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Kidney cancer, particularly clear cell renal cell carcinoma
(KIRC), presents significant challenges in disease-specific sur-
vival. This study investigates the prognostic potential of micro-
RNAs (miRNAs) in kidney cancers, including KIRC and kidney
papillary cell carcinoma (KIRP), focusing on their interplay with
telomere maintenance genes. Utilizing data from The Cancer
Genome Atlas, miRNA expression profiles of 166 KIRC and
168 KIRP patients were analyzed. An evolutionary learning-
based kidney survival estimator identified robust miRNA signa-
tures predictive of 5-year survival for both cancer types. For
KIRC, a 37-miRNA signature showed a correlation coefficient
(R) of 0.82 and mean absolute error (MAE) of 0.65 years. Simi-
larly, for KIRP, a 23-miRNA signature exhibited an R of 0.82
and MAE of 0.64 years, demonstrating comparable predictive
accuracy. These signatures also displayed diagnostic potential
with receiver operating characteristic curve values between
0.70 and 0.94. Bioinformatics analysis revealed targeting of
key telomere-associated genes such as TERT, DKC1, CTC1,
and RTEL1 by these miRNAs, implicating crucial pathways
such as cellular senescence and proteoglycans in cancer. This
study highlights the significant link between miRNAs and telo-
mere genes in kidney cancer survival, offering insights for ther-
apeutic targets and improved prognostic markers.
Received 6 May 2024; accepted 5 September 2024;
https://doi.org/10.1016/j.omton.2024.200874.

Correspondence: Srinivasulu Yerukala Sathipati, Center for Precision Medicine
Research, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA.
E-mail: sathipathi.srinivasulu@marshfieldclinic.org
Correspondence: Scott Hebbring, Center for Precision Medicine Research,
Marshfield Clinic Research Institute, Marshfield, WI 54449, USA.
E-mail: hebbring.scott@marshfieldresearch.org
INTRODUCTION
Kidney cancer is among the 10 most common cancers in the United
States.1 Renal cell carcinoma (RCC) accounts for 90% of all kidney
cancers.2 Kidney cancer incidence increases steadily with age, with
a worldwide median age at diagnosis of approximately 75 years.3

The incidence of kidney cancer is approximately 2-fold higher for
men than for women, a pattern that appears stable over time and
across countries and age groups.4,5 Hypertension, obesity, and smok-
ing are the well-established risk factors of kidney cancer.6 Histologi-
cally, RCC accounts for the majority (90%) of kidney cancer cases,
predominantly including clear cell renal cell carcinoma (KIRC)
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(70%), papillary RCC (KIRP) (10%–15%), and chromophobe RCC
(5%).7 Disease-specific survival is worst with clear KIRC, as it tends
to be diagnosed at a more advanced stage.8 More than 50% of patients
with KIRC are asymptomatic and diagnosed incidentally during thor-
acoabdominal imaging ordered for unrelated issues.8,9 As symptoms
are often absent in the early stages of the disease, RCC is often only
detected once it has already reached an advanced stage.

MicroRNAs (miRNAs) are small (20–24 nucleotides), non-coding, sin-
gle-stranded RNA molecules that regulate gene expression at the post-
transcriptional level. Their main action consists of suppressing gene
expression by recognizing the complementary 30 untranslated region
(UTR) of the target mRNA, leading to its cleavage with subsequent
degradation or translation inhibition.10 It is estimated that about
30% of human genes are regulated by miRNAs,11 making them signif-
icant in many basic biological processes including development,
cell differentiation, proliferation, and apoptosis. Dysregulation of
miRNA expression plays a role in the pathogenesis of many diseases
including cancers; the impact of altered miRNA expression has been
well documented inmany types of cancer. miRNAs have also been pro-
posed as useful diagnostic biomarkers for cancers.12 Evidence has
emerged supporting the utility of miRNAs as predictive biomarkers
in kidney cancers.13 Gottardo et al. identified four up-regulated
miRNAs—hsa-miR-28, hsa-miR-185, hsa-miR-27, and hsa-let-7f-2—
compared with healthy kidney tissue.14 Huang et al. reported three
differentially expressed miRNAs (hsa-miR-21-5p, hsa-miR-223-3p,
and hsa-miR-365a-3p) that can serve as prognostic indicators in pa-
tients with KIRC.15 Additionally, Ng and Taguchi employed a tensor
herapy: Oncology Vol. 32 December 2024 ª 2024 The Author(s).
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decomposition-based unsupervised feature extraction method to
analyze mRNA and miRNA expression profiles in KIRC, identifying
23 genes significantly correlated with patient survival.16

Telomeres are repetitive DNA elements at the ends of chromosomes
necessary to maintain chromosomal stability. In most cell types, telo-
meres shorten with each cell division. An accumulation of critically
short telomeres induces cellular senescence and apoptosis, mecha-
nisms generally inactive in cancer cells. MicroRNAs (miRNAs)
have been implicated in controlling telomere function in cancerous
cells.17–19 For example, telomerase reverse transcriptase (TERT) is
implicated in the regulation of miRNAs by modulating their genesis.
Decreased TERT levels are linked to lower primary miRNA produc-
tion, influencing both telomere length and the progression of can-
cer.20–22 Moreover, 12.2% of KIRC cases have somatic mutations in
TERT, suggesting a unique pathogenesis and aggressive disease trajec-
tory.23 Despite the recognized importance of miRNAs and telomere
maintenance (TM) genes in kidney cancers, their interrelationship re-
mains under-investigated. Understanding this connection could
enhance the knowledge of kidney cancer mechanisms and aid in
developing more effective treatments.

To identify a prognostic miRNA signature capable of predicting sur-
vival time in individuals with kidney cancers, we developed the Kid-
ney cancer Survival Estimation (KSE) method. KSE is a fusion of
KIRC survival and KIRP survival methodologies. The core methodol-
ogy of KSE involves integrating support vector regression (SVR) and
an optimal feature selection algorithm. Through this approach, KSE
identified miRNA signatures capable of estimating survival times in
both KIRC and KIRP. Subsequently, our investigation explored
miRNA signatures and TM genes in the context of kidney cancers.
An overview of the study is presented in Figure 1.

RESULTS
miRNA signature selection

We employed the kidney cancer survival estimation (KSE) method to
assess the survival times of patients diagnosed with KIRC and KIRP.
The integration of both models was referred to as KSE. To ensure the
reliability of miRNA signatures, we conducted 50 independent runs
for both KSE-clear cell renal cell carcinoma (KSE-RC) and KSE-renal
papillary cell carcinoma (KSE-RP), aiming to derive a robust feature
set and estimation model.

For KSE-RC, the highest estimation performance model selected 37
miRNAs as a signature, yielding a correlation coefficient (R) and
mean absolute error (MAE) of 0.84 and 0.64 years between actual
and estimated survival times. The KSE-RC-Mean, averaging 32 fea-
tures, resulted in a mean R and MAE of 0.82 ± 0.01 and 0.65 ±

0.01 years, respectively. Notably, a robust miRNA signature was iden-
tified during the 31st independent run (refer to Figure S1A). The KSE-
RC-Robust model, featuring 37 miRNAs, achieved an R and MAE of
0.81 and 0.65 years, respectively. The estimation performance of KSE-
RC is shown in Table 1. The correlation plot for KSE-RC is shown in
Figure S1B.
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Similarly, for KSE-RP, the highest estimation performance model
selected 23 miRNAs as a signature, showing an R and MAE of 0.83
and 0.61 years, respectively, in the comparison of actual and esti-
mated survival times. Employing the KSE-RP-Mean, which selected
an average of 32 features, resulted in a mean R and MAE of 0.80 ±

0.01 and 0.66 ± 0.03 years, respectively. A robust miRNA signature
was selected during the 40th independent run (refer to Figure S2A).
The KSE-RP-Robust model achieved an R and MAE of 0.82 and
0.64 years, respectively, when comparing actual and estimated sur-
vival times. The estimation performance of KSE-RP is shown in
Table S1. The correlation plot for KSE-RP is shown in Figure S2B.

Comparative analysis of predictive models

We evaluated the predictive performance of the KSE method against
various established machine learning techniques, including linear
regression, sequential minimal optimization (SMO) regression, least
absolute shrinkage and selection operator (LASSO), and elastic net.
For KIRC, KSE-RC showed superior performance over linear regres-
sion, SMO, Ridge, and LASSO in terms of R and MAE. KSE achieved
an R ranging from 0.42 to 0.82 and an MAE between 0.68 and
1.12 years. KSE’s performance was on par with elastic net, yielding
an R of 0.84 and an MAE of 0.64 years, using only 39 miRNAs
compared with elastic net’s 72 miRNAs. The detailed performance
metrics are presented in Table 1.

In the case of KIRP, KSE-RP outperformed standard machine
learning methods like linear regression, SMO, Ridge, LASSO, and
elastic net in terms of R and MAE. The KSE-RP model for KIRP,
incorporating 23 miRNAs, achieved an R of 0.82 and an MAE of
0.64 years, surpassing other methods that ranged from 0.39 to 0.65
in R and 0.98 to 1.08 years in MAE. The detailed performance metrics
are presented in Table S1.

miRNA signatures in KIRC and KIRP

Utilizing the miRNA frequency (miRf) score method, we identified
distinct miRNA signatures for KIRC and KIRP. For KIRC, the KIRC-
miRf model revealed a 37-miRNA signature, while the KIRP-miRf
model identifieda 23-miRNAsignature forKIRP.Main effect difference
(MED) analysis24 was then applied to prioritize miRNAs within these
signatures. MED analysis can be interpreted such that a higher MED
score represents a larger contribution of thatmiRNA to survival estima-
tion, while a lower score indicates a smaller contribution.

In KIRC, the top 10 miRNAs were hsa-miR-26a-1-3p, hsa-miR-28-
5p, hsa-miR-3913-5p, hsa-miR-3170, hsa-miR-148a-5p, hsa-miR-
671-3p, hsa-miR-224-3p, hsa-miR-10a-5p, hsa-miR-29b-1-5p, and
hsa-miR-106b-5p (shown in Table 2).

For KIRP, the leading miRNAs were hsa-miR-450b-5p, hsa-miR-590-
5p, hsa-miR-376c-3p, hsa-miR-500a-5p, hsa-miR-18a-3p, hsa-miR-
362-5p, hsa-miR-455-5p, hsa-miR-452-5p, hsa-miR-3928-3p, and
hsa-miR-214-5p. Interestingly, only hsa-miR-214-5p was common
between the two cancer types, highlighting the distinct nature of
each miRNA signature (shown in Table S2).



Figure 1. Overview of the study

MiRNA expression profiles of kidney cancer patients, encompassing KIRC and KIRP, were extracted alongside their respective survival times. The machine learning process

involved data engineering, the implementation of an evolutionary learning method, robust feature set selection, survival estimation, and miRNA prioritization. Bioinformatics

analysis was conducted on the identified miRNA signature and telomere maintenance genes to elucidate their roles in kidney cancers. This figure was created with
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Expression analysis of miRNA signatures in cancer vs. healthy

samples

Differential expression of miRNA signatures was analyzed in KIRC
and KIRP compared with healthy samples. For KIRC, 69 healthy
samples were included, and for KIRP, 34 healthy samples. In the
KIRC signature, seven out of the top 10 miRNAs (hsa-miR-26a-
3p, hsa-miR-28-5p, hsa-miR-3170, hsa-miR-148a-5p, hsa-miR-
224-3p, hsa-miR-10a-5p, and hsa-miR-106b-5p) showed signifi-
cant expression differences (p < 0.05) between cancerous and
healthy tissues, as reported in Table 3.
In the KIRP signature, eight out of the top 10 miRNAs (hsa-miR-
450b-5p, hsa-miR-590-5p, hsa-miR-376c-3p, hsa-miR-500a, hsa-
miR-18a, hsa-miR-362-5p, hsa-miR-455-5p, and hsa-miR-214-5p)
demonstrated significant differential expression (p < 0.05), as shown
in Table S3.
Diagnostic predictive power of miRNA signatures

In KIRC, receiver operating characteristic (ROC) analysis identified
11 miRNAs with high prognostic potential (ROC >0.80), including
Molecular Therapy: Oncology Vol. 32 December 2024 3
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Table 1. Estimation performance of KSE-RC

Method R MAE (months) Selected features

Linear regression 0.42 13.44 37

SMO regression 0.43 13.55 37

Ridge 0.8 10.03 422

LASSO 0.82 8.75 25

Elastic net 0.84 8.2 72

KSE-RC 0.84 7.68 37

R, correlation coefficient; MAE, mean absolute error.

Table 2. Individual contribution of miRNAs in KIRC survival estimation

Rank miRNA MIMAT ID MED

1 hsa-miR-26a-1-3p MIMAT0004499 1.359359

2 hsa-miR-28-5p MIMAT0000085 1.32198

3 hsa-miR-3913-5p MIMAT0018187 1.272719

4 hsa-miR-3170 MIMAT0015045 1.206988

5 hsa-miR-148a-5p MIMAT0004549 1.204212

6 hsa-miR-671-3p MIMAT0004819 0.885195

7 hsa-miR-224-3p MIMAT0009198 0.868676

8 hsa-miR-10a-5p MIMAT0000253 0.837751

9 hsa-miR-29b-1-5p MIMAT0004514 0.749882

10 hsa-miR-106b-5p MIMAT0000680 0.745949

11 hsa-miR-1270 MIMAT0005924 0.708113

12 hsa-miR-191-3p MIMAT0001618 0.695488

13 hsa-miR-214-5p MIMAT0004564 0.665915

14 hsa-miR-192-3p MIMAT0004543 0.653562

15 hsa-miR-26a-2-3p MIMAT0004681 0.520749

16 hsa-miR-185-5p MIMAT0000455 0.511302

17 hsa-miR-339-5p MIMAT0000764 0.498169

18 hsa-miR-625-5p MIMAT0003294 0.484835

19 hsa-miR-582-5p MIMAT0003247 0.480073

20 hsa-miR-139-3p MIMAT0004552 0.473633

21 hsa-miR-125b-2-3p MIMAT0004603 0.432174

22 hsa-miR-150-3p MIMAT0004610 0.415235

23 hsa-miR-23b-5p MIMAT0004587 0.404089

24 hsa-miR-152-3p MIMAT0000438 0.40352

25 hsa-miR-146a-5p MIMAT0000449 0.398423

26 hsa-miR-205-5p MIMAT0000266 0.377166

27 hsa-miR-628-3p MIMAT0003297 0.322882

28 hsa-miR-365a-3p MIMAT0000710 0.313084

29 hsa-miR-1271-5p MIMAT0005796 0.297337

30 hsa-miR-769-3p MIMAT0003887 0.220694

31 hsa-miR-17-3p MIMAT0000071 0.19183

32 hsa-miR-25-3p MIMAT0000081 0.179736

33 hsa-miR-136-5p MIMAT0000448 0.175167

34 hsa-miR-33a-3p MIMAT0004506 0.166947

35 hsa-miR-154-5p MIMAT0000452 0.14867

36 hsa-miR-487b-3p MIMAT0003180 0.145981

37 hsa-miR-425-5p MIMAT0003393 0.096971

MED, main effect difference.
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hsa-miR-106b-5p, hsa-miR-25-3p, and hsa-miR-10a-5p, among
others. These miRNAs had ROC values ranging from 0.95 to 0.81
(Table 3). Specifically, six miRNAs (hsa-miR-106b-5p, hsa-miR-
10a-5p, hsa-miR-26a-1-3p, hsa-miR-28-5p, hsa-miR-3170, and hsa-
miR-224-3p) were identified as strong prognostic predictors (ROC
>0.70), depicted in Figure 2.

For the KIRP signature, seven miRNAs emerged as top diagnostic
predictors (ROC >0.80), including hsa-miR-214-5p, hsa-miR-675-
3p, and hsa-miR-376c-3p, with ROC values between 0.94 and 0.83
(Table S3). Among the top 10 miRNAs, five (hsa-miR-214-5p, hsa-
miR-376c-3p, hsa-miR-362-5p, hsa-miR-500a-5p, and hsa-miR-
455-5p) demonstrated strong diagnostic potential (ROC >0.70),
with ROC values from 0.94 to 0.77, illustrated in Figure S3.

MiRNA-mutation association

We employed an integrative approach to examine the relationship be-
tween miRNA expression levels and genetic mutations in both KIRC
and KIRP. The analysis involved preprocessing miRNA and mutation
datasets, ensuring alignment by patient identifiers. For KIRP, we
focused on the top 10 miRNAs, including hsa-miR-450b-5p, hsa-
miR-590-5p, hsa-miR-376c-3p, hsa-miR-500a-5p, hsa-miR-18a-3p,
hsa-miR-362-5p, hsa-miR-455-5p, hsa-miR-452-5p, hsa-miR-3928-
3p, and hsa-miR-214-5p. For KIRC, we analyzed hsa-miR-26a-1-3p,
hsa-miR-28-5p, hsa-miR-3913-5p, hsa-miR-3170, hsa-miR-148a-5p,
hsa-miR-671-3p, hsa-miR-224-3p, hsa-miR-10a-5p, hsa-miR-29b-1-
5p, and hsa-miR-106b-5p.

The miRNA expression data were transformed into a long format for
ease of analysis, and mutation data were filtered for common genes
associated with KIRC and KIRP, such as VHL, TP53, TSC1, and
PBRM1. Merging the miRNA expression data with mutation data,
we grouped by patient ID and gene symbols to summarize miRNA
expression and mutation status. MiRNA expression levels were cate-
gorized into occurrence levels (high, moderate, and low) and linked to
specific genetic mutations. Our findings reveal distinct patterns of
miRNA expression correlated with genetic alterations in both KIRC
and KIRP. The detailed summary tables generated from this analysis
are provided in Tables S4 and S5. The top 10 ranked miRNAs in both
KIRC and KIRP, and their mutation correlation are depicted in Fig-
ure 3 (for KIRC), and Figure S4 (for KIRP).
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MiRNAs differentially expressed in different cancer stages by

limma pairwise comparison

In the dataset, advanced stages of cancer, specifically stage IV, are char-
acterized by the presence of metastasis to other organs. Patients with
stage IV cancer in the dataset have documented metastatic disease,
indicating that the cancer has spread beyond the primary site to distant
organs. This detailed clinical staging information was included



Table 3. KIRC-miRNA signature expression across cancer andhealthy

groups and diagnostic prediction

KIRC signature Cancer vs. healthy (p value) ROC

hsa-miR-26a-1-3p 4.19E�21 0.84

hsa-miR-28-5p 1.24E�12 0.76

hsa-miR-3913-5p 0.91 0.5

hsa-miR-3170 2.52E�11 0.74

hsa-miR-148a-5p 1.02E�05 0.66

hsa-miR-671-3p 1.90E�01 0.55

hsa-miR-224-3p 3.98E�10 0.73

hsa-miR-10a-5p 2.88E�25 0.88

hsa-miR-29b-1-5p 6.70E�01 0.52

hsa-miR-106b-5p 3.57E�35 0.95

hsa-miR-1270 6.35E�18 0.82

hsa-miR-191-3p 1.97E�11 0.74

hsa-miR-214-5p 5.51E�25 0.88

hsa-miR-192-3p 2.10E�02 0.58

hsa-miR-26a-2-3p 7.00E�02 0.57

hsa-miR-185-5p 7.15E�15 0.78

hsa-miR-339-5p 3.30E�01 0.46

hsa-miR-625-5p 7.19E�03 0.6

hsa-miR-582-5p 2.90E�02 0.58

hsa-miR-139-3p 2.00E�15 0.79

hsa-miR-125b-2-3p 1.13E�03 0.62

hsa-miR-150-3p 5.77E�07 0.68

hsa-miR-23b-5p 6.44E�11 0.74

hsa-miR-152-3p 1.30E�01 0.56

hsa-miR-146a-5p 7.07E�17 0.81

hsa-miR-205-5p 5.82E�15 0.78

hsa-miR-628-3p 1.20E�01 0.55

hsa-miR-365a-3p 1.58E�19 0.83

hsa-miR-1271-5p 2.69E�18 0.82

hsa-miR-769-3p 6.00E�02 0.57

hsa-miR-17-3p 1.77E�04 0.64

hsa-miR-25-3p 1.41E�33 0.94

hsa-miR-136-5p 7.28E�24 0.87

hsa-miR-33a-3p 3.77E�06 0.67

hsa-miR-154-5p 3.94E�23 0.86

hsa-miR-487b-3p 1.67E�09 0.72

hsa-miR-425-5p 2.70E�02 0.58

ROC, receiver operating characteristic curve.
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alongside each patient’smolecular data to provide a comprehensive un-
derstanding of the cancer progression in our analyses. By pairwise com-
parisons, several miRNAs demonstrated significantly different expres-
sions. In KIRC, hsa-miR-214-5p and hsa-miR-26a-2-3p showed
increased expression in stage II compared with stage I, whereas
decreased expression in stage IV compared with stage II. Hsa-miR-
625-5p and hsa-miR-425-5p were decreased in stage IV compared
with stage III. Hsa-miR-139-3p showed increased trend in all advanced
stages of cancer. On the contrary, hsa-miR-625-5p showed a decreased
trend in all advanced stages of cancer (Table S6). In KIRP, hsa-miR-
214-5p and hsa-miR-937-3p increased in stage II compared with stage
I but showed decreased trend in all other stage comparisons. In stage III
vs. stage IV comparison, only hsa-miR-500a-5p was significantly
increased (beta: 0.115, p value: 0.007) (Table S6).

The limma association results comparing miRNA expression in stage
I to later stages revealed three significant miRNAs in KIRC. Hsa-miR-
182-5p demonstrated decreased expression in stage IV compared
with stage I (coefficient: �0.564, p value: 0.043). Hsa-miR-301a-3p
and hsa-imR-136-3p showed increased expression in stage III (coef-
ficient: 0.315, p value: 0.036) and stage II (coefficient: 0.540, p value:
0.040), respectively. Additionally, has-miR-197-3p exhibited signifi-
cant associations with overall survival (OS), progression-free interval
(PFI), and disease-specific survival (DSS) in KIRC, indicating benefi-
cial effects on survival and cancer treatment. However, hsa-miR-182-
5p presented inconsistent results, demonstrating a decrease in stage
IV compared with stage I but was associated with decreased DSS.

In KIRP, only has-miR-1251-5p showed significant association in stage
II (coefficient: 1.157, p value: 0.014), indicating increased expression
compared with stage I (Table S6). Increased has-miR-125b-2-3p was
associated with PFI; however, none of these associations surpassed
multiple testing correction (false discovery rate [FDR]).

Analysis of miRNA signatures and their target TM genes

Our investigation focused on the relationship between miRNA signa-
tures and TM genes. We examined the relation between miRNA
signature and TM genes using miRNA-gene target prediction. This
was conducted through miRNA-gene target prediction analysis. Uti-
lizing the miRTarBase,25 we identified validated target genes for both
KIRC and KIRP-miRNA signatures. The KIRC signature was found
to target 138 genes out of 165 validated TM genes. In contrast, the
KIRP signature targets a smaller set of eight TM genes, including
ATM, CTC1, SP1, ESR1, BAZ2A, KDM1A, TP53, and HOXA7. Fig-
ure 4A illustrates the top 10 miRNAs from the KIRC signature and
their corresponding TM gene targets. The TM gene targets associated
with the KIRP signature are depicted in Figure 4B.

To define the efficiency of selectedmiRNAs in targeting TM genes, we
employed a computational approach using TargetScan (v7.0).26 We
focused on the top 10 miRNAs identified in our integrative analysis
for KIRC and KIRP. For KIRC, these miRNAs included hsa-miR-
26a-1-3p, hsa-miR-28-5p, hsa-miR-3913-5p, hsa-miR-3170,
hsa-miR-148a-5p, hsa-miR-671-3p, hsa-miR-224-3p, hsa-miR-10a-
5p, hsa-miR-29b-1-5p, and hsa-miR-106b-5p. For KIRP, the top
miRNAs were hsa-miR-450b-5p, hsa-miR-590-5p, hsa-miR-376c-
3p, hsa-miR-500a-5p, hsa-miR-18a-3p, hsa-miR-362-5p, hsa-miR-
455-5p, hsa-miR-452-5p, hsa-miR-3928-3p, and hsa-miR-214-5p.
Using TargetScan, we obtained the context++ scores and context++
score percentiles for the interactions between these miRNAs and
Molecular Therapy: Oncology Vol. 32 December 2024 5
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Figure 2. The diagnostic prediction performance of the top ranked KIRC miRNAs was evaluated using ROC curves
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TM genes. By applying a stringent context++ score percentile
threshold of 70, we identified the most effective miRNA-target inter-
actions. This led us to find that KIRC miRNAs efficiently targeted 29
TM genes, while KIRP miRNAs targeted 27 TM genes. The results of
this analysis for KIRC and KIRP miRNAs are provided in Tables S7
and S8, respectively. These findings highlight the potential regulatory
roles of these miRNAs in telomere maintenance, providing a basis for
further experimental validation.

Biological significance of miRNA signatures in KIRC and KIRP

KEGG pathways

To elucidate the biological relevance of themiRNA signatures identified
in KIRC and KIRP, we conducted a pathway analysis using the Kyoto
Encyclopedia of Genes and Genomes (KEGG). Utilizing tools such as
miRWalk,27 gene set enrichment analysis,28 and MIENTURNET,29

we identified the top 5 significant pathways (p < 0.05) in KIRC. These
pathways include adherens junction (hsa04520), pancreatic cancer
(hsa05212), bladder cancer (hsa05219), proteoglycans in cancer
(hsa05205), and epidermal growth factor receptor (EGFR) tyrosine ki-
nase inhibitor resistance (hsa01521). Notably, the renal cell carcinoma
pathway (hsa05211) was identified as a key pathway within the KIRC
signature.

In the case of KIRP, the analysis highlighted five significant
pathways: longevity regulating pathway (hsa04211), endocrine resis-
6 Molecular Therapy: Oncology Vol. 32 December 2024
tance (hsa01522), cellular senescence (hsa04218), FoxO signaling
pathway (hsa04068), and p53 signaling pathway (hsa04115).
Comprehensive details of these significant KEGG pathways
for both KIRC and KIRP are presented in Tables S9 and S10,
respectively.

Gene ontology annotations in KIRC and KIRP

Gene ontology (GO) annotations categorize biological entities into
three domains: biological processes (BPs), molecular functions
(MFs), and cellular components (CCs). In our investigation of both
KIRC and KIRP signatures, we applied GO to delineate their func-
tional characteristics.

KIRC signature GO annotations

The prominent BPs for KIRC include positive regulation of
protein phosphorylation (GO:0001934), protein phosphorylation
(GO:0006468), cellular response to starvation (GO:0009267), negative
regulation of gene expression (GO:0010629), and negative regulation
of translation (GO:0017148).

Key MFs identified in KIRC encompass protein serine threonine ki-
nase activity (GO:0004674), transforming growth factor beta-acti-
vated receptor activity (GO:0005024), histone deacetylase binding
(GO:0042826), DNA-binding transcription factor activity (GO:000
3700), and GTPase activity (GO:0003924).



Figure 3. Mutations and miRNA correlation in KIRC

(A) The mutations in KIRC are visualized using Comut-viz. The forest plot highlights the mutated genes and the percentage of KIRC patients with these mutations.

(B) The heatmap illustrates the correlation between the top 10 ranked miRNAs and the mutated genes in KIRC.
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The CCs of note in KIRC include P-body (GO:0000932), axon (GO:
0030424), clathrin-coated pit (GO:0005905), caveola (GO:000
5901), and cytoplasmic stress granule (GO:0010494). Table S11 pro-
vides a comprehensive overview of these GO categories for KIRC.
KIRP signature GO annotations

The top BPs for KIRP include miRNA metabolic process
(GO:0010586), positive regulation by host of viral transcription
(GO:0043923), negative regulation of transcription (GO:0045892),
Molecular Therapy: Oncology Vol. 32 December 2024 7
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Figure 4. MiRNA-Telomere maintenance gene interaction

(A) Circos plot showing the top KIRC miRNAs targeting 138 TM genes and (B) top KIRP miRNAs targeting eight TM genes.
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DNA-templated, production of miRNAs involved in gene silencing
by miRNA (GO:0035196), and mRNA splice site selection (GO:
0006376).

In KIRP, the leading MFs were DNA-binding transcription activator
activity, RNA polymerase II-specific (GO:0001228), transcription
regulatory region sequence-specific DNA binding (GO:0000976),
DNA-binding transcription factor activity (GO:0003700), transcrip-
tion factor binding (GO:0008134), and protein serine threonine ki-
nase activity (GO:0004674).

The CCs highlighted in KIRP include RISC complex (GO:0016442),
transcription repressor complex (GO:0017053), cis-Golgi network
(GO:0005801), endoplasmic reticulum-Golgi intermediate compart-
ment membrane (GO:0033116), and cytoplasmic stress granule
(GO:0010494). Table S12 details these GO categories for KIRP.

Telomeremaintenance in cancer and its associationwithmiRNA

signatures

TM is essential for cancer cell proliferation, typically achieved
through reactivating telomerase or utilizing the alternative length-
ening of telomeres (ALT) pathway. We investigated the relationship
between our identified miRNA signatures and TM genes, using the
TelNet database to extract validated TM-associated genes.

TM genes and pathway analysis

From the TelNet database, we identified 2,093 human genes linked to
TM, including validated, screened, and predicted genes. We focused
on 165 validated TM genes with TelNet scores between 4 and 10.
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KEGG pathway analysis of these TM genes highlighted significant
involvement in pathways like mismatch repair (hsa03430), homolo-
gous recombination (hsa03440), non-homologous end-joining
(hsa03450), Fanconi anemia pathway (hsa03460), cell cycle
(hsa04110), cellular senescence (hsa04218), and Th17 cell differenti-
ation (hsa04659). TM genes are also notably active in cancer path-
ways such as pathways in cancer (hsa05200), prostate cancer
(hsa05215), breast cancer (hsa05224), pancreatic cancer (hsa05212),
and chronic myeloid leukemia (hsa05220), to name a few. Interest-
ingly, the TM genes (ATM, TP53, NFKB1, ZEB2, HNRNPK,
PDGFRA, MYC, STAT3, UBE2I, and E2F1) were significantly
(p < 0.001) involved in miRNAs in cancer pathways (hsa05206).
More details are in Table S13. GO-BP annotations for TM genes
include DNA damage checkpoint (GO:0000077), G1S transition of
mitotic cell cycle (GO:0000082), telomere maintenance via recombi-
nation (GO:0000722), telomere maintenance via telomerase
(GO:0007004), double-strand break repair via homologous recombi-
nation (GO:0000724), and DNA double-strand break processing
(GO:0000729).

Comparative analysis of miRNA signatures and TM genes

Our comparative analysis of KEGG and GO annotations revealed
shared pathways between the KIRC-miRNA signature, KIRP-
miRNA signature, and TM genes. The KIRC signature and TM genes
share pathways including pancreatic cancer (hsa05212), proteogly-
cans in cancer (hsa05205), cell cycle (hsa04110), cellular senescence
(hsa04218), pathways in cancer (hsa05200), and AGE-RAGE
signaling pathway in diabetic complications (hsa04933), detailed in
Table 4. Similarly, the KIRP signature and TM genes share pathways
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including endocrine resistance (hsa01522), cellular senescence
(hsa04218), cell cycle (hsa04110), signaling pathways regulating plu-
ripotency of stem cells (hsa04550), and estrogen signaling pathway
(hsa04915), as listed in Table S14. This overlap suggests a significant
interplay between miRNA signatures and TM genes in the context of
cancer biology.

Common GO annotations in KIRC signature and TM genes

Biological processes

KIRC signature and TM genes shared BPs include angiogenesis
(GO:0001525), in utero embryonic development (GO:0001701),
chromatin remodeling (GO:0006338), cellular response to DNA
damage stimulus (GO:0006974), and positive regulation of cell pop-
ulation proliferation (GO:0008284).

Molecular functions

Common MFs were RNA polymerase II transcription regulatory re-
gion sequence-specific DNA binding (GO:0000977), protein serine
threonine kinase activity (GO:0004674), DNA-binding transcription
factor activity (GO:0003700), DNA binding (GO:0003677), and tran-
scription corepressor activity (GO:0003714).

Cellular components

Shared CCs include PML body (GO:0016605), centrosome (GO:
0005813), transcription regulator complex (GO:0005667), PML body
(GO:0016605), and ribonucleoprotein complex (GO:1990904).
Detailed information is in Table S15.

Common GO annotations in KIRP signature and TM genes

Biological processes

Overlapping BPs involve response to hypoxia (GO:0001666), tran-
scription by RNA polymerase II (GO:0006366), cellular response to
DNA damage stimulus (GO:0006974), cell cycle (GO:0007049),
cell-cycle arrest (GO:0007050), and negative regulation of cell popu-
lation proliferation (GO:0008285).

Molecular functions

Shared MFs include transcription regulatory region sequence-specific
DNA binding (GO:0000976), cis-regulatory region sequence-specific
DNA binding (GO:0000987), DNA-binding transcription activator
activity, RNA polymerase II-specific (GO:0001228), chromatin bind-
ing (GO:0003682), and DNA binding (GO:0003677).

Cellular components

Common CCs were transcription regulator complex (GO:0005667),
nuclear matrix (GO:0016363), nuclear matrix (GO:0016363), nuclear
body (GO:0016604), and ribonucleoprotein complex (GO:1990904).
The KIRP signature and TM gene common GO pathways are listed
in Table S16.

TM genes in kidney cancer survival predictions

To explore the association of TM genes in kidney cancer survival, we
selected the TM genes that are targeted by the identified KIRC and
KIRP signatures. Among the 165 validated TM genes, the top 10 miR-
NAs of the KIRC signature target 100 TM genes. Kaplan-Meier sur-
vival analysis revealed that 56 of these genes significantly (p < 0.05)
correlate with OS in KIRC patients. Among these 100 TM genes, 56
genes significantly (p % 0.05) predicted the OS in patients with
KIRC. Notably, 10 genes, including BLM, AURKA, AR, PITX1,
FANCA, TERT, RTEL1, CTCF, RAD50, and MYCN targeted by spe-
cific miRNAs (hsa-miR-26a-1-3p, hsa-miR-28-5p, hsa-miR-3913-
5p, hsa-miR-3170, hsa-miR-671-3p, hsa-miR-106b-5p, hsa-miR-
26a-1-3p, and hsa-miR-3913-5p), showed a highly significant
(<0.0001) association with KIRC patient survival. Detailed informa-
tion is available in Table S17.

KIRP signature targets seven TM genes, including CTC1, ATM, SP1,
ESR1, BAZ2A, TP53, and HOXA7. These genes were targeted by hsa-
miR-18a-3p, hsa-miR-2355-5p, hsa-miR-26b-3p, hsa-miR-376c-3p,
hsa-miR-3928-3p, and hsa-miR-92a-1-5p. Among these genes, only
one gene ESR1 showed significant (p < 0.05) association with KIRP
patient survival (Table S17).

TERT expression levels in KIRC and KIRP

TERT, crucial in cancer development, is hyperactivated in approxi-
mately more than 80% of cancers,30 and its mutations are significantly
associated with the survival of KIRC patients.31 Using UALCAN web
tool,32 we analyzed TERT expression in KIRC and KIRP. Our analysis
revealed that TERT expression was absent in healthy groups, contrast-
ing with the KIRC group. No significant differences in TERT levels
were noted across various stages, genders, races, and tumor grades
in KIRC.

However, a notable difference in TERT expression (p = 0.004) was
found between age groups 41–60 and 81–100 years compared with
healthy groups, as shown in Figure S5. TERT expression significantly
impacts patient survival; Kaplan-Meier survival analysis indicated
that higher TERT expression correlates with reduced survival in
KIRC patients (p < 0.0001), as illustrated in Figure S6. Additionally,
we assessed the TERT promoter methylation profile in KIRC patients
vs. healthy individuals. The methylation levels were significantly
different between the KIRC and healthy groups (p < 0.0001), as indi-
cated in Figure S7, and varied notably between healthy individuals
and different KIRC stages, both early and advanced.

A comparison analysis indicated that, similar to KIRC, TERT
expression was not present in healthy groups but was observed in
the KIRP group. Kaplan-Meier survival analysis confirmed that
higher TERT expression is linked to poorer survival in KIRP patients
(p < 0.0001), as shown in Figure S8. The methylation levels were
significantly different between the KIRP and healthy groups
(p < 0.0001), with noticeable variations between healthy individuals,
detailed in Figure S9.

DISCUSSION
The identification of a miRNA signature predictive of survival in kid-
ney cancer patients could reveal crucial survival biomarkers,
enhancing therapeutic strategies. TM genes, known to be involved
Molecular Therapy: Oncology Vol. 32 December 2024 9
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Table 4. The shared KEGG pathways between KIRC signature and telomere maintenance genes

KEGG pathways
No. of genes targeted
by KIRC signature p values (KIRC) No. of TM genes p values (TM genes)

Endocrine resistance (hsa01522) 5 0.0059 8 0.0001

Cell cycle (hsa04110) 5 0.0145 11 0.000001

Cellular senescence (hsa04218) 7 0.0028 13 0.000001

Estrogen signaling pathway (hsa04915) 5 0.0215 7 0.003

Thyroid hormone signaling pathway (hsa04919) 5 0.0124 5 0.0223

Relaxin signaling pathway (hsa04926) 6 0.0041 5 0.0298

AGE-RAGE signaling pathway in diabetic
complications (hsa04933)

6 0.0012 7 0.0005

Shigellosis (hsa05131) 9 0.002 7 0.0391

Salmonella infection (hsa05132) 7 0.0123 7 0.0254

Hepatitis B (hsa05161) 5 0.0381 12 0.000001

Human cytomegalovirus infection (hsa05163) 6 0.044 11 0.0003

Human papillomavirus infection (hsa05165) 9 0.0147 11 0.0057

Human T cell leukemia virus 1 infection
(hsa05166)

8 0.0043 17 0.000001

Kaposi sarcoma-associated herpesvirus infection
(hsa05167)

7 0.0061 12 0.000001

Pathways in cancer (hsa05200) 16 0.0007 29 0.000001

Viral carcinogenesis (hsa05203) 8 0.0026 11 0.0001

MicroRNAs in cancer (hsa05206) 12 0.0004 10 0.0099

Colorectal cancer (hsa05210) 5 0.0035 7 0.0002

Pancreatic cancer (hsa05212) 7 <0.0001 7 0.0001

Prostate cancer (hsa05215) 6 0.0011 9 0.000001

Small cell lung cancer (hsa05222) 5 0.0046 6 0.0018

Breast cancer (hsa05224) 5 0.0271 10 0.000001

Hepatocellular carcinoma (hsa05225) 8 0.0009 7 0.0081

Gastric cancer (hsa05226) 5 0.0284 7 0.0044

KIRC, kidney clear cell renal cell carcinoma.
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in kidney cancers, show mutations associated with patient survival.
While miRNAs regulate telomere function in cancers, their relation-
ship with TM genes in kidney cancer survival remains under-
explored. Advancements in understanding the molecular biology of
KIRC and KIRP underscore the importance of TM and miRNAs in
the progression of these diseases. Telomeres, which protect chromo-
some ends, are maintained by telomerase and associated proteins.33

In both KIRC and KIRP, disruption of TM can result in genomic
instability and tumor development.34 MiRNAs can influence the
expression of TERT, a crucial component of the telomerase complex,
affecting telomere length and cellular longevity. Our findings have
demonstrated that specific miRNAs, such as hsa-miR-26a-1-3p,
hsa-miR-28-5p, and hsa-miR-3913-5p in KIRC, and hsa-miR-450b-
5p, hsa-miR-590-5p, and hsa-miR-376c-3p in KIRP, regulate genes
linked to telomere biology. Recent research has shown that miR-
155 deficiency has been associated with telomeric dysfunction in
acute kidney injury.35 Additionally, changes in miRNA expression
profiles are also associated with key genetic mutations in KIRC,
10 Molecular Therapy: Oncology Vol. 32 December 2024
such as those in VHL, PBRM1, and SETD2, and in KIRP, highlighting
the complex network of genetic and epigenetic factors in these can-
cers. Exploring these interactions could lead to new targeted therapies
that disrupt TM or restore normal miRNA function in KIRC and
KIRP patients.

In this study, we developed Evolutionary Learning (EL)-based sur-
vival estimation methods KSE-RC and KSE-RP, aiming to identify
miRNA signatures predictive of survival in patients with kidney can-
cers, including KIRC and KIRP. The KSE-RC robust model, featuring
37 miRNAs, achieved an R and MAE of 0.81 and 0.65 years, respec-
tively. For KSE-RP, the highest estimation performance model
selected 23 miRNAs as a signature, demonstrating an R and MAE
of 0.83 and 0.61 years, respectively, in the comparison of actual and
estimated survival times. A notable finding was that hsa-miR-214-
5p was the sole miRNA common to both KIRC and KIRP signatures,
highlighting each cancer type’s distinct miRNA profile. Ranking the
miRNA signatures, we identified the top 10 contributing miRNAs
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in both KIRC and KIRP, revealing significant expression differences
between cancerous and healthy groups. In KIRC, the signature tar-
geted 138 out of 165 validated TM genes, while in KIRP, it targeted
eight TM genes.

We discovered shared pathways between miRNA signatures and TM
genes. Some common KEGG pathways identified in KIRC and TM
genes included proteoglycans in cancer (hsa05205), cell cycle
(hsa04110), cellular senescence (hsa04218), pathways in cancer
(hsa05200), and AGE-RAGE signaling pathway in diabetic complica-
tions. Proteoglycans play a vital role in cell signaling and directly
impact carcinogenesis.36,37 Overexpression of the telomeric repeat-
binding factor 2 (TRF) has been found to increase levels of
glypican-6 and versican, thereby reducing natural killer cell recruit-
ment and cytotoxicity, thereby facilitating tumor progression and
metastasis.38 Lin et al. reported that patients with SPOCK1 proteogly-
can tumors had the shortest OS times, indicating a role in KIRC
progression.39 This highlights the complex interplay between proteo-
glycans and miRNAs in cancer progression.40 For example, miR-328,
found to inhibit a CD44 cell surface proteoglycan, has been shown to
play a role in renal tubular cells.41 Further studies are warranted to
explore the regulation of miRNAs and telomere genes in proteoglycan
pathways, which could be crucial in understanding kidney cancer sur-
vival mechanisms.

Another significant pathway is cellular senescence (hsa04218).
Cellular senescence, crucial in embryonic development and wound
healing, can become pathological, contributing to aging and various
diseases, including chronic kidney disease and acute kidney injury.42

Telomere length has been linked to renal senescence, renal cysts, and
renal RCC,43 with short telomeres associated with increased renal
injury.44 In our KEGG pathway analysis, the KIRC signature targeted
genes such as PTEN, TGFBR2, E2F5, RBL2, MAPK1, E2F1, and
CCND1, which are significantly involved in cellular senescence.
MiRNAs like hsa-miR-125b and hsa-miR-25 in the KIRC signature
directly regulate p53 expression, influencing p53-mediated cell-cycle
arrest and senescence suppression.45,46 Additionally, hsa-miR-192
indirectly upregulates p53 by downregulating the MDM2 oncogene,
known to suppress p53 expression.46

Evidence indicates that the top 10miRNAs of the KIRC signature play
critical roles in the disease. Specifically, hsa-miR-26a is dysregulated
in KIRC compared with control samples.47 Hsa-miR-28, which is
dysregulated in several malignancies including kidney cancers, is
significantly up-regulated in KIRC (p < 0.05).48 An in vitro study
using RT-qPCR revealed that hsa-miR-671-3p expression is down-
regulated in KIRC, impacting the expression of target genes in
KIRC.49 Hsa-miR-224-3p targets glycosylation-related enzymes, acti-
vating the PI3K/Akt pathway, which mediates cell proliferation,
migration, and invasion in KIRC.50 Hsa-miR-10a-5p influences tu-
mor immune microenvironment changes and KIRC development
by affecting chemokine expression.51 Dysregulation of hsa-miR-29b
in RCC patient CD8+ T cells correlates with dysfunctional immunity
in KIRC patients.52 In KIRP, hsa-miR-590-5p regulates cell prolifer-
ation and invasion by targeting PBRM1.53 Hsa-miR-376c-3p is impli-
cated in KIRC,54 and hsa-miR-18a-3p is associated with kidney dis-
eases.55 Hsa-miR-362-5p is down-regulated, and hsa-miR-455-5p
regulates cell proliferation, migration, and invasion in kidney cancers
cancers.56,57 Decreased expression of hsa-miR-155-5p was identified
in chronic kidney disease patients.58 Collectively, these miRNAs
have significant roles in kidney cancers.

In this study, we focused primarily on the exploration of miRNA
expression profiles to estimate survival time in patients with KIRC
and KIRP. Although the clinical dataset included patients who under-
went various treatments such as chemotherapy, immunotherapy, and
targeted molecular therapy, the detailed treatment records were avail-
able for only 35 out of 512 patients. Additionally, recurrence informa-
tion was sparse, with 73% of patients lacking recurrence data, 4.5%
documented as having a recurrence, and 22.1% documented as having
no recurrence. Given these limitations, our analyses emphasized the
potential of miRNA expression profiles as robust biomarkers for sur-
vival estimation. The results demonstrated that specific miRNAs can
reliably predict survival outcomes independent of the treatment
regimen. The inclusion of limited therapy and recurrence data did
not significantly alter the predictive power of the miRNA profiles,
underscoring their strong, independent prognostic value. While our
current model does not fully incorporate detailed treatment and recur-
rence data due to their limited availability, we recognize the importance
of these factors. Future studies will aim to integrate comprehensive
clinical data to refine and enhance the predictive capabilities of our
models further. Despite the limited clinical data, these findings rein-
force the importance of miRNA-focused research in improving cancer
prognosis and tailoring patient-specific therapeutic strategies.

In summary, our study underscores the potential of miRNA signa-
tures in estimating survival times in KIRC and KIRP. These miRNA
signatures may serve as therapeutic targets of TM genes and are
involved in significant signaling pathways in kidney cancers. These
findings advance future research on miRNA and TM gene interplay
in kidney cancer.

MATERIALS AND METHODS
Dataset

The miRNA expression data and clinical characteristics (such as sex,
age, tumor stage, and survival time) associated with patients diag-
nosed with KIRC and KIRP were extracted from The Cancer Genome
Atlas (TCGA). There are a total of 512 patients in the KIRC dataset
and 283 patients in the KIRP dataset. Following preprocessing steps,
which included the removal of duplicate entries and samples lacking
survival information, the final datasets comprised 166 samples for
KIRC and 168 samples for KIRP. A total of 165 validated genes asso-
ciated with TM were obtained from the database: http://www.
cancertelsys.org/telnet/.

Integration of feature selection and survival estimationmethods

The primary objective of this study is to identify a miRNA signature
associated with survival and estimate survival times in patients
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diagnosed with KIRC and KIRP. To achieve this, we propose an
evolutionary learning-based method named KSE, which incorporates
an inheritable bi-objective combinatorial genetic algorithm
(IBCGA),59 and support vector regression (SVR).60 The IBCGA is
adept at solving bi-objective combinatorial problems and efficiently
selecting a concise set of miRNAs from a pool of 422 candidate miR-
NAs. In our approach, SVR is employed to estimate survival times
based on the actual survival data of patients with kidney cancers.
Focusing on the two distinct types of kidney cancers, we developed
two models: KSE-RC for KIRC survival and KSE-RP for KIRP sur-
vival. The development of the KSE occurs in two steps: one for the
KIRC-miRNA signature selection and another for the KIRP-
miRNA signature selection. Each miRNA signature selection involves
two major components, which include the use of the IBCGA algo-
rithm to select a robust miRNA signature and the estimation of sur-
vival time using the identified miRNA signature and SVR. Evaluation
of both models in KSE-RC and KSE-RP involved the use of correla-
tion coefficient (R) and mean absolute error (MAE) to assess predic-
tion performance. To ensure robust feature selection in both models,
we employed the miRNA frequency (miRf) score. The detailed steps
in the KSE methodology are as follows.
MiRNA signature selection algorithm

The feature selection algorithm, IBCGA, operates on 422 miRNA
expression profiles (n = 422). During the optimization process, the
chromosome of IBCGA consists of 422 genes, with three 4-bit genes
for encoding g, C, and n parameters for the SVR. The detailed steps
involved in IBCGA are as follows:

Step 1: Initialization - Randomly generate an initial population of in-
dividuals (miRNA profiles).

Step 2: Evaluation - Evaluate the fitness value of all individuals using
the fitness function, maximizing the correlation coefficient (R)
through 10-fold cross-validation.

Step 3: Selection - Utilize tournament selection to select a winner from
two randomly chosen individuals, forming a mating pool.

Step 4: Crossover - Select two parents from the mating pool and
perform an orthogonal array crossover operation.

Step 5: Mutation - Apply a conventional mutation operator to
randomly selected individuals in the new population.

Step 6: Termination Test - If the stopping condition for obtaining a
solution is met, output the best individual as the solution; otherwise,
return to Step 2.

Step 7: Inheritance - If r is less than a predefined number of features,
randomly change one bit in the binary genetic algorithm-genes for
each individual from 0 to 1, increase the number r by one, and return
to Step 2. Otherwise, terminate the algorithm.
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Estimation of the survival time

Support vector machines (SVMs) have proven effective in cancer
diagnosis and prognosis predictions. This study employs SVR to esti-
mate survival time by utilizing miRNA expression profiles and pa-
tients’ survival data. In our earlier investigations, optimized SVMs
played a role in predicting diagnoses for various cancers, including
breast cancer61 and hepatocellular carcinoma,62,63 as well as progno-
ses for lung adenocarcinoma, hepatocellular carcinoma, bladder
urothelial carcinoma, head and neck carcinoma, and gastrointestinal
cancers.24,64–68 Although the optimization technique is consistent
with our prior methods, distinctions lie in the tuning parameters
and the selection of robust miRNA signatures.

The SVR optimization problem aims tominimize empirical risk while
managing the complexity of the regression function. The basic formu-
lation of the SVR optimization problem is as follows:

Given a dataset D = fðxi; yiÞgNi = 1 where xi ˛ Rp is the input feature
vector, and yi ˛ R is the corresponding target value, SVR seeks to find
a function f(x) subjected to the following optimization problem.

min
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wTðBðxiÞ + bÞ + C

 
nε +

1
m

Xm
i = 1

�
xi + x�i

�!)#

(Equation 1)

where 0% n% 1, xi R 0, x�i R 0, (x1, y1) . (xm, ym) are the input
data points, C is the regularization parameter, ε is an insensitive
loss function, and b is a constant.

We conducted 50 independent runs of KSE-RC and KSE-RP. The
robust set of miRNA signatures among these 50 independent runs
was chosen based on the miRNA frequency (miRf) determined
through the following procedure:

Step 1: Execute N independent runs of KSE-RC/KSE-RP, maximizing
the accuracy of 10-fold cross-validation (10-CV) to obtain NmiRNA
signatures. Each of these signatures (s), denoted as the r-th signature,
comprises Zr features, where r = 1 .. N.

Step 2: miRf is calculated as follows:

miRf =
Xmt

i = 1

f ðsiÞ
,

Zr (Equation 2)

Step 3: Output the f-th feature set with the highest frequency score.
Standard machine learning methods

The performance of KSE was benchmarked against several standard
regression methods, encompassing linear regression, SMO regression
of Weka,69 ridge regression,70 least absolute shrinkage selection oper-
ator (LASSO),71 and elastic net.72 The minimum l (lambda) value for
ridge, LASSO, and elastic net was determined after 100 iterations of
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10-CV. The evaluation of prediction performance was conducted us-
ing metrics such as the correlation coefficient (R) and mean absolute
error (MAE).

Performance measures

To assess the actual and estimated survival times obtained using KSE,
we employed R and mean MAE as the estimation measures to eval-
uate the prediction performance.

R =

PN
i = 1

ðai � aÞ ðbi � bÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� PN
i = 1

ðai � aÞ2
�� PN

i = 1
ðbi � bÞ2

�s (Equation 3)

where ai and bi are the actual and predicted survival times of the ith
miRNA, respectively, a and b are the corresponding means, and N is
the total number of KIRC/KIRP patients in the validation set. The
MAE is also used for the evaluation of prediction performance,
defined as follows:

MAE =
1
N

XN
i = 1

jbi � aij (Equation 4)

Clinically significant miRNA by limma association analysis

In this study, we investigated miRNAs associated with tumor stage in
both KIRC and KIRP. The tumor stage was categorized into stage I,
stage II, stage III, and stage IV for both cancer types. Overall survival
(OS), disease-specific survival (DSS), and progression-free interval
(PFI) were examined as well. We utilized Limma R package (version
3.50.3) for our analysis. Limma, which stands for “linear models for
microarray data,” has been widely used for biomarker discovery
through the analysis of differential expression in microarray and
high-throughput PCR data. It offers functionality for fitting various
statistical models, including linear regression and analysis of variance.
We normalized the miRNA expression data using log-transformation
and adjusted for age at diagnosis and sex. The “makeContrasts” func-
tion was then used to perform pairwise comparisons between
different stages of cancer in the model.

DATA AND CODE AVAILABILITY
The dataset utilized in this study is available on the TCGA data portal [https://
cancergenome.nih.gov/], while genes associated with telomere maintenance can be ac-
cessed at http://www.cancertelsys.org/telnet/.
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