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ABSTRACT

Males and females take part in extra-pair copulations in most socially monogamous
bird species. The mechanisms leading to the frequent occurrence of extra-pair
offspring in socially monogamous couples are strongly debated and unresolved, and
they are often difficult to distinguish from one another. Most hypotheses explaining
the evolution of extra-pair reproduction suggest selective and adaptive scenarios for
their origination and persistence. Is extra-pair paternity a heritable trait? We
evaluated the heritability of extra-pair paternity in the pied flycatcher (Ficedula
hypoleuca) nesting in Western Siberia. Estimated heritability was low: depending on
the model used, the point estimate of the heritability (mode) varied from 0.005 to
0.11, and the bounds of the 95% confidence interval are [0-0.16] in the widest range.
Thus, it seems that extra-pair mating behaviour in the pied flycatchers is a plastic
phenotypic mating tactic with a small or no genetic component. Our data can help to
understand the evolution of extra-pair mating behaviour in socially monogamous
species.

Subjects Evolutionary Studies, Zoology
Keywords Animal model, Extra-pair copulations, Extra-pair paternity, Heritability,
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INTRODUCTION

DNA profiling (Jeffreys, 1987) has revealed that males and females take part in extra-pair
copulations (EPCs) in many socially monogamous bird species (Wink ¢ Dyrcz, 1999;
Griffith, Owens ¢ Thuman, 2002; Westneat & Stewart, 2003). In case of successful EPCs,
extra-pair offspring (EPO) could be detected in broods of socially monogamous families.
The percentage of EPO in a brood, and especially the proportion of those couples
whose broods have EPO, can vary widely even within one species. For example in the
pied flycatcher (Ficedula hypoleuca), the proportion of broods containing EPO varies from
6.5% to 40% between populations (Lifjeld, Slagsvold ¢» Lampe, 1991; Riitti et al., 1995;
Lubjuhn et al., 2000; Slagsvold et al., 2001; Lehtonen, Primmer ¢ Laaksonen, 2009;
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Moreno et al., 2010, 2015; Canal, Jovani & Potti, 2012; De la Hera et al., 2013;
Gonzdlez-Braojos et al., 2013; Tomotani et al., 2017; Grinkov et al., 2018).

The mechanisms leading to the frequent occurrence of EPO in socially monogamous
couples are strongly debated (Halliday ¢» Arnold, 1987; Sherman & Westneat, 1988;
Jennions & Petrie, 2000; Arnqvist & Kirkpatrick, 2005, 2007; Kokko, Jennions & Brooks,
2006; Griffith, 2007; Kempenaers, 2007; Eliassen ¢ Jorgensen, 2014; Forstmeier et al., 2014).
Most hypotheses explaining the evolution of extra-pair reproduction suggest selective and
adaptive scenarios for the origin and persistence of extra-pair mating behaviour (for
review, Eliassen & Jorgensen, 2014; Forstmeier et al., 2014; Lifjeld et al., 2019; Brouwer &
Griffith, 2019). Selection acts on phenotypes, and it only has evolutionary consequences
when fitness differences among individuals relate directly to genetic differences.
Therefore, for selection to effectively control the evolution of extra-pair paternity, a genetic
component should be present in the variation of traits associated with extra-pair
reproduction (Hill, Goddard & Visscher, 2008).

In general, the change in the mean value of traits between generations under natural
selection on short-term scale happens if the traits are heritable and the trait value associates
with fitness (Fisher, 1918). Therefore, models describing changes in a trait under
natural selection include three components: trait related differences in fitness among
individuals, the heritability of the trait and the amount of variation in the trait. The basic
phenotypic model of natural selection defines that the change in the mean value, Az,
of a trait, z, is AZ = s X g/o2 where s is the selection differential, g is the genetic
component (commonly represented as the additive genetic variance in the trait, 03 ) and o2
is the total phenotypic variation in a trait (Lande, 1979; Lande ¢ Arnold, 1983). The ratio
g/o? is defined as narrow-sense heritability, h* (if g = o). The change in the mean
trait value could be defined as the response to selection, R. Therefore, the simple ‘breeder’s
equation’ is R = h? x s (Robertson, 1966; Price, 1970; Falconer & MacKay, 1996).

In natural populations, the selection differential can be expressed as the covariance
Cov(w, z) between the trait and fitness, w (Lande & Arnold, 1983). Consequently, the
change of trait between generations is Az = g x Cov(w,z)/0?2. Because the regression
coefficient, b, relating fitness to the trait, equals to Cov(w, z)/0?, the change of trait
between generations is

Az = I* x Cov(w,z) = 0% x b (1)

In other words, the per-generation change in the mean of a quantitative trait caused
by selection is the product of the selection gradient and the additive genetic variance
(Robertson, 1966; Price, 1970; Lande, 1979; Lande & Arnold, 1983; Falconer & MacKay,
1996).

In the case of extra-pair reproduction, these general equations can be converted to
estimate the strength of natural selection for an extra-pair mating behaviour for both males
and females. It is commonly accepted that the EPO number reflects EPC behaviour of an
individual (Arngvist & Kirkpatrick, 2005, 2007; but see Dunn ¢ Lifjeld, 1994; Griffith,
2007). Therefore, the change in the mean rate of EPC approximated as the change in the
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mean EPO number, ANgpo, under natural selection is simply followed from Eq. (1) for
both sexes, that is

ANEPO = hlz\]EPO X COV((D,NEP()) (2)

where h%\,EPO is the heritability of the EPO number, Cov(w, Ngpo) is the covariance between
the EPO number and individual fitness. In males of socially monogamous species, this
equation can be relatively easily understood because extra-pair paternity (EPP) directly
increases an individual male’s reproductive success and hence one of the main components
of fitness, fecundity (Trivers, 1972). However, a simple linear covariance between the
number of EPO and the fitness of the individual is not always possible. For males, for
example, an increase in the number of EPO cannot always be associated only with an
increase in fitness. At some point, the time allocated to find extra-pair females may lead
to both a loss of within-pair paternity and a decrease in parental care for within-pair
offspring. The emergence of such a trade-off can be considered by modification of the
selection differential: the linear selection differential can be replaced by the quadratic
selection differential (for details, please, refer to Henshaw ¢ Zemel (2017)). At the same
time, the forces driving extra-pair reproduction by socially monogamous females are
less clear because EPC is not associated with an increase of a female’s immediate
reproductive success since female’s EPC does not necessarily increase fecundity. This is
because females’ reproductive output is limited by their reproductive biology rather than
by their number of mates. There are the potential direct fitness benefits for females
involving in EPCs (for example, fertilisation assurance of eggs, nuptial gifts from several
mates, increased paternal care at nest, cooperative neighbourhood) (Stacey, 1982;
Davies, 1992; Sheldon, 1994; Davies et al., 1996; Arnqvist & Nilsson, 2000; Tryjanowski &
Hromada, 2005; Eliassen & Jorgensen, 2014) as well as the potential direct costs (sexually
transmitted disease, reduced paternal care by the within-pair social mate) (Beemer,
Kuttin & Katz, 1973; Davies, 1992; Sheldon, 1993; Davies et al., 1996; Lombardo & Thorpe,
20005 Houston, Szekely ¢ McNamara, 2005). Strong natural selection would seem to
effectively eliminate the variation in infertility in individuals (but see, e.g. Morrow,
Arnqvist & Pitcher, 2002), and it is therefore sometimes suggested that the direct fitness
benefits for females participating in the EPC may often be less obvious than the direct
costs (Griffith, 2007). On the other hand, females involving in EPCs in birds can take
advantage of indirect genetic benefits (Wink ¢» Dyrcz, 1999). Females could seek
copulations with extra-pair males of superior genetic makeup to increase offspring fitness
(Jennions & Petrie, 2000), or because genetically complementary males may sire
heterozygous offspring with potentially higher fitness (e.g. due to improved immuno-
competence) (Kempenaers, 2007). Therefore, extra-pair reproduction in females is
hypothesised to be governed by female-specific indirect and direct selection (Kirkpatrick ¢
Barton, 1997; Arnqvist & Kirkpatrick, 2005; Kokko, Jennions ¢ Brooks, 2006).

The equations approximating the force of different types of selection on female
extra-pair mating behaviour are generally similar for sex unspecific ones Eq. (2). As noted
above, these equations contain two common components: heritability and estimate of the
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total variability of the trait. They differ in the method of calculating the third component,
the selection gradient or the selection differential. Again, assuming that the EPO
number reflects female extra-pair mating behaviour, the change in the mean EPO number
under the influence of indirect selection, measured in units of phenotypic standard
deviations, is A;Ngpo = h%\ﬁzpo X ONgo X SEw> Where hZZVEPO is the heritability of the EPO
number, oy, is the phenotypic standard deviation of the EPO number, and sgy is the
difference in fitness between EPO and within-pair offspring (WPO) (Kirkpatrick ¢» Barton,
1997; Arngvist & Kirkpatrick, 2005, 2007; but see Griffith, 2007). The per-generation
change in the mean rate of female’s EPC caused by direct selection, measured in units of
phenotypic standard deviations, is ApNgpo = 5 X Iy X O X By Where g is
the direct selection gradient acting on a female’s propensity to engage in EPC that results
from reduced paternal care of her social mate (Arnqgvist & Kirkpatrick, 2005, 2007).

This formula is correct if one agrees that ‘Reduced parental care is also the only form
of direct effect of female EPC behaviour whose impact can currently be quantified’
(Arnqvist & Kirkpatrick, 2005, 2007; but again, see Griffith, 2007).

In our work, we did not aim to assess the balance of forces between direct and indirect
selection. We have given Eq. (2), as well as formulas for different types of selection in
females approximating the change in the mean rate of their EPC to demonstrate the
importance of the narrow-sense heritability for selective mechanisms of trait evolution.
All equations have very well demonstrated that selection depends on heritability and
additive genetic variance. Perhaps, the biological meaning of these equations is that
resemblance between relatives is mostly driven by additive genetic variance (Hill,
Goddard & Visscher, 2008).

Nevertheless, despite the importance of key genetic and phenotypic variances and
covariances to all hypotheses pertinent to the selective mechanisms driving extra-pair
reproduction in socially monogamous species, an explicit estimation of heritability of EPC
behaviour has been rarely made. We know only two animal species for which genetic
variances of EPP rate have been dissected, namely for the song sparrow (Melospiza
melodia) (Reid et al., 2011a, 2011b) and humans (Homo sapiens) (Zietsch et al., 2015).
Using data on extrapair mating in 7,378 Finnish twins and their siblings, it has been shown
that the within-sex broad-sense heritability (the percentage of variation in extrapair
mating due to total genetic variation, not only additive component) is 62% in men and 40%
in women (Zietsch et al., 2015). In M. melodia, estimates of o and h* were both close to
0 in males (Reid et al., 2011b), and were 1.08 and 0.12 for (7124 and h*, respectively, in
females (Reid et al., 2011a). Such a small number of data for vertebrates is not particularly
satisfactory given the important theoretical and practical significance of heritability in
our understanding of micro- and meso-evolution, formalised in Eq. (1). Knowledge of
the key genetic components of variation in the extra-pair reproduction can enact a
discriminating criterion when choosing hypotheses about the evolution of extra-pair
mating behaviour for each specific study of birds. Indeed, the number of hypotheses about
the evolution of EPC incidence is huge, and the proposed mechanisms are often difficult to
distinguish from one another (Ford, 1983).
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Therefore, here we evaluate the additive genetic variance in the extra-pair
reproduction of the pied flycatcher (Ficedula hypoleuca) breeding in Western Siberia
and its proportion in the total phenotypic variance of the trait, narrow-sense heritability,
h*. Hence, estimating h?, we can qualitatively evaluate the magnitude of the selective
forces that are necessary to drive the evolution of extra-pair reproduction in the pied
flycatcher. Thus, we test the hypothesis of whether the population retained the extra-pair
mating behaviour due to natural selection acting indirectly on the EPC through an
associated trait such as the EPO number.

MATERIALS AND METHODS

General approach

Usually, to assess the heritability in natural populations, multi-generation longitudinal
studies are carried out to accumulate enough empirical phenotypic data to estimate a
resemblance between relatives in target traits. However, if the recruitment rate of marked
young is high in a local population, then in each breeding season, the population will
include both parents and their descendants, which have survived until the year of

study from previous reproductive seasons. Therefore, if we carry out single-year
cross-generation measurements of a target trait in all specimens in the studied population,
then we will be able to identify relatives and compare their values of the investigated
trait. We already have successfully applied this approach to assess the heritability of the
basal metabolic rate in the pied flycatcher (Bushuev et al., 2012), because in the Western
Siberian population of the pied flycatcher the recruitment rate of locally born individuals is
on average 11.1% both in males and females (Grinkov & Sternberg, 2018).

For natural populations, phenotypic measures are available for individuals with a
mixture of genetic relationships (number of known relatives) within and across multiple
generations (the unbalanced design). Therefore, an additive genetic variance and
environmental components could be estimated most efficiently from a linear mixed model,
the ‘animal model’ (Henderson, 1953; Kruuk, 2004; De Villemereuil, Gimenez ¢ Doligez,
2013). In this model, all pairwise additive genetic relationships in the entire pedigree
are used and, for analysis, all sources of information are appropriately weighted by their
sampling variance (Visscher, Hill & Wray, 2008).

Study species and population

Our research was conducted on the pied flycatcher. The pied flycatcher is one of the more
common ‘Old World’ forest-dwelling bird species. The breeding area of the species extends
from Spanish Malaga and Moralech in the west to Russian Krasnoyarsk in the east.

The breeding range of the species is restricted to the forest zone in the south and the
north. The pied flycatchers migrate to sub-equatorial western Africa for wintering.
Commonly, the pied flycatchers nest once a year and make a second breeding attempt in
the case of an unsuccessful first nesting. Flycatchers form a pair bond for the current
breeding season and change social partners with each subsequent reproduction event
(serial monogamy). Some individuals have polygamous relationships within one breeding
season (Grinkov et al., 2018).
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The individual-level study of the pied flycatcher population breeding in the Tomsk
region, Western Siberia, Russia (56°21N, 84°56E) has been running with constant research
effort and identical working methods since 2001. Immigrant flycatchers to the study
population were captured, ringed and released; they can be identified individually
throughout a lifetime. Flycatchers, born inside the population, were ringed and monitored
from birth through all breeding attempts until they disappeared (when they probably
died).

The studied pied flycatchers breed in nest-boxes. The nest-box area is located 13 km
south of Tomsk in a mixed small-leaf deciduous forest, which mainly consists of aspen
(Populus tremula) and birches (Betula spp.) which is typical for the southern taiga
subzone. The pied flycatchers build nests in natural holes, but strongly prefer artificial
nest-boxes over natural cavities. Nest-boxes facilitate the trapping of almost all adult
breeders of the studied breeding population. The nest-box area consists of three plots—two
5 ha and one 20 ha areas. The distance between the most distant nest-boxes in the
study area is approximately 3 km. Over the years, the number of monitored nest-boxes
varied depending on short-term experiments. We always had more than 200 and less
than 381 nest-boxes under observation. The number of breeding flycatchers is strongly
dependent on the number of nest-boxes. In Western Siberia, the pied flycatcher has no
competitors among other bird species which would compete with the nest-boxes.

The occupation rate of nest-boxes could reach 96%, thus the size of the breeding
population, though fluctuating from year to year, was not less than 100 pairs

(the maximum was more than 320 pairs). The monitoring scheme of the studied
population was based on regular nest-box inspections to record breeding time, estimate
fecundity, and determine catching dates of adult birds. We captured and ringed almost
all females two times during the breeding season: for the first time each female was caught
between day 7 and 9 of clutch incubation, and for the second time a female was caught
tfeeding 9-11-day-old nestlings. Males were caught feeding their nestlings at the age of
9-11 days. More detailed information about the monitoring scheme of the population, the
frequency of bird catching, their treatment, as well as a detailed description of the research
area can be found in our earlier publication (Grinkov et al., 2018).

Measurement of the EPO number

In 2005, using brachial (wing) venipuncture we collected blood samples from all birds
breeding in the study area for paternity analyses. Males and females were blood-sampled
when feeding 9-11-day-old nestlings, nestlings were blood sampled at day 10 to 12 after
hatching (the next day after blood sampling from parents). We sampled 232 males,

250 females, 1,485 nestlings (250 nests; 1,967 blood samples). The collected blood samples
were stored in an EDTA-buffer. After DNA extraction the pied flycatcher samples were
genotyped using eight microsatellite loci FHU1/PTC2, FHU2/PTC3 (Ellegren, 1992);
FHU3, FHUS5 (Primmer, Moller ¢ Ellegren, 1996); FHY336, FHY403, FHY427, FHY452
(Leder, Karaiskou & Primmer, 2008). The microsatellite loci were amplified using two
multiplexes PCRs (Set FHU, Set FHY). Amplified fragments were analysed via capillary
electrophoresis (MegaBACE 500 Sequencing System and MegaBACE 1000 Sequencing
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System; GE Healthcare Europe GmbH). The degree of genetic relationship was determined
by CERVUS 3.0 (Kalinowski, Taper & Marshall, 2007). All work for paternity analysis was
conducted at the Institute of Pharmacy and Molecular Biotechnology at Heidelberg
University in Germany. For characteristics of the molecular markers used in the study and
for a detailed description of the assessment of the paternity of each nestling, we refer to our
previous publication (Grinkov et al., 2018).

For the present study, we assume that the number of offspring sired by an extra-pair
male is a good phenotypic measure of the extra-pair mating behaviour. This means
that we evaluate the selective forces acting on the EPP rate rather than on the EPC rate
because a direct registration of copulation behaviour of all birds breeding in the study
area was impossible in our case. In general, a linear dependence between the observed rate
of EPCs and EPP was not demonstrated across an analysed species (Dunn ¢ Lifjeld, 1994;
Griffith, 2007). However, it seems that in the case of the pied flycatcher there is a
covariance between the observed rate of the EPP and the true rate of EPCs. In the studied
population, females can have up to three extra-pair sires (Grinkov et al., 2018). At least
among 53 females with EPO, the EPO number and the EPP rate (this is the ratio of
EPO to the number of nestlings in the brood) positively correlated with the number of
extra-pair males (Pearson’s product-moment correlation, r = 0.40, p < 0.003, and r = 0.40,
p < 0.003, respectively). It is most likely that the females having EPO from three extra-pair
sires had more EPCs (minimum three EPCs) than the females having EPO from one
extra-pair sire (minimum one EPC). This is also true for 40 males with EPO, there is a
linear correlation between the EPO number and the extra-pair female number (r = 0.60,
p < 0.0001). Nonetheless, we are unable to assume that females and males without
EPP have not had EPCs at all. However, based on these correlations, the assumption that
EPP correlates positively with the degree of EPC behaviour across females and males
within populations looks reliable and parsimonious (Arngvist ¢ Kirkpatrick, 2007).

Fixed and random effects

In the linear mixed models, we included the most important and most common fixed
and random effects, which are usually modelled when assessing the heritability value.
We conducted a preliminary exploratory analysis (Grinkov et al., 2014) and found that
age for males and breeding site for females were associated with the EPO number, and
females and males did not differ in the average EPO number. Two factors were a binary
variable, that is all birds ‘males’ and ‘females’ were ‘yearlings’ or ‘older’. The quality of the
breeding site was a numeric variable containing only integer values, that is number of
recruits. Sex was determined by morphological traits using colouration patterns of
breeding plumage and an incubation patch developed only by females of the species.
Age was determined according to the ringing data, and the territory quality was
determined by the recruitment number that grew in a given nest-box for the period
spanning from 2001 to 2009 (+4 years to the year of the EPO number measurement).
Age and sex entered in models as fixed effects and the quality of the breeding site as a
random effect.
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Heritability estimates are known to be critically determined by the fixed effects structure
of the model used (Wilson, 2008): each added fixed effect could possibly result in an
artificial raise of heritability. It is believed that if o3 is scaled by the observed phenotypic
variance in the data, then heritability appears to be relatively constant across models
(Wilson, 2008). Apparently, this is not always the case, however, scaling can at least partly
alleviate the issues associated with fixed effects structure in models. Therefore, we did
not pay much attention to the statistical testing of the significance of the fixed effects and
did not use conventional model selection procedures based on the deviance information
criterion (DIC) associated to the model (Wilson, 2008). Alternatively, as recommended
(Wilson, 2008) we constructed a series of animal models differing in their fixed effects
structure (including models without fixed effects) to calculate the additive genetic variance.
This allows tracing changes in 0% caused by fixed effects structure, and it helps to make a
choice between models and to obtain an unbiased assessment of heritability as close as
possible to the actual heritability in the population. Later, if it was necessary to estimate the
strength of selection, it should be estimated in a way that 4> was conditioned on fixed
effects (Wilson, 2008).

Also, here it should be noted that the structure of the animal model may produce a
downward biased estimate of the average additive genetic variance. For example, we can
construct the univariate model including sexes as a fixed effect. A univariate analysis
of this type incorporates the assumptions of no genotype-by-sex interactions and,
therefore, a between-sex additive genetic correlation of one (Wolak, Roff ¢ Fairbairn,
2015). When these assumptions are valid mixed effect models treating any differences
between the sexes as a fixed will produce unbiased estimates of the additive genetic
variance in the population (Wolak, Roff ¢ Fairbairn, 2015). However, if the between-sexes
additive genetic correlation is less than unity, the univariate model will produce a
biased estimate of additive genetic variance: the average variance will be less than either
of the two variances (for males or females) (Wolak, Roff & Fairbairn, 2015). Therefore,
we also conducted additional calculations to estimate the heritability for both sexes
separately to check whether there was a downward bias in the joint estimates of the average
additive genetic variances in the univariate models including sex as a fixed effect.

Pedigree construction and statistical analyses

We need knowledge about the genetic relatedness among individuals to conduct a
quantitative genetic analysis. It is common in avian studies that kinship is inferred based
on catching the females when they incubate eggs and the males when they provide food
for their young in the nests (Grinkov et al., 2018). There may be some errors through
the paternal line because of alloparental care, which is any form of parental care directed
towards non-descendant young (Wilson, 1975; Grinkov et al., 2018). EPCs are the main
source of alloparents in a population, and they potentially may cause that paternal

links within the social pedigree may differ from those in the actual genetic pedigree,
and therefore using social pedigrees for quantitative genetic parameter estimation may
be incorrect. The simulation studies showed that the random EPP leads to an
underestimation of the heritability, but the extent of underestimation remained small
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(Charmantier & Reale, 2005). It was concluded that social pedigree was generally reliable
for quantitative genetic analysis when EPP rates <20% (Charmantier ¢ Reale, 2005;
Firth et al., 2015). In case of the non-random EPP, low heritability traits appear to be
relatively unaffected by EPP, and, even for traits with higher heritability, the social
pedigree remains adequate in most cases (Firth et al., 2015). Regarding other sources of
alloparents in the pied flycatcher, it seems that similar conclusions can be made since their
occurrence is even lower in the population (Grinkov et al., 2018).

We used the open-source R software environment for statistical computing and
graphics (version 3.5.0) under an integrated development environment for R—RStudio
(RStudio Desktop version 1.1.447) to analyse data. We used the R package ‘pedantics’ to
search for errors in the pedigree, correct them and obtain summary statistics (Morrissey ¢
Wilson, 2009). The initial pedigree consisted of 2,878 individuals (930 maternities, 905
paternities). There were 7 ancestral generations for individuals (mean 0.56, minimum
0, maximum 6). The distribution of known relatedness among individuals is (relatedness
value-number (only non-zero values)) 0-4133145, 0.025-499, 0.05-808, 0.075-2,
0.125-1,435, 0.15-2, 0.175-1, 0.25-1979, 0.3-1, 0.375-5, 0.5-2124, 0.625-2. The number
of informative individuals, ‘pruned pedigree’, for the quantitative genetic analyses of
the EPO number consisted in total of 577 individuals spanning four generations
(mean 0.41, minimum 0, maximum 3) where 134 were maternities, 132 were paternities
(33 full sibs; 69 maternal sibs; 36 maternal half-sibs; 66 paternal sibs; 33 paternal half-sibs).
The maternal (paternal) sibs number is the total number of pair-wise maternal
(paternal) sib relationships defined by the pedigree; to get the number of maternal
(paternal) sibs sum number of full sibs and maternal (paternal) half-sibs, respectively
(please, refer to ‘pedantics’ package manual). These numbers of different types of
relatedness correspond to many small families because most couples produce (if they do)
only one or two recruits. For example, 134 maternities include 78 mother-to-child
relationships, where 34 mothers (43.6%) have one recruited offspring, 33 mothers (42.3%)
have 2 offspring, 10 mothers (12.8%) have 3 offspring, and finally one mother (1.3%)
has 4 offspring. Similarly, 132 paternities include 76 father-to-child relationships in which
30 fathers (39.5%) have one recruited offspring, 36 (47.4%) fathers have 2 offspring,
and 10 fathers (13.1%) have 3 offspring. Therefore, mean maternal sibship size was 1.72,
mean paternal sibship size 1.74. The distribution of known relatedness among individuals
of pruned pedigree is (relatedness value-number (only non-zero values)) 0-165555,
0.025-6, 0.05-36, 0.125-97, 0.25-183, 0.5-299; and mean pairwise relatedness of all
individuals in the pruned pedigree was 0.0013.

We used the Markov chain Monte Carlo method for estimating genetic variance
components as it was implemented in MCMCglmm package (Hadfield, 2010) in R, because
it is flexible, and allows Bayesian estimation in complex pedigrees.

The EPO number is a non-negative integer with a very high proportion of zeroes
(Fig. 1), with mean 0.35, variance 0.81, and maximum value 6 EPO (sample size 480:
250 females and 230 males). Therefore, we analysed the EPO number assuming an
overdispersed Poisson distribution (as an example of the analysis of such traits, see Kruuk,
Clutton-Brock ¢» Pemberton, 2014). MCMCglmm fits an additive overdispersion model.
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It uses a log-link and estimates variance components on the latent scale. We conducted
posterior predictive checks as is described in MCMCglmm course notes, Section 5.3.1
(Hadlfield, 2018). We found that this overdispersed Poisson distribution was sufficient to
represent the distribution of the EPO number because the observed and mean predicted
number of zeroes differed by 2-4%.

The choice of a prior distribution for a Bayesian model is a difficult subject
(De Villemereuil, Gimenez ¢ Doligez, 2013; Morrissey et al., 2013; Hadfield, 2018).
Therefore, in our work, we used the prior distribution taken from other similar studies
(Reid et al., 2011a). We used default MCMCglmm priors for fixed effects (normally
distributed, diffuse, with mean 0 and variance 1 x 10°). Parameter-expanded random
effects priors were G1 (V = 1, nu = 1, alpha.mu = 0, alpha.V = 1,000), and G2 (V = diag(2),
nu = 1, alpha.mu = rep (0,2), alpha.V = diag (2)*1,000). The prior for the residual
covariance structure was R1 (V = 1, nu = 1) and with fixed variance structure R2 (V =1,
fix=1). All models were run with 1,005 x 10* number of MCMC iterations with a thinning
interval of 10* and a burn-in period of 5 x 10% resulting in a total sample size of
1,000 estimates. The effective sample sizes for each estimate in all models were 1,000.
The convergence of the MCMC sampling was assessed by visual inspection of the variance
component chains; autocorrelation between successive observations was <0.12 across all
analyses.

We calculated heritabilities on the latent scale as 0% /(0% + 0%) where the residual
variance, 0, is the sum of all variance components depending on the model structure
except 0% (Morrissey et al., 2013). However, it should be remembered that in all models
where fixed effects have been included (in our case it is sex and age) the sum o3 + o does
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not constitute the entire observed phenotypic variance: the sum of random variances
(additive genetic, random effects and residual variances) reflects the variance after the fixed
effects have been accounted for Wilson (2008), De Villemereuil (2012), and De Villemereuil
et al. (2018).

Because the additive variance is not the same on the latent and data scales, there is no
easy way to calculate heritability on the data scale (Morrissey et al., 2013). Therefore,
we calculated heritability on data scale using the QGglmm package in R (De Villemereuil
et al., 2016; De Villemereuil, 2018). It allows for the computation of the quantitative
genetics parameters on the observed data scale after a Generalised Linear Mixed
Model (GLMM) analysis (De Villemereuil et al., 2016). The QGglmm R package is
especially useful in practice, because it also allows accounting for the ‘fixed-effect’ variance
component in computation the quantitative genetic parameters on the observed data
scale in models in which the studied traits are not normally distributed.

We simulated the zero-heritability trait following Poisson distribution using the
pedantics package. All models were also fitted with this ‘null’ trait, and the resulting
heritabilities were calculated with the above-described procedure. The obtained estimates
of heritability for the observed trait were compared with the estimates of the ‘null’ trait, to
conclude that the heritability of the observed trait is not equal to zero, because in
MCMCglmm all variance components cannot overlap zero.

We used the highest posterior density (HPD) region (Hyndman, 1996) for 95% limits
as a descriptor of 95% credible interval (CI) to summarise variation of h*. HPDs were
calculated using the LaplacesDemon package (Statisticat, LLC, 2020) in R. In case of the
unimodal bell-shaped distribution, HPD region coincides with a 95% quantile-based
probability interval but in case of more complex polymodal distributions they could
significantly differ.

Ethics statement

Our work conforms to the legal requirements of the Russian Federation as well as to
international ethical standards. All our treatments and samplings have been intravital
and have not required prolonged treatment and handling of birds. The species from
our study is not included in the “Threatened’ category of the IUCN Red List of
Threatened Species. The Bioethics Commission of Lomonosov Moscow State
University has provided full approval for this research (Protocol No 89-o0 of March
22, 2018).

RESULTS

The computation of the trait scale heritability using the QGglmm package after the MCMC
algorithm with the prior R1 is shown in Table 1, and the posterior distribution of
heritability on the trait and the latent scales is illustrated in Fig. 2. The MCMC algorithm
was converged. However, the range of heritability estimates on the latent scale in fact
covered the entire range of possible values for this parameter, although most of the
estimates have a value close to zero (Figs. 2F-2]). All models detect the presence of the
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Table 1 Trait scale narrow-sense heritability, h’, and additive genetic variance, 6%, in the EPO number and the simulated null trait computed
using the prior R1 for the residual covariance structure.

Trait Model  Effects DIC  h* (95% CI) a2 (95% CI)
Fixed Random

EPO number 1 ~1 ~animal 6172 0.020 [=0-0.157]  0.038 [=0-0.93]
2 ~1 ~animal + idh(Sex):Nest.Q Nrec  615.9  0.013 [=0-0.124] 0.064 [=0-2.09]
3 ~Age’ ~animal + idh(Sex):Nest.Q.Nrec  613.6  0.009 [=0-0.121] 0.051 [=0-1.73]
4 ~Age + Age:Sex ~animal + idh(Sex):Nest.Q Nrec  613.3  0.010 [=0-0.113]  0.044 [=0-1.86]
5 ~Age + Sex + Age:Sex  ~animal + idh(Sex):Nest.Q.Nrec ~ 613.3  0.006 [=0-0.122]  0.036 [=0-1.82]

Simulated EPO number 1 ~1 ~animal 584.2 0.017 [=0-0.165] 0.006 [=0-0.10]
2 ~1 ~animal + idh(Sex):Nest. Q. Nrec 5852  0.014 [=0-0.147] 0.007 [=0-0.15]
3 ~Age ~animal + idh(Sex):Nest.Q.Nrec  586.2  0.015 [=0-0.158]  0.007 [=0-0.15]
4 ~Age + Age:Sex ~animal + idh(Sex):Nest.Q.Nrec  587.1  0.019 [=0-0.149]  0.009 [=0-0.16]
5 ~Age + Sex + Age:Sex  ~animal + idh(Sex):Nest.Q.Nrec ~ 587.1 0.040 [=0-0.145] 0.021 [=0-0.14]

Note:

Fixed and random effects formulas written in R formulation; DIC is the deviance information criterion; 95% CI is the credible intervals calculated as highest posterior
density regions; means that fixed effect has pMCMC value = 0.05; Nest.Q.Nrec is quality of breeding site estimated as number of recruits.

additive genetic variance (Table 1), and a very high residual variance actually equates
heritability to zero (the residual variance can be easily calculated as % /h* — 04 according
to the data in Table 1 for each model). It can also be clearly seen that adding the
territory quality to the model as random effect reduces the assessment of heritability by
1.53 times (compare, heritability in model 1 and models 2-5 in Table 1). It seems that the
Poisson integer distribution, which the EPO number represents, does not provide enough
information for the MCMC algorithm to infer liability variance. The EPO number is

an integer categorical variable fitting overdispersed Poisson distribution. In models with
categorical response variables there often might not be enough data to fit the variance
components of a residual covariance matrix well. For example, in our case, individuals with
EPO equal to 5 or 6 may not be presented in all combinations of explanatory variables.
Also, in the case of categorical response variables, the fitting process is likely to be not very
good, which usually means more computation time and less reliability. In our case, for
example, we had to use colossal computing just to keep the autocorrelations at an
acceptable level. Without fixing the residual variance, the MCMC algorithm tries to
estimate it and faces the lack of some values. In the case of fixation of the residual variance,
the MCMC algorithm must no longer explore the residual variance parameter. Therefore,
we fixed the residual variance to 1 in the prior R2, though this is usually recommended
for binary variables (Reid et al., 2011b; De Villemereuil, Gimenez ¢ Doligez, 2013).
Although, in itself, it does not seem to pose any serious problems, however, we just have to
be careful about how we present the results. Results in Table 2 could not be correctly
interpreted without putting them in the context of the assumed residual variance
(Hadlfield, 2018). We used fixation of the residual variance as a method to uncover and
explore the limits of variation of additive variance. For this purpose, it is more appropriate
to fix the residual variance at zero, but MCMCglmm will not mix under this condition
(a variance component cannot overlap zero). It seems that mixing properties improve as
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Figure 2 The posterior distribution of the heritability of the EPO number approximated by the
MCMC algorithm using the prior R1 for the residual covariance structure. (A-E) Traces of herit-
ability throughout iterations. (F-J) Densities of posterior distributions of heritabilities on a latent scale.
(K-0O) Densities of posterior distributions of heritabilities on a trait (data) scale. Each line of the figure,
consisting of three figure parts, corresponds to the model number in Table 1 (e.g. line 2, containing parts
(B), (G), and (L), corresponds to the model 2). Full-size £a] DOL: 10.7717/peerj.9571/fig-2
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Table 2 Trait scale narrow-sense heritability, h”, and additive genetic variance, o3, in the EPO number and the simulated null trait computed
using the prior R2 for the residual covariance structure.

Trait Model  Effects DIC  h* (95% CI) a2 (95% CI)
Fixed Random
EPO number 1 ~1 ~animal 619.7 0.109 [0.067-0.110] 0.216 [0.017-1.20]
2 ~1 ~animal + idh(Sex):Nest.Q.Nrec 618.4 0.080 [0.026-0.110]  0.302 [0.015-2.67]
3 ~Age’ ~animal + idh(Sex):Nest.Q.Nrec 616.0 0.082 [0.027-0.104]  0.263 [0.028-2.24]
4 ~Age + Age:Sex ~animal + idh(Sex):Nest.Q. Nrec 6159 0.065 [0.022-0.101]  0.279 [0.007-2.68]
5 ~Age + Sex + Age:Sex  ~animal + idh(Sex):Nest.Q.Nrec  616.0 0.065 [0.020-0.101]  0.342 [0.009-2.53]
Simulated EPO number 1 ~1 ~animal 582.1 0.012 [=0-0.083] 0.004 [=0-0.06]
2 ~1 ~animal + idh(Sex):Nest.Q.Nrec 5829 0.016 [=0-0.071] 0.008 [=0-0.09]
3 ~Age ~animal + idh(Sex):Nest.Q.Nrec 583.9 0.009 [=0-0.077] 0.005 [=0-0.09]
4 ~Age + Age:Sex ~animal + idh(Sex):Nest.Q.Nrec 584.8 0.007 [=0-0.078] 0.004 [=0-0.09]
5 ~Age + Sex + Age:Sex  ~animal + idh(Sex):Nest.Q.Nrec  584.9 0.012 [=0-0.073] 0.006 [=0-0.08]

Note:

Fixed and random effects formulas written in R formulation; DIC is the deviance information criterion; 95% CI is the credible intervals calculated as highest posterior
density regions; means that the fixed effect has pMCMC value = 0.05; Nest.Q.Nrec is quality of breeding site estimated as number of recruits.

residual variance increases, however at some point problems with underflow/overflow
begin to arise (Van Dyk ¢ Meng, 2001). Thereby, it is a compromise solution to fix the
residual variance at 1 using MCMCglmm. Hence, fixing the residual variance at 1, we
follow the recommended practice of using the MCMCglmm algorithm (De Villemereuil,
2012; Hadlfield, 2018) and make our results more comparable with previously obtained
similar results (Reid et al., 2011Db).

The heritability estimates on the trait scale using the QGglmm package after the MCMC
algorithm with the prior R2 are shown in Table 2, and the posterior distribution of
heritability on the trait scale and the latent scale is presented in Fig. 3. The fixation of
residual variance increased the estimated values of the additive genetic variance and
heritability (Table 2). The upper limit of the 95% credible interval for heritability on the
trait scale in all models does not exceed 0.11. An about 1.5 times decrease in heritability
estimates is also preserved in models containing the common environment random
factor estimated through the number of recruits produced at a breeding site. The mode
of the posterior distribution of heritability values of the EPO number is approximately
6.5-10.9% (Table 2). It should be recalled that Table 2 shows the results of MCMCglmm
with fixed residual variance, so we considered it as the upper bounds for point estimates
(modes in our case) of heritabilities. For the simulated trait, the estimates of the
additive genetic variance for all models are low (effectively zero), and the heritability of the
null trait is about 1-2% (the 95% CI for a variance component cannot overlap zero, thus,
it is impossible to obtain exactly zero heritability and additive variance values). Formal
statistical testing showed that the posterior distributions of the heritability of the EPO
number, obtained by models listed in Table 2, differ from similar distributions of a
simulated trait (Wilcoxon rank sum test (two-sided), p < 0.001 for all models; please, see
Fig. 4 as an example of the posterior distributions of heritabilities of observed and
simulated traits for model 3 from Table 2).
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Figure 3 The posterior distribution of the heritability of the EPO number approximated by the
MCMC algorithm using the prior R2 for the residual covariance structure. (A-E) Traces of herit-
ability throughout iterations. (F-]) Densities of posterior distributions of heritability on a latent scale.
(K-0O) Densities of posterior distributions of heritability on a trait (data) scale. Each line of the figure,
consisting of three figure parts, corresponds to the model number in Table 2 (e.g. line 3, containing parts

(C), (H), and (M), corresponds to the model 3).

Full-size K& DOI: 10.7717/peerj.9571/fig-3
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Figure 4 The posterior distribution of the heritability of the EPO number and the heritability of the
simulated trait on trait scale for model 3 in Table 2. Dashed line is the density of the heritability of
simulated trait; solid line is the dencity of the heritability of the EPO number. The areas under the lines
shaded in grey denote 95% credible intervals calculated as highest posterior density regions. Wilcoxon
rank sum test statistics (two sided): V' = 892,510, p < 0.0001 (n = 1,000).

Full-size k&) DOT: 10.7717/peerj.9571/fig-4

We did not use conventional model selection but constructed a series of animal models
differing in their fixed effects structure to investigate fluctuation of the additive genetic
variance. Therefore, the downward bias of heritability estimates in univariate models with
sex fitting as a fixed factor (Wolak, Roff ¢» Fairbairn, 2015) is not critical, because we also
analysed estimates of heritability inferred from simplest models without fixed effects.
We are exploring the possible limits of variation in additive genetic variance in general
rather than concentrating on finding a single model that we believe should provide a ‘true
unbiased’ estimate of heritability. However, it is worse to check the bias in the joint
estimates of the additive genetic variances caused by sex fitted as a fixed effect.

The sex-specific estimates of heritabilities and associated additive genetic variances are
presented in Tables S1 and S2 in Supplemental Materials. Data shows that there is a
downward bias, but it is very small if we consider between-sex differences in heritabilities
and the variation in this estimate between models. This bias is clearly visible only if we
analysed averaged point estimates of heritabilities. For example, the averaged point
estimate (mode) of EPO heritability in females in models without fixation residual variance
is about 0.009 and in males—about 0.007 (Table S1), but the univariate model fitted
sex as a fixed factor estimated average heritability as 0.006 (Table 1, model 5). The same is
true for the models with fixed residual variance. The mode of EPO heritability for females
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is 0.099 on average, and for males—0.087 on average (Table S2), but the joint estimate of
the EPO heritability is 0.065 (Table 2, model 5).

Thus, the point estimate (mode) of the narrow-sense heritability of the EPO number
in the pied flycatcher assessed by an animal model is very low: depending on the model
used, the point estimate of the heritability (mode) varied from 0.005 to 0.11, and the
bounds of the 95% confidence interval are [0-0.16] in the widest range.

DISCUSSION

The point estimate of heritability depends on the method of its approximation from the
posterior distribution. To obtain a point estimate of heritability, there may be used

such summary statistics as mean (De Villemereuil, 2012) or mode (Wilson et al., 2010).
If the distribution is bell-shaped and symmetric (e.g. as in the case of a normal
distribution), then both summary statistics will give similar estimates. However, in the case
of more complex distributions (skewed, multimodal, with rare large value outliers) they
will be very different. Therefore, we recommend that studies of heritability estimation
explicitly report which summary statistics or R package was used so that valid comparison
can be performed.

Our study shows that the EPO number has a low heritability in the pied flycatcher
nesting in Western Siberia, and with some modelling methods, we could get zero values.
It is worth highlighting that, even with the residual variance truncating (fixed to 1) in the
models, we cannot get very high heritability values (Table 2). This means that in the
observed phenotypic changes of the EPO number, a very small proportion is due to
heritable genetic variation, namely additive genetic variance. Nevertheless, according to
the definition, near zero or low heritability does not mean that the additive genetic variance
is absent (Table 2). Therefore, it does not mean that selection is unable to change the
average value of such a trait. However, the response to natural or artificial directional
selection on the phenotype is proportional to h x a4 (Visscher, Hill & Wray, 2008), so
both the heritability and genetic variance are important.

This can be illustrated calculating the selection intensity and the selection gradient
for a hypothetical shift in the mean trait value. To change the average value of the EPO
number by 0.1 (Az = 0.1), which equals 2.9% to an increase in the EPO number in the
population, the selection intensity (i =Az/ (h2 X \/@)) should be 1.1-1.6 assuming
the heritability equals 0.07-0.1. Such selection intensity values acting constantly in one
direction can be maintained only in carefully planned breeding programmes (Preisinger ¢
Flock, 2000). In natural populations, long term constant selection is hardly possible
because environments, which determine the directions and magnitudes of selection
coefficients, fluctuate rather unpredictably (Grant ¢» Grant, 2002). The selection gradient
must be equal to =0.36 to facilitate such a change in the EPO number. This value is 2.97
times greater than the modal value of the selection gradient in natural populations of
vertebrates (mainly birds and lizards) (Kingsolver ¢» Diamond, 2011). It is several times
larger than the modal value of the selection gradient acting in natural populations for such
components of fitness as a mating success, survival and fecundity. It is only comparable
with the selection gradient revealed for the total fitness of individuals in natural
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populations (Kingsolver et al., 2001; Kingsolver ¢» Diamond, 2011). The above calculations
use the largest point estimates of heritability (Table 2; Table S2), and if we take the
point estimates of the heritability obtained without fixing the residual variance (Table 1;
Table S1), the natural selection force required to change the trait by 0.1 (Az = 0.1) will
be most unrealistic. Therefore, we think that the ability of selection acting on the EPO
number to have a significant impact on the evolution of extra-pair mating behaviour raises
very serious doubts in the case of the pied flycatcher.

Since not many estimates of the heritability of EPCs in socially monogamous species
are reported, it seems premature to conduct a sophisticated comparative analysis.
However, both studies of the genetic variances of EPCs in F. hypoleuca and M. melodia
show low heritability. It is still early to judge by how low EPC heritability is characteristic
of socially monogamous species, but these first estimates make such an assumption
very likely (see “Conclusion”). It should additionally be noted that 95% credible intervals
of h* obtained in our work are narrower (they overlay only 10-16% of the admitted region
of h*) than in the previous studies, where they cover 20-30% of the admitted region
of h* (Reid et al., 2011a, 2011b). Since the sampling variance of h* estimate depends on
the number of families (Falconer ¢» MacKay, 1996), it is very likely that narrower 95%
credible intervals are due to the substantial number of families (although the families
themselves are minor) in the pedigree we used. It also could be the consequence of fact that
purely additive genetic effects are not critically dependent on pedigree structures which
almost all could provide the same information about the heritability of a quantitative trait
(Ekstrom, 2009).

Humans have a broad-sense heritability of EPCs (the proportion of variation accounted
for both additive and nonadditive genetic factors) which in average is 0.53 for both sexes
(Zietsch et al., 2015). The authors also estimated the proportion of the additive genetic
variance in both sexes to be equal to zero (Zietsch et al., 2015). However, they pointed out
that the relative proportions of additive and nonadditive genetic variances should be
interpreted cautiously, because authors had little power to distinguish additive and
nonadditive genetic effects in this study (Zietsch et al., 2015). It is very likely that human
narrow-sense heritability of EPCs is as close to zero as that of birds (see “Conclusion”).
However, it cannot be ruled out that human narrow-sense EPCs heritability can be
much higher than that of birds due to exceptionally low residual variance (Zietsch et al,
2015), which is typically caused by the fluctuations of environmental factors. For the
modern European society, apparently, a strong variability of living conditions of people
(both economic and social), as a whole, is not characteristic, and the living conditions
themselves, if not close to the optimum, are very standardised.

On the bright side, traits may have low heritability because of increased residual
variance due to the multiple non-genetic factors influencing their expression, rather than
their association with fitness (Wheelwright, Keller & Postma, 2014). The main sources
of variance of the EPO number in the pied flycatchers breeding in Western Siberia are
the age of individuals, the quality of the nesting site, and other unknown factors increasing
the residual variance. In general, the proportion of birds with EPO among individuals
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older than 1 year is 49% higher than the same proportion among 1-year-old birds.

The proportion of females with EPO among individuals nesting in high quality areas is
68.9% higher than the proportion of such individuals among females nesting in low
quality areas in which the number of recruits is 0-2 estimated for the 9-year interval.
At present, it seems that extra-pair mating behaviour among pied flycatchers is a plastic
phenotypic mating tactic or a low-heritable flexible behaviour rather than the alternative
breeding strategy with genetic differentiation among individuals (Gross, 1996) whose
expression and consequences depend on the environment and specimen ontogenesis.

In a previous study, we have shown that multiple mating (polygyny and EPCs) in the pied
flycatcher can be strongly modified depending on the overall properties of the specific
environment (Grinkov et al., 2018). For example, in the city where spatial heterogeneity is
higher, a lower bird breeding density exists, contact between individuals is difficult and
there is probably a lack of males, the incidence of polygyny is 8.5 (!) times higher and
the occurrence of EPP is 3.3 times lower for females and 1.7 times lower for males
compared to forest habitats (Grinkov et al., 2018). This broad phenotypic plasticity is
observed between individuals of two study sites, spaced only 13 km apart, within the
same population of the species (Grinkov et al., 2018). On the other hand, the above
mentioned attributes of the EPO number (its high plasticity and its responsiveness to
environmental changes) may indicate that individuals of the pied flycatcher have no
‘inclination’, ‘propensity’ or ‘craving’ for the EPC in either males or females (Grinkov et al.,
2018). EPC as a phenomenon according to its definition is represented in the pied
flycatcher population, but there may be no EPC in individuals as an alternative breeding
strategy to mate with an extra-pair partner.

Currently, there has been growing recognition that the evolution of diverse mating
systems (monogamy and extra-pair copulations, polygamy, promiscuity and others) in
more general meaning is governed by the same mechanisms and factors. As an example,
it is a classic view that mating systems can be caused by the abilities of individuals to
monopolise resources and mates: monogamy is seen as the consequence of the inability of
members of either sex to monopolise more than a single mate (Emlen ¢» Oring, 1977;
Oring, 1982; Beletsky et al., 1995). One of the significant arguments among others in
support of this view and similar (that evolution of distinct mating systems would not be
fundamentally different) is the difficulty in classifying mating systems in birds (Grinkov
et al., 2018). For example, very often social monogamy occurs as serial monogamy.
Serial monogamy implies that social bonds in a couple are formed consecutively for only
one reproductive attempt or breeding season (Carey ¢ Nolan, 1975). Thus, the genetic
consequences of serial monogamy for specimen living for several years differ little from
polygamy: one male, for example, fertilises the eggs of several females (Ford, 1983).
Besides, species with serial monogamy can have facultative polygamy (and the pied
flycatcher among them). In its most general meaning, the facultative polygamy of serially
monogamous species can be viewed as the realisation of serial monogamy within the
one reproductive season (Ford, 1983; Grinkov et al., 2018). In socially monogamous species
of birds, extra-pair copulations and facultative polygamy are sometimes regarded as
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one of the types of ‘mate infidelity’ (Ford, 1983). However, it is often very difficult to decide
which system is the main scheme of interrelationships between individuals (Ford, 1983),
since some bird species comprise both purely monogamous and predominantly
polygynous populations (De Santo et al., 2003). Therefore, it seems quite natural today
that the hypotheses explaining the EPC evolution (Lifjeld et al., 2019; Brouwer ¢ Griffith,
2019) largely overlap with those explaining the polygamy evolution (Parker ¢ Birkhead,
2013), since ultimately both EPC and polygamy are multiple mating.

In this context, studies that assess the genetic variances of traits associated with female
multiple mating are remarkably interesting. In contrast to the estimates of the EPC
heritability in socially monogamous species, the estimates of heritability of female multiple
mating from species that are not socially monogamous were done much more frequent
(Torres-Vila et al., 2002; Linder ¢ Rice, 2005; Evans ¢ Simmons, 2008; McFarlane et al.,
2011; Evans & Gasparini, 2013; Travers, Simmons & Garcia-Gonzalez, 2016). Also, there is
valuable data on the components of genetic variances of female mating frequency and
sperm competitiveness, obtained in the studies of the socially non-monogamous species.
The point is that one of the explanations of the evolution of polygamy, which received
much attention, focused on the acquisition of sexual or good genes for offspring (Yasui,
1997, 1998). This explanation is also very common in the studies of the socially
monogamous species (Brouwer & Griffith, 2019). Analogous to the good genes and sexy
sons (Weatherhead ¢ Robertson, 1979; Walker, 1980; Yasui, 1997), the good sperm and
sexy sperm hypothesis posits that females can accrue genetic quality for their offspring
if males of a superb genetic quality win in sperm competition because the offspring sired by
these successful males will exhibit high viability or high sperm competitiveness (Yasui,
1997, 1998). However, selection for polyandry via the sexy sperm and good sperm
mechanism is possible only when there is additive genetic variance in both female mating
frequency and sperm competitiveness and when these traits exhibit genetic covariance
(Evans & Simmons, 2008). Using the Drosophila melanogaster model system, it has been
shown that female mating frequency can respond to selection due to high heritability
(>0.5); however, there has been found low and nonsignificant additive genetic variance in
sperm competitiveness and no genetic covariation between sperm competitiveness and
polyandry (Travers, Simmons ¢ Garcia-Gonzalez, 2016). It is, therefore, suggested that the
sexy sperm and good sperm mechanisms are unlikely to contribute to the evolution of
polyandry in this population of D. melanogaster.

This example demonstrates the high importance of the key genetic and phenotypic
variances and covariances for testing hypotheses of polygamy evolution. However,
if we agree that the evolution of diverse mating systems is not fundamentally different,
there is a good rationale to take into account the findings of the studies of the socially
non-monogamous species in the studies of the socially monogamous species.

CONCLUSIONS

We believe that knowledge of the EPO number heritability will allow a rigorous estimation
of balance of all components of direct and indirect selection acting on males and females
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of the pied flycatcher. This will enable rigorous testing of many specific hypotheses about
the origination and maintenance of the EPC and will contribute to a comprehensive
understanding of the evolution of extra-pair mating behaviour in socially monogamous
species.

The accuracy of a heritability estimate depends on the sample size and pedigree
structure. The sampling variance of the estimate of heritability is inversely proportional to
the relationship of individuals squared, the number of families and some other factors
(Falconer ¢ MacKay, 1996). Hundreds of observations are needed to obtain a standard
error less than 0.1, and thousands are needed to attain more precise estimates (Visscher,
Hill & Wray, 2008). In our work, the heritability of the EPO number was evaluated for
only one reproductive cycle. Therefore, to obtain more precise estimates of the heritability
of the extra-pair mating behaviour in the pied flycatcher, multi-generation longitudinal
studies are necessary (Reid et al., 2011a, 2011b).

Because the heritability is the proportion of phenotypic variance that is due to genetic
factors, it is a population parameter and depends on population-specific factors, such as
segregation in a population of the alleles that influence the trait, allele frequencies, the
effects of gene variants, and variation due to environmental factors. Therefore, the
heritability in one population does not, in theory, predict the heritability of the same
trait in another population or other species (Visscher, Hill ¢ Wray, 2008). Nevertheless,
in practice, heritabilities of similar traits are often remarkably similar among other
populations of the same species, or even across species (Visscher, Hill & Wray, 2008).
Therefore, future works, in which the heritability of the EPO number in other populations
of the pied flycatcher will be assessed, are thought to be very interesting, although the
probability of obtaining completely different values of the heritability of this trait seems to
be quite low.
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