnosis (pMLE-DX). For these simulations, the study

included n0 = 3000 controls and n1 = 3000 cases. Frequency of ApoE ε4 allele in the population is 14%. Variables Z1

and Z2 are Bernoulli with frequencies 0.50 and 0.52, respectively. Frequency of the true disease status is 46% in the

population; and is 40% among the subpopulation with no ApoE ε4 alleles, and 82% in the subpopulation with at least

one ApoE ε4 alleles. Frequency of nuisance disease within the clinical diagnosis varies by ApoE4 status pr(D = 1�|

DCL = 1,ε4−) = 0.36 and pr(D = 1�|DCL = 1,ε4+) = 0.06.

https://doi.org/10.1371/journal.pone.0201140.t001
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increased, the uLR bias in b̂G�ε4 decreased, e.g. the bias is 0.08 in a study with n0 = n1 = 10,000;

while the bias in b̂ε4 persisted. Across all sample sizes, b̂G is biased by approximately -0.13,

whereas considering the nuisance disease nearly eliminated the bias, e.g. to -0.01 in a study

with n0 = n1 = 1000.

We next examine if the presence of the nuisance disease could lead us to erroneously conclude

that there was a significant b̂G�ε4 when βG×ε4 = 0. Here, we simulated datasets with βG×ε4 = 0.

Table 2 presents estimates in a study with n0 = n1 = 3000 and S2 Table is based on studies with

n0 = n1 2 {1000,5000,10000,50000}. Estimates of b0; bG; bZ1
; bε4; and βG×ε4 are clearly biased

when the presence of the nuisance disease is ignored. For example, in a study with n0 = n1 =

3,000, pMLE-DX decreased the bias in b̂G�ε4 from 0.12 in uLR and pMLE to 0.04, while RMSE

remained approximately the same 0.41 vs. 0.43. Similarly, pMLE-DX reduced the bias in b̂ε4 from

-0.26 in uLR to 0.007. At the same time, the RMSE of b̂ε4 went from 0.28 (uLR, pMLE) to 0.12

(pMLE-DX). Increasing the sample size reduced the uLR bias for b̂G�ε4; e.g. the bias is 0.09 in a

study with n0 = n1 = 10,000 but did not alleviate the substantial uLR bias in βε4. Across all sample

sizes considered, the uLR estimates of βG are biased by approximately -0.12, while pMLE-DX

reduced the bias to e.g. 0.01 in a study with 1,000 cases and 1,000 controls.

We next consider the effect of underestimating pr(D = 1�|DCL = 1,ε4+) and pr(D = 1�|DCL = 1,

ε4−) in the pseudo-likelihood. Here, we simulate data using the parameters specified above, but,

when fitting the pseudo-likelihood (S3 Table), set pr(D = 1�|DCL = 1,ε4−) = 0.3 and pr(D = 1�|

DCL = 1,ε4+) = 0, i.e. underestimated by 6%. Naturally, this misspecification introduced bias in

some of the estimates and hence increased RMSE. Estimates of βε4 were generally affected more

than the estimates of the other parameters. For example, in a study with 3,000 cases and 3,000

controls, bias in b̂ε4 increased from 0.005 to -0.66 in pMLE-DX, while RMSE went from 0.12 to

0.67. In estimates of βG×ε4, the bias increased from 0.22 to 0.32, while RMSE went up from 0.93 to

0.94. The bias in b̂G increased to -0.10 in a study with 3,000 cases and 3,000 controls, what has not

Table 2. Bias and RMSE in parameter estimates when βG×ε4 = 0.

Parameters True value Clinical disease status is the outcome With consideration of clinical-

pathological relationship

Usual logistic

regression

Pseudo-likelihood method Pseudo-likelihood method

Bias RMSE Bias RMSE Bias RMSE

n0 = 3,000 and n1 = 3,000

β0 -1 0.45 0.45 0.93 0.93 -0.0004 0.07

βG 1.099 -0.12 0.15 -0.07 -0.15 0.002 0.13

bZ1
1.098 -0.33 0.34 -0.33 0.34 0.001 0.08

bZ2
-0.083 0.02 0.06 0.02 0.06 -0.003 0.08

βε4 2.079 -0.26 0.28 -0.26 0.28 0.007 0.12

βG×ε4 0 0.12 0.41 0.13 0.41 0.04 0.43

Pr(G = 1) 0.10 -0.000 0.004 0.03 0.03

The Bias and Root Mean Squared Error (RMSE) in parameter estimates from simulations using the usual logistic regression with clinical diagnosis as the outcome

(uLR), the pseudo-likelihood approach (pMLE), and our newly proposed pseudo-likelihood approach that accounts for misdiagnosis (pMLE-DX). For these

simulations, the study included n0 = 3000 controls and n1 = 3000 cases. Frequency of ApoE ε4 allele in the population is 14%. Variables Z1 and Z2 are Bernoulli with

frequencies 0.50 and 0.52, respectively. Frequency of the true disease status is 46% in the population; and is 40% among the subpopulation with no ApoE ε4 alleles, and

82% in the subpopulation with at least one ApoE ε4 alleles. Frequency of nuisance disease within the clinical diagnosis varies by ApoE4 status pr(D = 1�|DCL = 1,ε4−) =

0.36 and pr(D = 1�|DCL = 1,ε4+) = 0.06.

https://doi.org/10.1371/journal.pone.0201140.t002
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reached the level of uLR where the bias is -0.12. Estimates of bX2
remained nearly unbiased with

the same RMSE.

We next consider the effect of overestimating pr(D = 1�|DCL = 1,ε4+) and pr(D = 1�|DCL =

1,ε4−) in the pseudo-likelihood (S4 Table). Here, we simulate data using the parameters speci-

fied above, but, when fitting the pseudo-likelihood, set pr(D = 1�|DCL = 1,ε4−) = 0.42 and pr

(D = 1�|DCL = 1,ε4+) = 0.16, i.e. overestimated by 6%. As expected, this misspecification inflated

the bias in the risk estimates. For example, in a study of 3,000 cases and 3,000 controls, bias in b̂ε4

increased from 0.005 to -0.43, while RMSE went from 0.12 to 0.44. Bias in b̂G�ε4 decreased from

0.22 to 0.17, while RMSE remained the same. Estimates of βG and bX2
remained nearly unbiased.

Setting B. We next examine a setting when two sets of parameters define the risk of disease,

i.e. forD = 1 vs.D = 0 andD = 1� vs.D = 0 according to the risk model (2). Table 3 (n0 = n1 =

3,000) and S5 Table present parameter estimates in the setting when b0 ¼ � 1; b
�

0
¼ � 1:7; bG ¼

� 0:69; b
�

G ¼ 0; bZ1
¼ 0:10; bZ2

¼ � 0:083; bε4 ¼ 1:3; b
�

ε4 ¼ 0:5; bG�ε4 ¼ 1:099;b
�

G�ε4 ¼

0;PrðG ¼ 1Þ ¼ 0: With these parameters, the frequencies of the disease of interest and the nui-

sance disease are pr(D = 1) = 25.1%, pr(D = 1�) = 12.5%, pr(D = 1|ε4+) = 45.4%, pr(D = 1�|ε4+) =

16.1%, pr(D = 1|ε4−) =20%, pr(D = 1�|ε4−) = 16.1%. When presence of the nuisance disease is

ignored (uLR, pMLE), estimates of β0,βε4,βG×ε4,βG are substantially biased.For example, in a study

with 3,000 cases and 3,000 controls, in the bias of uLR for b̂ε4 is -0.22, while pMLE-DX reduced

this bias to -0.006; the bias of uLR for b̂G�ε4 is -0.13, while pMLE-DX reduced this bias to 0.01; the

bias of uLR bias for b̂G is 0.30, while pMLE-DX reduced it to 0.005. Biases in uLR persisted for

larger sample sizes. If a priori evidence is sufficient to set parameters b
�

G�ε4 and b
�

G to 0, when in fact

Table 3. Bias and RMSE in parameter estimates when β�G = 0 and β�G�ε4 = 0.

Parameters True value Clinical disease status is the outcome With consideration of clinical-

pathological diagnoses relationship

Usual logistic

regression

Pseudo-likelihood method

(pMLE)

Pseudo-likelihood method

(pMLE-DX)

Bias RMSE Bias RMSE Bias RMSE

n0 = 3,000 and n1 = 3,000

β0 -1 0.97 0.97 0.74 0.74 0.02 0.06

b
�

0
-1.7 0.008 0.05

βG -0.69 0.30 0.31 -0.39 0.39 0.005 0.10

b
�

G 0 -0.02 0.14

bZ1
0.10 0.002 0.31 0.004 0.05 0.002 0.05

bZ2
-0.083 -0.004 0.05 -0.0008 0.05 -0.004 0.05

βε4 1.3 -0.22 0.24 -0.21 0.23 -0.006 0.10

b
�

ε4 0.5 -0.007 0.05

βG×ε4 0.10 -0.13 0.29 -0.28 0.36 0.01 0.25

b
�

G�ε4 0 0.001 0.11

Pr(G = 1) 0.10 0.05 0.05 0.0001 0.004

The Bias and Root Mean Squared Error (RMSE) in parameter estimates from simulations using the usual logistic regression with clinical diagnosis as the outcome

(uLR), the pseudo-likelihood approach (pMLE), and our newly proposed pseudo-likelihood approach that accounts for misdiagnosis (pMLE-DX). For these

simulations, the study included n0 = 3000 controls and n1 = 3000 cases. Risk of the disease of interest is defined in a set of parameters b0; bG;bZ1
;bZ2

; bG�ε4; while the risk

of the nuisance disease is parametrized by b
�

0
; b
�

G;b
�

ε4; b
�

G�ε4: Frequency of ApoE ε4 allele in the population is 14%. Variables Z1 and Z2 are Bernoulli with frequencies

0.50 and 0.52, respectively. Frequencies of the disease of interest and the nuisance disease are pr(D = 1) = 24.8%, pr(D = 1�) = 12.5%, pr(D = 1|ε4+) = 43%, pr(D = 1�|ε4

+) = 16.1%, pr(D = 1|ε4−) = 20%, pr(D = 1�|ε4+) = 11.6%. Frequency of the nuisance disease within the clinical diagnosis varies by ApoE4 status pr(D = 1�|DCL = 1,ε4−)

= 0.36 and pr(D = 1�|DCL = 1,ε4+) = 0.06.

https://doi.org/10.1371/journal.pone.0201140.t003
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these coefficients are zero, then RMSE of pMLE-DX are further reduced by at least 2-fold (data not

shown).

Table 4 and S6 Table present the results in a setting similar to that of Table 3 but when

there is no interaction between the genotype and ApoE4 status, i.e. βG×ε4 = 0. Ignoring the nui-

sance disease in the uLR resulted in bias in the estimate of βG×ε4 that is -0.23, which might mis-

lead to a conclusion that there is an interactive effect between the genotype and ApoE ε4

status. The bias persisted for larger sample sizes.

Setting C. We next conducted a simulation study to better understand the underlying

nature of the biases in the estimates noted when presence of the nuisance disease is ignored

(uLR). For clarity, we simulated all variables to be binary. Variables G,Z1 and Z2 are Bernoulli

with frequencies 0.10, 0.52 and 0.50, respectively. Risk coefficients are b0 ¼ � 1;bG ¼

logð1:5Þ ¼ 0:41;bZ1
¼ 1;bZ2

¼ logð0:92Þ ¼ � 0:08; bε4 ¼ logð8Þ ¼ 2:1; bG�ε4 ¼ logð3Þ ¼
1:1: Then we varied values of bX2

; bε4, and βG×ε4. The relationship between clinical and patho-

physiological diagnosis is set to be pr(D = 1�|DCL = 1,ε4−) = 0.36 and pr(D = 1�|DCL = 1,ε4+) =

0.06. We simulated 500 datasets with 3,000 cases and 3,000 controls.

Fig 1 presents a study where βε4 varies as log(1),log(1.5),log(2),log(2.5),. . .log(8) across the

x-axis and bZ2
is color-coded to be 0, 0.5, 1, 1.5. We show in panels A, B, C, D, and E, the biases

of b̂Z2
; b̂Z1

; b̂ε4; b̂G, and b̂G�ε4, respectively. With increasing value of βε4, the biases in the main

effect estimates of bZ2
; bZ1

and βG increase. For example, the bias in b̂G reaches -0.10 when βε4

is log(5). The bias in b̂ε4 and b̂G�ε4 is even more sensitive to value of βε4. For example, when

Table 4. Bias and RMSE in parameter estimates when β�G = 0, βG×ε4 = 0 and β�G�ε4 = 0.

Parameters True value Clinical disease is the outcome With consideration of clinical-

pathological diagnoses relationship

Usual logistic

regression

Pseudo-likelihood method

(pMLE)

Pseudo-likelihood method

(pMLE-DX)

Bias RMSE Bias RMSE Bias RMSE

n0 = 3,000 and n1 = 3,000

β0 -1 0.97 0.97 0.75 0.75 0.03 0.06

b
�

0
-1.7 0.01 0.05

βG -0.69 0.30 0.31 -0.38 0.39 0.004 0.09

b
�

G 0 -0.01 0.13

bZ1
0.10 0.002 0.05 0.001 0.09 0.002 0.05

bZ2
-0.083 -0.004 0.05 -0.003 0.05 -0.004 0.05

βε4 1.3 -0.22 0.24 -0.22 0.23 -0.006 0.10

b
�

ε4 0.5 -0.009 0.06

βG×ε4 0 -0.23 0.28 -0.23 0.28 0.01 0.25

b
�

G�ε4 0 -0.0008 0.12

Pr(G = 1) 0.10 0.000 0.004

The Bias and Root Mean Squared Error (RMSE) in parameter estimates from simulations using the usual logistic regression with clinical diagnosis as the outcome

(uLR), the pseudo-likelihood approach (pMLE), and our newly proposed pseudo-likelihood approach that accounts for misdiagnosis (pMLE-DX). For these

simulations, the study included n0 = 3000 controls and n1 = 3000 cases. Risk of the disease of interest is defined in a set of parameters b0; bG;bZ1
;bZ2

; bG�ε4; while the risk

of the nuisance disease is parametrized by b
�

0
; b
�

G;b
�

ε4; b
�

G�ε4: Frequency of ApoE ε4 allele in the population is 14%. Variables Z1 and Z2 are Bernoulli with frequencies

0.50 and 0.52, respectively. Frequencies of the disease of interest and the nuisance disease are pr(D = 1) = 24.8%, pr(D = 1�) = 12.5%, pr(D = 1|ε4+) = 43%, pr(D = 1�|ε4

+) = 16.1%, pr(D = 1|ε4−) = 20%, pr(D = 1�|ε4−) = 11.6%. Frequency of the nuisance disease within the clinical diagnosis varies by ApoE4 status pr(D = 1�|DCL = 1,ε4−)

= 0.36 and pr(D = 1�|DCL = 1,ε4+) = 0.06.

https://doi.org/10.1371/journal.pone.0201140.t004
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βε4 = 0, the bias in b̂G�ε4 is 0.8; while when βε4 = log(8) the bias is -0.7. Similarly, when βε4 = 0,

the bias in b̂G�ε4 is -0.18; while when βε4 = log(8) the bias becomes 0.6. Bias in the estimates of

bX2
increases with the increase in the true value. Bias in the other estimates is nearly not

affected by values of bX2
.

Fig 2 presents a study where βG×ε4 varies as log(1),log(1.5),log(2),log(2.5),. . .log(8) across

the x-axis and bZ2
is color-coded to be 0, 0.5, 1, 1.5. We show in panels A, B, C, D, and E, the

bias of b̂Z2
; b̂Z1

; b̂ε4; b̂G; b̂G�ε4, respectively. In this setting, the biases in the main effects

b̂Z2
; b̂Z1

and b̂G were approximately the same for all values of βG×ε4, while the biases in the esti-

mates of b̂ε4 and b̂G�ε4 were more sensitive to the value of βG×ε4. For example, when the inter-

action coefficient is 0, the bias of b̂ε4 is nearly -2, while when βG×ε4 = log(8) = 2.08, the bias

goes up to 3. When βG×ε4 = 0, the bias in the estimate is nearly zero, while the bias goes to

almost 6 when the true value is log(8).

Analyses of genetic variants serving toll-like receptors and receptor for

advanced glycation end products in Alzheimer’s disease

We applied the proposed analyses to a dataset collected as part of the Alzheimer’s Disease Genetics

Consortium. The data has been anonymized prior to access by the authors. The data consists of

1,245 controls and 2,785 cases. The average age (SD) of Cases and controls are 72.1 (9.1) and 70.9

(8.8) years, respectively. Among cases, 1,458 (52.4%) are men; among controls, 678 (63.9%) are

men. At least one ApoE ε4 allele is present in (64.5%) of cases and 365 (29.1%) of controls.

Illumina Human 660K markers have been mapped onto human chromosomes using NCBI

dbSNP database (https://www.ncbi.nlm.nih.gov/projects/SNP/). Chromosome location, proxi-

mal gene or genes and gene structure location (e.g. intron, exon, intergenic, UTR) has been

recorded for all SNPs. From these data, we inferred 111 SNPs to reside in genes serving Toll-

Fig 1. The bias in estimates of βZ1
(βAge) (A), βZ2

(βSex) (B), βε4 (C), βG (D), and βG×ε4 (E) obtained using the usual logistic regression with clinical diagnosis as the

outcome across values of βε4. Simulated are datasets with 3,000 cases and 3,000 controls. Values of βApoE4 are listed along the x-axis and the true values of bZ1
are

indicated by color. The parameters are set as follows: β0 = −1, βG = log(1.5), bZ2
¼ � 0:083; βG×ε4 = log(3); the relationship between the clinical and true disease statuses is

pr(D = 1�|DCL = 1,ε4-) = 0.36 and pr(D = 1�|DCL = 1,ε4+) = 0.06. Variables G,Z1 and Z2 are Bernoulli with frequencies 0.10, 0.50 and 0.52, respectively.

https://doi.org/10.1371/journal.pone.0201140.g001
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Like Receptors (TLR). Similarly, we inferred 3 SNPs to reside in the Receptor for advanced gly-

cation end products (AGER).

It is of interest to examine a relationship between the pathologic diagnosis and each of the

111 TLR SNPs (G), ApoE ε4 status (X), age (Z1), sex (Z2). The effect of SNPs might vary by

ApoE ε4 hence we included interaction between the genotype and ApoE ε4 status. The genetic

variables are modeled using a binary indicator of presence or absence of a minor allele.

We estimate parameters using the standard logistic model (uLR) that uses the clinical diagnosis

as a surrogate of the pathophysiologic diagnosis and the pseudo-likelihood model (pMLE-DX)

where we assume that the relationship between the clinical and pathophysiologic diagnosis is as

estimated in the Salloway study [2], i.e. the proportion of the nuisance disease within the clinically

diagnosed set is 36% in ApoE ε4 non-carriers and 6% in ApoE ε4 carriers. The pseudo-likelihood

model pMLE-DX estimates the coefficients in a model that treats the nuisance disease and con-

trols equivalently as in Eq (1). pMLE-DX�, however, estimates two sets of the risk coefficients as

in Eq (2). Data analyses are performed using MatLab version R2017a. When optimizing the pseu-

dolikelihood function we bounded the estimates to be on the interval [–5,5].

We first examine the results when statistical significance is assessed according to p-

value<0.05. We next correct for false discovery rate using Benjanimi-Hochberg method [9].

TLR. Shown in Table 5 are estimates of the risk coefficients for 53 SNPs with permuta-

tion-based p-values for b̂G or b̂G�ε4 that are<0.05 in either of the analyses. Of these 53 SNPs,

28 SNPs are within 500k up- or downstream of the SNPs previously reported in GWAS on Alz-

heimer’ disease, dementia, tauopathy, or/and vascular disease (S6 Table).

Estimates of βG or βG×ε4 differ numerically between the three approaches. For 14 of these 53

SNPs, b̂G�ε4 have p-values <0.05 in uLR, while in pMLE-DX and pMLE-DX� the correspond-

ing p-values are >0.05. These associations detected by uLR might be spurious as a result of

clinical-pathophysiological diagnoses relationship varying by ApoE ε4 status.

Fig 2. The bias in estimates of βZ1
(βAge) (A), βZ2

(βSex) (B), βε4 (C), βG (D), and βG×ε4 (E) obtained using the usual logistic regression with clinical diagnosis as the

outcome across values of βG×ε4. Simulated are datasets with 3,000 cases and 3,000 controls. Values of βG×ApoE4 are listed along the x-axis and the true values of bZ1
are

indicated by color. The parameters are set as follows: β0 = −1, βG = log(1.5), bX2
¼ � 0:083; βG×ε4 = log(3); the relationship between the clinical and true disease statuses is

pr(D = 1�|DCL = 1,ε4-) = 0.36 and pr(D = 1�|DCL = 1,ε4+) = 0.06. Variables G,Z1 and Z2 are Bernoulli with frequencies 0.10, 0.50 and 0.52, respectively.

https://doi.org/10.1371/journal.pone.0201140.g002

Gene-environment interactions when a case might not be the case

PLOS ONE | https://doi.org/10.1371/journal.pone.0201140 August 22, 2018 10 / 22

https://doi.org/10.1371/journal.pone.0201140.g002
https://doi.org/10.1371/journal.pone.0201140


Table 5. Parameter estimates in Alzheimer’s disease study.

SNP Gene/Intergenic Region Method β̂Age β̂ Sex β̂ ε4 β̂G β̂G�ε4

rs2033831 KIAA0922 | TLR2 uLR

pMLE-DX

pMLE-DX�

-0.24, p = 0.00

-1.6, p = 0.13

-0.24, p = 0.00

-0.43, p = 0.00

-2.4, p = 0.11

-0.43, p = 0.00

0.86, p = 0.00

-2.6, p = 0.32

1.9, p = 0.25

-0.30, p = 0.09

-0.87, p = 0.33

4.2, p = 0.28

0.58, p = 0.03

3.7, p = 0.80

0.22, p = 0.28

rs7656500 KIAA0922 | TLR2 uLR

pMLE-DX

pMLE-DX�

-0.25, p = 0.00

-1.2, p = 0.25

-0.25, p = 0.00

-0.42, p = 0.00

-1.8, p = 0.27

-0.43, p = 0.00

1.6, p = 0.01

0.12, p = 0.57

-2.3, p = 0.27

0.79, p = 0.01

6.0, p = 0.02

5.0, p = 0.13

-0.16, p = 0.43

0.73, p = 0.27

4.3, p = 0.09

rs1816702 TLR2 uLR

pMLE-DX

pMLE-DX�

-0.24, p = 0.00

-1.4, p = 0.13

-0.24, p = 0.00

-0.43, p = 0.00

-2.1, p = 0.10

-0.43, p = 0.00

1.4, p = 0.00

-0.18, p = 0.50

2.6, p = 0.03

0.43, p = 0.06

5.0, p = 0.04

5.0, p = 0.38

0.01, p = 0.49

1.1, p = 0.65

-0.46, p = 0.13

rs830832 SORBS2 | TLR3 uLR

pMLE-DX

pMLE-DX�

-0.24, p = 0.00

-1.0, p = 0.16

-0.24, p = 0.00

-0.42, p = 0.00

-1.6, p = 0.10

-0.43, p = 0.00

0.74, p = 0.01

-0.64, p = 0.42

-1.4, p = 0.07

-0.31, p = 0.06

-0.55, p = 0.35

4.4, p = 0.21

0.74, p = 0.01

1.8, p = 0.70

2.6, p = 0.03

rs7676342 SORBS2 | TLR3 uLR

pMLE-DX

pMLE-DX�

-0.25, p = 0.00

-1.3, p = 0.19

-0.24, p = 0.00

-0.43, p = 0.00

-2.2, p = 0.15

-0.43, p = 0.00

1.6, p = 0.00

0.94, p = 0.72

1.5, p = 0.03

0.35, p = 0.04

0.88, p = 0.75

4.3, p = 0.66

-0.24, p = 0.21

-0.02, p = 0.53

0.23, p = 0.69

rs4862611 SORBS2 | TLR3 uLR

pMLE-DX

pMLE-DX�

-0.24, p = 0.00

-1.5, p = 0.13

-0.25, p = 0.00

-0.43, p = 0.00

-2.9, p = 0.09

-0.43, p = 0.00

1.4, p = 0.00

0.04, p = 0.56

1.7, p = 0.08

0.08, p = 0.24

-0.36, p = 0.35

2.2, p = 0.15

0.03, p = 0.55

1.2, p = 0.32

-2.8, p = 0.03

rs13113778 SORBS2 | TLR3 uLR

pMLE-DX

pMLE-DX�

-0.24, p = 0.00

-1.7, p = 0.16

-0.24, p = 0.00

-0.43, p = 0.00

-4.9, p = 0.05

-0.42, p = 0.00

2.0, p = 0.00

4.1, p = 0.10

-0.75, p = 0.49

0.13, p = 0.62

-2.1, p = 0.26

5.0,p = 0.36

-0.64, p = 0.14

-3.1, p = 0.25

2.7, p = 0.06

rs1869617 SORBS2 | TLR3 uLR

pMLE-DX

pMLE-DX�

-0.24, p = 0.00

-1.4, p = 0.14

-0.24, p = 0.00

-0.43, p = 0.00

-2.7, p = 0.09

-0.43, p = 0.00

0.96, p = 0.02

-3.1, p = 0.32

2.2, p = 0.00

-0.33, p = 0.15

-0.53, p = 0.39

4.6, p = 0.01

0.46, p = 0.86

4.0, p = 0.11

0.18, p = 0.51

rs11938703 SORBS2 | TLR3 uLR

pMLE-DX

pMLE-DX�

-0.24, p = 0.002

-0.78, p = 0.15

-0.25, p = 0.00

-0.42, p = 0.00

-1.2, p = 0.13

-0.42, p = 0.00

0.95, p = 0.00

0.09, p = 0.57

1.7, p = 0.20

-0.24, p = 0.05

-0.50, p = 0.28

2.8, p = 0.28

0.58, p = 0.00

1.2, p = 0.67

-0.57, p = 0.35

rs1519318 SORBS2 | TLR3 uLR

pMLE-DX

pMLE-DX�

-0.24, p = 0.00

-1.4, p = 0.14

-0.25, p = 0.00

-0.43, p = 0.00

-2.6, p = 0.10

-0.43, p = 0.00

1.2, p = 0.00

0.86, p = 0.70

2.1, p = 0.08

-0.01,p = 0.51

0.04, p = 0.59

3.3, p = 0.01

0.21, p = 0.16

0.07, p = 0.44

-0.41, p = 0.39

rs12648771 SORBS2 | TLR3 uLR

pMLE-DX

pMLE-DX�

-0.25, p = 0.00

-1.6, p = 0.15

-0.24, p = 0.00

-0.42, p = 0.00

-2.0, p = 0.13

-0.43, p = 0.00

3.0, p = 0.00

2.9, p = 0.15

0.62, p = 0.06

-0.27, p = 0.26

-1.6, p = 0.26

5.0, p = 0.24

-1.6, p = 0.004

-2.1, p = 0.38

0.02, p = 0.31

rs6894 NQO1 | LOC100132364 uLR

pMLE-DX

pMLE-DX�

-0.24, p = 0.00

-1.4, p = 0.12

-0.24, p = 0.00

-0.43, p = 0.00

-2.4, p = 0.09

-0.42, p = 0.00

0.59, p = 0.07

0.42, p = 0.64

2.8, p = 0.00

-0.64, p = 0.03

-0.20, p = 0.46

3.9, p = 0.00

0.84, p = 0.03

0.49, p = 0.59

0.84, p = 0.16

rs3775296 TLR3 uLR

pMLE-DX

pMLE-DX�

-0.24, p = 0.00

-1.4, p = 0.14

-0.24, p = 0.00

-0.43, p = 0.00

-2.4, p = 0.11

-0.42, p = 0.00

2.0, p = 0.00

3.4, p = 0.14

1.4, p = 0.02

-0.02, p = 0.50

0.81, p = 0.27

4.3, p = 0.046

-0.61, p = 0.06

-2.5, p = 0.33

0.89, p = 0.12

rs7668666 TLR3 uLR

pMLE-DX

pMLE-DX�

-0.24, p = 0.00

-1.7, p = 0.13

-0.24, p = 0.00

-0.43, p = 0.00

-4.9, p = 0.018

-0.42, p = 0.00

1.4, p = 0.00

3.4, p = 0.14

1.7, p = 0.02

-0.14, p = 0.25

1.7, p = 0.19

4.9, p = 0.00

0.01, p = 0.52

-2.6, p = 0.27

-0.81, p = 0.19

rs1706143 TLR3 | FAM149A uLR

pMLE-DX

pMLE-DX�

-0.24, p = 0.00

-1.4, p = 0.14

-0.24, p = 0.00

-0.43, p = 0.00

-2.4, p = 0.11

-0.42, p = 0.00

1.3, p = 0.00

0.33, p = 0.37

0.45, p = 0.67

-0.12, p = 0.20

-0.39, p = 0.32

3.8, p = 0.26

0.12, p = 0.26

0.66, p = 0.33

2.9, p = 0.03

rs9299251 ASTN2 | TLR4 uLR

pMLE-DX

pMLE-DX�

-0.25, 0.00

-1.3, p = 0.14

-0.24, p = 0.00

-0.43, p = 0.00

-2.1, p = 0.14

-0.42, p = 0.00

1.1, p = 0.00

0.00, p = 0.63

0.48, p = 0.18

-0.04, p = 0.65

0.19, p = 0.65

3.3, p = 0.45

0.35, p = 0.04

1.1, p = 0.32

0.47, p = 0.18

rs955302 TNFRSF19 uLR

pMLE-DX

pMLE-DX�

-0.24, p = 0.00

-1.5, p = 0.13

-0.25, p = 0.00

-0.43, p = 0.00

-2.5, p = 0.10

-0.43, p = 0.00

1.2, p = 0.00

1.2, p = 0.34

2.2, p = 0.02

-0.28, p = 0.06

-0.23, p = 0.40

3.9, p = 0.30

0.27, p = 0.13

-0.37, p = 0.44

-1.2, p = 0.16

rs17419570 ASTN2 | TLR4 uLR

pMLE-DX

pMLE-DX�

-0.24, p = 0.00

-0.91, p = 0.23

-0.24, p = 0.00

-0.44, p = 0.00

-1.5, p = 0.21

-0.42, p = 0.00

0.68, p = 0.06

-0.93, p = 0.50

1.2, p = 0.44

-0.94, p = 0.01

-1.8, p = 0.32

4.5, p = 0.008

0.74, p = 0.06

1.9, p = 0.2

1.6, p = 0.064
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Table 5. (Continued)

SNP Gene/Intergenic Region Method β̂Age β̂ Sex β̂ ε4 β̂G β̂G�ε4

rs16905625 ASTN2 | TLR4 uLR

pMLE-DX

pMLE-DX�

-0.24, p = 0.00

-1.5, p = 0.19

-0.25, p = 0.00

-0.43, p = 0.00

-3.3, p = 0.13

-0.43, p = 0.00

1.3, p = 0.01

3.3, p = 0.12

0.92, p = 0.11

0.04, p = 0.59

2.3, p = 0.15

3.2, p = 0.03

0.16, p = 0.69

-2.5, p = 0.28

-0.33,p = 0.32

rs10513307 ASTN2 | TLR4 uLR

pMLE-DX

pMLE-DX�

-0.24, p = 0.00

-1.7, p = 0.15

-0.24, p = 0.00

-0.43, p = 0.00

-5.0, p = 0.03

-0.43,p = 0.00

1.7, p = 0.01

3.9, p = 0.11

-1.3, p = 0.33

0.06, p = 0.56

-0.61, p = 0.41

5.0, p = 0.02

-0.28, p = 0.31

-3.0, p = 0.32

2.5, p = 0.09

rs1890047 ASTN2 | TLR4 uLR

pMLE-DX

pMLE-DX�

-0.25, p = 0.002

-1.3, p = 0.11

-0.25, p = 0.00

-0.43, p = 0.00

-2.2, p = 0.10

-0.43, p = 0.00

1.1, p = 0.00

-0.77, p = 0.45

-0.17, p = 0.44

-0.06, p = 0.34

-0.08, p = 0.44

4.6, p = 0.008

0.39,p = 0.02

1.9, p = 0.22

2.0, p = 0.064

rs4837254 ASTN2 | TLR4 uLR

pMLE-DX

pMLE-DX�

-0.24, p = 0.00

-1.7, p = 0.15

-0.24, p = 0.00

-0.43, p = 0.00

-5.0, p = 0.03

-0.42, p = 0.00

1.2, p = 0.00

3.9, p = 0.11

2.0, p = 0.04

-0.03, p = 0.43

-0.61, p = 0.41

3.4, p = 0.65

0.27, p = 0.08

-3.0, p = 0.32

-0.90, p = 0.25

rs13285674 ASTN2 | TLR4 uLR

pMLE-DX

pMLE-DX�

-0.24, p = 0.002

-1.6, p = 0.14

-0.24, p = 0.00

-0.43, p = 0.00

-3.1, p = 0.08

-0.43, p = 0.00

1.0, p = 0.00

0.31, p = 0.62

2.8, p = 0.00

-0.47, p = 0.003

-1.3, p = 0.29

4.5, p = 0.03

0.42, p = 0.10

0.63, p = 0.40

-0.65, p = 0.24

rs1337208 ASTN2 | TLR4 uLR

pMLE-DX

pMLE-DX�

-0.24, p = 0.00

-1.2, p = 0.12

-0.25, p = 0.00

-0.43, p = 0.00

-2.0, p = 0.10

-0.42, p = 0.00

1.1, p = 0.00

-0.03, p = 0.55

0.96, p = 0.79

-0.009, p = 0.49

0.15, p = 0.62

2.9, p = 0.15

0.34, p = 0.05

1.1, p = 0.31

0.46, p = 0.71

rs1415378 ASTN2 | TLR4 uLR

pMLE-DX

pMLE-DX�

-0.25, p = 0.00

-1.5, p = 0.14

-0.24, p = 0.00

-0.43, p = 0.00

-2.8, p = 0.10

-0.42, p = 0.00

1.4, p = 0.00

1.5, p = 0.20

0.50, p = 0.28

0.05, p = 0.32

0.98, p = 0.21

2.1, p = 0.06

0.05, p = 0.54

-0.62, p = 0.37

1.4, p = 0.08

Rs504204 ASTN2 | TLR4 uLR

pMLE-DX

pMLE-DX�

-0.24, p = 0.002

-1.5, p = 0.16

-0.24, p = 0.00

-0.43, p = 0.00

-2.9, p = 0.13

-0.43, p = 0.00

0.21, p = 0.63

-4.0, p = 0.27

-3.9 p = 0.16

0.11, p = 0.54

-2.5, p = 0.48

5.0, p = 0.11

1.2, p = 0.17

5.0, p = 0.044

4.6, p = 0.06

rs12337381 ASTN2 | TLR4 uLR

pMLE-DX

pMLE-DX�

-0.25, p = 0.00

-1.5, p = 0.14

-0.25, p = 0.00

-0.43, p = 0.00

-2.5, p = 0.10

-0.43, p = 0.00

0.84, p = 0.04

-0.63, p = 0.50

3.0, p = 0.01

0.14, p = 0.66

-0.60, p = 0.40

4.6, p = 0.08

0.59, p = 0.11

1.6, p = 0.30

-1.5, p = 0.09

rs1952464 ASTN2 | TLR4 uLR

pMLE-DX

pMLE-DX�

-0.25, p = 0.00

-1.5, p = 0.15

-0.25, p = 0.00

-0.43, p = 0.00

-2.3, p = 0.10

-0.43, p = 0.00

0.98, p = 0.00

-0.08, p = 0.56

2.9, p = 0.002

-0.07, p = 0.34

0.62, p = 0.33

4.6, p = 0.08

0.50, p = 0.01

1.1, p = 0.67

-1.5, p = 0.09

rs12342331 ASTN2 | TLR4 uLR

pMLE-DX

pMLE-DX�

-0.25, p = 0.00

-1.5, p = 0.13

-0.25, p = 0.00

-0.43, p = 0.00

-2.5, p = 0.11

-0.43, p = 0.00

0.75, p = 0.08

-0.80, p = 0.50

1.4, p = 0.01

0.07, p = 0.59

-0.59, p = 0.38

5.0, p = 0.03

0.68, p = 0.08

1.8, p = 0.29

-0.35, p = 0.09

rs16905754 ASTN2 | TLR4 uLR

pMLE-DX

pMLE-DX�

-0.24, p = 0.00

-1.5, p = 0.05

-0.24, p = 0.00

-0.43, p = 0.00

-2.7, p = 0.06

-0.43, p = 0.00

1.1, p = 0.01

5.0, p = 0.07

0.11?, p = 0.00

0.52, p = 0.33

-0.99, p = 0.41

5.0, p = 0.66

-1.1, p = 0.002

-4.1, p = 0.21

0.19, p = 0.08

rs2771054 ASTN2 | TLR4 uLR

pMLE-DX

pMLE-DX�

-0.24, p = 0.00

-1.5, p = 0.22

-0.24, p = 0.00

-0.43, p = 0.00

-2.4, p = 0.20

-0.43, p = 0.00

2.9, p = 0.01

5.0, p = 0.04

-0.19, p = 0.10

1.5, p = 0.01

4.9, p = 0.04

5.0, p = 0.15

-1.5, p = 0.016

-4.1, p = 0.19

1.7, p = 0.66

rs521581 ASTN2 | TLR4 uLR

pMLE-DX

pMLE-DX�

-0.25, p = 0.002

-1.7, p = 0.11

-0.25, p = 0.00

-0.43, p = 0.00

-3.0, p = 0.08

-0.43, p = 0.00

1.1, p = 0.00

0.35, p = 0.58

1.5, p = 0.10

-0.02, p = 0.43

0.82,p = 0.33

3.5, p = 0.62

0.34, p = 0.04

0.61, p = 0.38

-0.36, p = 0.32

rs1329063 ASTN2 | TLR4 uLR

pMLE-DX

pMLE-DX�

-0.24, p = 0.002

-1.5, p = 0.19

-0.24, p = 0.00

-0.43, p = 0.00

-2.8, p = 0.15

-0.43, p = 0.00

1.6, p = 0.00

0.92, p = 0.34

-2.0, p = 0.17

0.65, p = 0.02

-0.10, p = 0.54

5.0, p = 0.58

-0.23, p = 0.33

-0.01, p = 0.57

3.3, p = 0.09

rs495083 ASTN2 | TLR4 uLR

pMLE-DX

pMLE-DX�

-0.25, p = 0.00

-1.5, p = 0.11

-0.24, p = 0.00

-0.42, p = 0.00

-3.3, p = 0.08

-0.42, p = 0.00

1.2, p = 0.01

1.5, p = 0.25

4.7, p = 0.00

-0.19, p = 0.10

0.37, p = 0.28

4.6, p = 0.10

0.24, p = 0.10

-0.72, p = 0.33

-2.8, p = 0.04

rs476 ASTN2 | TLR4 uLR

pMLE-DX

pMLE-DX�

-0.24, p = 0.00

-1.5, p = 0.13

-0.24, p = 0.00

-0.43, p = 0.00

-3.0, p = 0.07

-0.43, p = 0.00

3.0, p = 0.00

2.3, p = 0.20

0.85, p = 0.12

4.9, p = 0.03

1.1, p = 0.19

3.2, p = 0.36

-1.3, p = 0.11

-1.6, p = 0.29

0.50, p = 0.64

rs565055 ASTN2 | TLR4 uLR

pMLE-DX

pMLE-DX�

-0.25, p = 0.00

-1.3, p = 0.16

-0.25, p = 0.002

-0.43, p = 0.00

-2.1, p = 0.11

-0.42, p = 0.00

1.1, p = 0.00

0.81, p = 0.67

1.0, p = 0.21

-0.01, p = 0.47

0.15, p = 0.65

0.84, p = 0.59

0.37, p = 0.01

0.14,p = 0.57

2.1, p = 0.33

(Continued)

Gene-environment interactions when a case might not be the case

PLOS ONE | https://doi.org/10.1371/journal.pone.0201140 August 22, 2018 12 / 22

https://doi.org/10.1371/journal.pone.0201140


Table 5. (Continued)

SNP Gene/Intergenic Region Method β̂Age β̂ Sex β̂ ε4 β̂G β̂G�ε4

rs2094630 ASTN2 | TLR4 uLR

pMLE-DX

pMLE-DX�

-0.25, p = 0.00

-1.3, p = 0.15

-0.25, p = 0.00

-0.43, p = 0.00

-2.1, p = 0.11

-0.43, p = 0.00

1.1, p = 0.00

0.76, p = 0.33

0.30, p = 0.05

-0.2, p = 0.00

0.09, p = 0.57

1.7, p = 0.44

0.38, p = 0.02

0.20, p = 0.57

0.32, p = 0.35

rs10983712 ASTN2 | TLR4 uLR

pMLE-DX

pMLE-DX�

-0.24, p = 0.00

-1.4, p = 0.16

-0.25, p = 0.00

-0.43, p = 0.00

-4.8, p = 0.03

-0.43, p = 0.00

1.4, p = 0.00

1.8, p = 0.27

1.3, p = 0.10

0.02, p = 0.59

0.09, p = 0.62

3.0, p = 0.36

-0.04, p = 0.44

-1.0, p = 0.39

0.009, p = 0.49

rs10983736 ASTN2 | TLR4 uLR

pMLE-DX

pMLE-DX�

-0.24, p = 0.00

-1.5, p = 0.14

-0.25, p = 0.00

-0.43, p = 0.00

-2.8, p = 0.09

-0.43, p = 0.00

1.1, p = 0.01

-0.00, p = 0.67

2.8, p = 0.00

-0.24, p = 0.27

-0.67, p = 0.34

5.0, p = 0.038

0.26, p = 0.26

0.95, p = 0.65

0.05, p = 0.50

rs16905962 ASTN2 | TLR4 uLR

pMLE-DX

pMLE-DX�

-0.24, p = 0.00

-1.4, p = 0.23

-0.24, p = 0.00

-0.43, p = 0.00

-2.5, p = 0.15

-0.43, p = 0.00

-0.005, p = 0.56

-0.51, p = 0.51

-1.5, p = 0.06

-0.14, p = 0.48

5.1, p = 0.03

5.0, p = 0.57

1.4,p = 0.15

1.4, p = 0.72

3.1, p = 0.49

Rs1927914 ASTN2 | TLR4 uLR

pMLE-DX

pMLE-DX�

-0.24, p = 0.00

-1.3, p = 0.15

-0.25, p = 0.00

-0.43, p = 0.00

-2.1, p = 0.14

-0.43, p = 0.00

1.4, p = 0.00

1.2, p = 0.25

1.2, p = 0.12

0.17, p = 0.12

0.65, p = 0.76

3, p = 0.33

0.04, p = 0.58

-0.29, p = 0.47

1.2, p = 0.08

rs11536879 TLR4 uLR

pMLE-DX

pMLE-DX�

-0.25, p = 0.00

-1.5, p = 0.07

-0.24, p = 0.00

-0.43, p = 0.00

-3, p = 0.056

-0.43, p = 0.00

0.63, p = 0.25

-2.9, p = 0.37

-0.28, p = 0.04

-0.56, p = 0.30

-3.6, p = 0.36

5, p = 0.19

0.78, p = 0.27

3.8, p = 0.25

0.85, p = 0.19

rs4986790 TLR4 uLR

pMLE-DX

pMLE-DX�

-0.24, p = 0.00

-1.4, p = 0.08

-0.24, p = 0.00

-0.43, p = 0.00

-2.4, p = 0.06

-0.43, p = 0.00

3.5, p = 0.02

4.9, p = 0.01

0.84, p = 0.00

0.14, p = 0.36

-0.55, p = 0.48

5.0, p = 0.08

-3.3, p = 0.02

-4.1, p = 0.20

-1.3, p = 0.26

rs7045953 TLR4 | LOC100129489 uLR

pMLE-DX

pMLE-DX�

-0.24, p = 0.00

-1.4, p = 0.10

-0.24, p = 0.00

-0.43, p = 0.00

-2.4, p = 0.09

-0.43, p = 0.00

0.96, p = 0.01

-0.19, p = 0.54

2.6, p = 0.00

-0.02, p = 0.46

1.6, p = 0.19

4.8, p = 0.47

0.47, p = 0.11

1.1, p = 0.67

0.06, p = 0.44

rs7357627 TLR4 | LOC100129489 uLR

pMLE-DX

pMLE-DX�

-0.24, p = 0.00

-1.7, p = 0.11

-0.24, p = 0.00

-0.43, p = 0.00

-3.3, p = 0.10

-0.41, p = 0.00

1.3, p = 0.00

1.1, p = 0.28

0.51, p = 0.67

-0.02, p = 0.43

-0.31, p = 0.38

2.3, p = 0.09

0.07, p = 0.63

-0.24, p = 0.43

1.7, p = 0.08

rs7046020 TLR4 | LOC100129489 uLR

pMLE-DX

pMLE-DX�

-0.24, p = 0.00

-1.7, p = 0.14

-0.25, p = 0.00

-0.43, p = 0.00

-2.8, p = 0.11

-0.42, p = 0.00

1.5, p = 0.00

1.7, p = 0.75

-4.2, p = 0.00

0.08, p = 0.69

1.1, p = 0.24

4.5, p = 0.10

-0.11, p = 0.33

-0.91, 0.36

4.6, p = 0.01

rs1927937 TLR4 | LOC100129489 uLR

pMLE-DX

pMLE-DX�

-0.24, p = 0.00

-1.5, p = 0.11

-0.25, p = 0.00

-0.43, p = 0.00

-2.7, p = 0.09

-0.42, p = 0.00

1.3, p = 0.00

0.85, p = 0.59

1.3, p = 0.07

-0.02, p = 0.45

0.25, p = 0.66

4.3, p = 0.18

0.08, p = 0.63

0.05, p = 0.50

-0.51, p = 0.20

rs1927924 TLR4 | LOC100129489 uLR

pMLE-DX

pMLE-DX�

-0.24, p = 0.00

-1.5, p = 0.23

-0.24, p = 0.00

-0.43, p = 0.00

-2.9, p = 0.21

-0.43, p = 0.00

1.6, p = 0.00

4.9, p = 0.001

0.15, p = 0.61

0.25, p = 0.18

4.3, p = 0.05

5.0, p = 0.25

-0.20, p = 0.28

-4.2, p = 0.17

1.6, p = 0.04

rs3860141 TLR4 | LOC100129489 uLR

pMLE-DX pMLE-DX�
-0.24, p = 0.00

-1.2, p = 0.16

-0.24, p = 0.00

-0.42, p = 0.00

-2.2, p = 0.11

-0.42, p = 0.00

1.1, p = 0.00

0.01, p = 0.55

1.4, p = 0.17

-0.06, p = 0.33

-0.35, p = 0.35

3.6, p = 0.53

0.37, p = 0.02

1.1, p = 0.69

-0.57, p = 0.46

rs1877876 TLR4 | LOC100129489 uLR

pMLE-DX pMLE-DX�
-0.24, p = 0.00

-1.5, p = 0.10

-0.24, p = 0.00

-0.43, p = 0.00

-2.3, p = 0.08

-0.42, p = 0.00

1.7, p = 0.00

2.3, p = 0.30

-1.2, p = 0.07

0.20, p = 0.11

1.1, p = 0.22

3.9, p = 0.56

-0.31, p = 0.09

-1.5, p = 0.32

2.3, p = 0.02

rs497322 TLR4 | LOC100129489 uLR

pMLE-DX pMLE-DX�
-0.25, p = 0.00

-1.4, p = 0.23

-0.24, p = 0.00

-0.43, p = 0.00

-1.9, p = 0.20

-0.43, p = 0.00

1.7, p = 0.01

1.8, p = 0.26

0.24, p = 0.03

0.69, p = 0.01

4.5, p = 0.04

5.0, p = 0.05

-0.28, p = 0.28

-1, p = 0.42

1.7, p = 0.47

rs6478330 TLR4 | LOC100129489 uLR

pMLE-DX pMLE-DX�
-0.24, p = 0.00

-1.5, p = 0.15

-0.25, p = 0.00

-0.43, p = 0.00

-2.6, p = 0.13

-0.43, p = 0.00

1.2, p = 0.03

-0.008, p = 0.62

-2.8, p = 0.048

0.36, p = 0.21

0.73, p = 0.24

5.0, p = 0.14

0.16, p = 0.28

0.93, p = 0.33

5.5, p = 0.01

rs7856175 TLR4 | LOC100129489 uLR

pMLE-DX pMLE-DX�
-0.24, p = 0.00

-1.4, p = 0.13

-0.25, p = 0.00

-0.43, p = 0.00

-2.3, p = 0.11

-0.43, p = 0.00

1.7, p = 0.00

1.6, p = 0.24

1.5, p = 0.03

0.07, p = 0.30

0.43, p = 0.28

2.7, p = 0.61

-0.33, p = 0.03

-0.97, p = 0.36

-0.08, p = 0.28

rs3134940 AGER uLR

pMLE-DX

pMLE-DX�

-0.97, p = 0.00

-0.74, p = 0.13

-0.96, p = 0.11

-0.12, p = 0.08

-0.52, p = 0.14

-1.2, p = 0.10

1.1, p = 0.00

1.2, p = 0.40

1.4, p = 0.09

0.55, p = 0.00

1.2, p = 0.18

1.8, p = 0.13

-0.28, p = 0.05

-0.67, p = 0.33

-0.32, p = 0.50

(Continued)
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One SNP, rs830832, has significant b̂G�ε4 both in uLR (b̂G�ε4 ¼ 0:74; p ¼ 0:01) and

pMLE � DX�ðb̂ðG�ε4Þ ¼ 2:6; p ¼ 0:03Þ. This SNP locates at the intergenic region between

SORBS2 and TLR3 at Chromosome 4 and are 72k downstream of SNP rs75718659, which was

reported associated with Alzheimer’s disease in a family-based GWAS [10].

Among the seven SNPs appear to have significant b̂G�ε4 in pMLE- DX� but not uLR, two of

the SNPs: rs4862611 (b̂G�ε4 = -2.8, p = 0.03) and rs1706143 (b̂G�ε4 = 2.9, p = 0.03), are also

located at the intergenic region between SORBS2 and TLR3 at Chromosome 4 and are 80k

and 20k downstream of SNP rs75718659.

Nine of the SNPs appear to have significant b̂�G�ε4 in pMLE-DX� but not b̂G�ε4 in uLR or

pMLE-DX. Two SNPs, rs7676342 (b̂�G�ε4 ¼ � 2:1; p ¼ 0:02) and rs13113778 (b̂�G�ε4 ¼ � 2:7;

p ¼ 0:03), again are located in the intergenic region between SORBS2 and TLR3 at Chromo-

some 4 and are 80k and 100k downstream of SNP rs75718659, respectively. Three SNPs,

rs955302 (b̂�G�ε4 ¼ 4:0; p ¼ 0:01), rs4837254 (b̂�G�ε4 ¼ 2:3; p ¼ 0:04) and rs12342331

(b̂�G�ε4 ¼ 2:1; p ¼ 0:04), are located at the intergenic region between ASTN2 and TLR4 at

Chromosome 9 and are 400k, 430k, and 492k downstream of rs1360695 associated with

Schizophrenia [11].

Estimates of βG, however, are generally larger in magnitude when estimated in pMLE-DX

and pMLE- DX� models.

Two SNPs appear to be associated with the diagnosis both in uLR and pMLE-DX. SNP

rs7656500 (uLR b̂G ¼ 0:79; p ¼ 0:01 and pMLE-DX b̂G ¼ 6; p ¼ 0:02) locates at the inter-

genic region between KIAA0922 and TLR2 at Chromosome 4, and is 163k upstream and 144k

downstream of rs727153 and rs1466662, respectively, which were reported associated with

Alzheimer’s disease in two studies [12,13]. It is also 54k upstream of rs7654093 associated with

thrombosis [14], 30k upstream of rs7659024 associated with Venous thromboembolism [15],

34k upstream of rs2066865 associated with Venous thromboembolism [16, 17], 52k upstream

of rs6536024 associated with Venous thromboembolism [18], and 360k downstream of

rs11099942 associated with Type 2 diabetes [19].

Among six SNPs which appear to be significantly associated with the nuisance diagnosis in

absence of an interactive effect, three SNPs rs1869617 (at the intergenic region between

SORBS2 and TLR3 at Chromosome 4, pMLE- DX� b̂�G ¼ 4:9; p ¼ 0:01), rs3775296 (at the

UTR region of TLR3 at Chromosome 4, pMLE- DX� b̂�G ¼ 4:3; p ¼ 0:046), rs7668666 (at the

INTRON region of TLR3 at Chromosome 4, pMLE- DX� b̂�G ¼ 4:9; p ¼ 0:00) locate 110k,

Table 5. (Continued)

SNP Gene/Intergenic Region Method β̂Age β̂ Sex β̂ ε4 β̂G β̂G�ε4

rs1035798 AGER uLR

pMLE-DX

pMLE-DX�

-0.97, p = 0.00

-1.42, p = 0.09

-0.97, p = 0.11

-0.13, p = 0.06

-0.29, p = 0.18

-0.60, p = 0.15

0.89, p = 0.00

0.96, p = 0.56

1.3, p = 0.08

0.43, p = 0.00

0.67, p = 0.21

1.8, p = 0.13

0.03, p = 0.85

-0.06, p = 0.41

-1.9, p = 0.08

rs2070600 AGER uLR

pMLE-DX

pMLE-DX�

-0.97, p = 0.00

-2.3, p = 0.08

-0.97, p = 0.11

-0.12, p = 0.09

-0.50, p = 0.18

-0.62, p = 0.13

0.99, p = 0.00

0.97, p = 0.59

1.5, p = 0.05

0.49, p = 0.00

0.99, p = 0.22

1.8, p = 0.13

-0.14, p = 0.33

-0.24, p = 0.17

-0.23, p = 0.51

Analyses are performed using the usual logistic regression (uLR) that uses the clinical diagnosis as an outcome and using pseudo-likelihood method that assumes that

the proportion of nuisance disease within the clinically diagnosed AD is 36% for ε4 non-carriers and is 6% for ε4 carriers. Pseudo-likelihood analyses pMLE-DX

estimates parameters for D = 1 vs. D = 0 and D = 1� combined. Pseudo-likelihood analyses pMLE – DX�, however, estimate two sets of risk coefficients, i.e. βs for D = 0

vs. D = 1 and β�s D = 0 vs. D = 1�. Estimates of β�s are reported in S7 Table.

https://doi.org/10.1371/journal.pone.0201140.t005
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176k and 179k, respectively, downstream of rs75718659 reported associated with Alzheimer’s

disease [10] and another two SNPs rs16905625 (pMLE- DX� b̂�G ¼ 3:2; p ¼ 0:03) and

rs1890047 (pMLE- DX� b̂�
G
¼ 4:6; p ¼ 0:008) locate at the intergenic region between ASTN2

and TLR4 at Chromosome 9, 412k and 428k, respectively downstream of rs1360695 reported

associated with Schizophrenia [11].

Estimates of βε4 in the absence of interaction are generally larger in magnitude for the

diagnosis of interest in pMLE-DX. For example, in a model with SNP rs1816702 (uLR b̂ε4 ¼

1:4; p ¼ 0:00 and pMLE- DX� b̂ε4 ¼ 2:6; p ¼ 0:03; b̂�ε4 ¼ 1:2; p ¼ 0:01).

AGER. All of the three SNPs in the AGER gene measured in the data are associated with

susceptibility to AD as inferred in uLR and also are associated with susceptibility to the nui-

sance disease when measured by pMLE- DX�. rs3134940 has been previously reported in asso-

ciation to breast cancer, type I diabetes and other phenotypes (https://www.gwascentral.org/

marker/HGVM1600838/results?t=ZERO); rs1035798 and rs2070600 have been previously

reported in association to rheumatoid arthritis (https://www.gwascentral.org/marker/

HGVM275161/results?t=ZERO and https://www.gwascentral.org/marker/HGVM571318/

results?t=ZERO).

Discussion

We investigated if disease heterogeneity among clinically diagnosed cases could introduce bias

into the estimates of GxE interactions. We showed that when there is a strong association

between the environmental variable and the relative risk of the disease of interest, as compared

to the nuisance disease, and then there could be bias in either direction. We base our develop-

ments on the method by Chatterjee and Carroll [7] that is fully efficient in situations when the

genetic and environmental variables are distributed independently in the population, a popu-

lation-based genetics model is assumed for the genetic factors and the environmental variables

are treated non-parametrically.

Interestingly, in our analyses, the estimates of regression coefficients are qualitatively dif-

fered between the analyses that used the clinical diagnosis as a surrogate of the pathologic diag-

nosis and the analyses that used our newly proposed pseudo-likelihood approach that

incorporates the uncertainty of the clinical diagnosis. Specifically, in TLR set for 13% of the

SNPs examined, GxE was found to be significant in the relationship to the clinical diagnosis,

while the pseudo-likelihood analyses inferred these GxE to be not significant. On the other

hand, for 14% of the SNPs that we examined, GxE was found to be statistically significant only

when we incorporated the uncertainty in the clinical-pathological diagnoses relationship. This

finding is consistent with the conclusion reached by a study of phenotypic misclassification

among cases [20] in situations when the misclassification is non-differential, i.e. is not a func-

tion of the environmental variables. The study concluded that presence of “non-cases” greatly

decreased the estimates of risk attributed to the genetic variation.

One of the major concerns in the analyses of the genetic studies has been the missing herita-

bility, when the genetic markers identified thus far explain only a small portion of inter-person

variability in familiar clustering of complex diseases [21]. The downward biases in the esti-

mates associating GxE to the clinically diagnosed disease status might in part explain the miss-

ing heritability. On the other hand, the upward biases in these estimates might in part address

the conclusion reached by [22] that only 1% of the association found are likely to be true.

We examined estimates of the genetic effects, ApoE4 status, and age, sex consistent with

the original publication on this dataset [23]. Epidemiologic evidence [24] suggests that the fol-

lowing factors play important role in AD risk: education/cognitive reserve, racial and ethnic
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difference, gender, smoking, drinking, head injury, diabetes, cardiovascular disease, obesity,

social engagement, etc. However, not all of these factors have been consistently confirmed by

subsequent studies, and considerable inconsistencies exist. For example, nicotine intake has

been observed to decrease the risk of dementia due to the demonstrated ability of nicotine to

stimulate neurotransmitter systems that are compromised in dementia [25]. More recent stud-

ies have suggested that nicotine intake may increase the risk of AD and also bring forward age

of onset with APOE interactive effect [26].

The main conclusion reached in this paper is that using the clinically diagnosed status can lead

to severely biased estimates of GxE interactions in situations when the frequency of the pathologic

diagnosis of interest, as compared to other diagnoses, depends on the environment, and we aim

to correct such biases by proposing pseudolikelihood method. AD dataset is mainly used for illus-

tration, therefore, for clarity we restricted to variables to the minimum necessary instead of con-

sidering full risk prediction modes which might be able to better describe the inter-patient

variability in susceptibility to AD. Although other factors are potentially important in predicting

the risk of AD, this relatively simple model was able to achieve the main goals of the current man-

uscript. By recognizing and accounting for the potential of case heterogeneity, which biases the

gene x environment interaction, our newly proposed method has the ability to remove this bias.

Define E to be the set of variables in the model, i.e. age, sex. Let O define a set of key envi-

ronmental variables omitted from the model. Addition of variables O would not modify the

effect estimates of GxE beyond what is expected purely by chance if O does not interact with

either G or E. Also, if conditional on the diagnosis of AD, GxE is independent of O, then omis-

sion of O does not change the effect estimate of GxE [27]. If, however, O interacts with GxE,

then addition of these variables would change the effect estimate of GxE in the direction that is

consistent with the direction of the GxE effect. Further studies that incorporate environmental

variables, such as medical history, tobacco use, and infections are needed for their potential to

modify the risk and the estimates of GxE in particular.

Epigenetic mechanisms are well-recognized in the mediation of GxE and analysis of epigenetic

changes at the genome scale can offer new insights into the relationship between brain epigen-

omes and AD. Further, candidate genes from epigenome-wide association studies interact with

those from GWAS that can undergo epigenetic changes in their upstream gene regulatory ele-

ments [28]. However, an active conundrum is how the epigenetic mechanisms influence gene-

environment interactions.

Appendix

Derivation of pseudo-likelihood (2) and covariance matrix

Derivation of the pseudo-likelihood (2) is straightforward.

Next we demonstrate that the pseudo-likelihood (2) has zero mean when evaluated at the

true parameters. Derivative of (2) with respect to O is

X

d■
gd■jdclðxÞ � SOðd■; dcl; g; x; z; OÞ

X

d■
gd■jdclðxÞ � Sðd■; dcl; g; x; z; OÞ

�

X

d■;g■;dcl■
gd■ jdcl■ðxÞ � SOðd■; dcl; g■; x; z; OÞ

X

d■;g■;dcl■
gd■jdcl■ðxÞ � Sðd■; dcl; g■; x; z; OÞ

¼ Aðdcl; g; x; zÞ � Bðx; zÞ:

Let p(x,z|η) be the density of the environment.

Note the conditional probabilities

½G;X;ZjDCL� ¼ n� 1

dcl

X

d■
gdcl jd■ðxÞ � Sðd■; dcl; g; x; z; OÞ;
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½X;ZjDCL� ¼ n� 1

dcl

X

g■ ;d■
gdcl jd■ðxÞ � Sðd■; dcl; g■; x; z; OÞ � pðx; zjZÞ:

Hence

E AðDCL;G;X;ZÞf g ¼
X

dc�

ndcl■
n

E AðDCL;G;X;ZÞjDCL ¼ dcl■
� 	

¼
1

n

X

d■;dcl■ ;g■;x■;z■

gdcl jd■ðx
■Þ � SOðd

■; dcl■; g■; x■; z■; OÞ � pðx■; z■jZÞ

¼
X

dcl■

ndcl■
n

E BðX;ZÞjDCL ¼ dcl■
� 	

¼ E BðX;ZÞf g:

Therefore the derivative of the pseudo-likelihood has zero mean when evaluated at the true

parameters. Evaluated at the true parameters the estimating function (2) takes the following

form

n� 1=2
Pn

i¼1
E½Aðdcl; g; x; zÞ � Bðx; zÞ � EfAðdcl; g; x; zÞ � Bðx; zÞjDCL ¼ dclg�:

Covariance matrix is then

S ¼ n� 1
Pn

i¼1
E½fAðdcl; g; x; zÞ � Bðx; zÞg � fAðdcl; g; x; zÞ � Bðx; zÞgT � � L:

Define

Q1ðd
cl; g; x; z; OÞ ¼

X

d■
gdcl jd■ðxÞ � SOðd

■; dcl; g; x; z; OÞ � pðx; zjZÞ;

Q2ðd
cl; g; x; z; OÞ ¼

X

d■
gdcl jd■ðxÞ � Sðd■; dcl; g; x; z; OÞ � pðx; zjZÞ;

Q3ðx; z; OÞ ¼
X

dcl■ ;d■;g■

gdcl jd■ðxÞ � SOðd
■; dcl■; g■; x; z; OÞ � pðx; zjZÞ;

Q4ðx; z; OÞ ¼
X

dcl■ ;d■;g■

gdcl jd■ðxÞ � Sðd■; dcl■; g■; x; z; OÞ � pðx; zjZÞ;

S1 ¼ n� 1
X

dcl■ ;g■;x■;z■

Q1ðdcl■; g■; x■; z■; OÞ � QT
1
ðdcl■; g■; x■; z■; OÞ

Q2ðdcl■; g■; x■; z■; OÞ
pðx■; z■jZÞ;

S2 ¼ n� 1
X

x■;z■

Q3ðx■; z■; OÞ � QT
3
ðx■; z■; OÞ

Q4ðx■; z■; OÞ
pðx■; z■jZÞ:

The covariance matrix can then be represented in the form S = S1-S2−Λ.

Define I1 ¼
P

dcl■
ndcl■
n E @

@O

Q1ðdcl■ ;g;x;z;OÞ
Q2ðdcl■ ;g;x;z;OÞ

jDCL ¼ dcl
n oh i

and I2 ¼
P

dcl■
ndcl■
n E @

@O

Q3ðdcl■ ;g;x;z;OÞ
Q4ðdcl■ ;g;x;z;OÞ

jDCL ¼ dcl
n oh i

,

then I = I1−I2.
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We note that I1 ¼ n� 1 @2

@O@OT

P
dcl■ ;d■;g■;x■;z■gdcl jd■ðx■Þ � SO d■; dcl■; g■; x■; z■; Oð Þ � p x■; z■jZð Þ

þS1 and I2 ¼ n� 1 @2

@O@OT

P
dcl■ ;d■;g■;x■;z■gdcl jd■ðx■Þ � SO d■; dcl■; g■; x■; z■; Oð Þ � p x■; z■jZð Þ þ S2.

Hence S = I1−I2−Λ = I−Λ.
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