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Survey and evaluation of mutations 
in the human KLF1 transcription 
unit
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Erythroid Krüppel-like Factor (EKLF/KLF1) is an erythroid-enriched transcription factor that plays a 
global role in all aspects of erythropoiesis, including cell cycle control and differentiation. We queried 
whether its mutation might play a role in red cell malignancies by genomic sequencing of the KLF1 
transcription unit in cell lines, erythroid neoplasms, dysplastic disorders, and leukemia. In addition, 
we queried published databases from a number of varied sources. In all cases we only found changes 
in commonly notated SNPs. Our results suggest that if there are mutations in KLF1 associated with 
erythroid malignancies, they are exceedingly rare.

Erythroid Krüppel-like Factor (EKLF/KLF1) is a red cell-enriched, zinc finger DNA binding protein that inter-
acts with its cognate 5′CCMCRCCCN3′ element at target promoters and enhancers1. Its roles in ß-like globin 
gene regulation during terminal erythroid differentiation have been well-established using genetic, biochemical, 
and molecular approaches2,3. Specific functional properties and expression characteristics of EKLF, along with 
recognition of its surprisingly broad role prior to and during red cell differentiation (reviewed in4–8), provide the 
conceptual basis for the present study.

First, single amino acids and their modifications are critically important for EKLF protein-protein interactions 
and its function as an activator or repressor9–12, raising the possibility that mutations at these sites or within their 
consensus sequences could have dramatic functional effects on gene expression control.

Second, subtle altering of EKLF cellular levels can change the erythroid cell cycle status from proliferation to 
differentiation, an effect mediated, at least in part, by its direct activation of the p21, p18, p27, and E2f2 genes13–17. 
Induction of p21 is reminiscent of a similar up-regulation that has been observed with KLF418 and with KLF619, 
known tumor suppressors that function in a p53-independent manner and that are frequently inactivated or 
downregulated in human cancer20.

Third, EKLF mRNA is highly restricted in its expression pattern during development to erythropoietic organs 
such as the yolk sac, fetal liver, adult bone marrow, and red pulp of the spleen1,21. Although most abundant in 
the erythroid cell, EKLF is also highly expressed in the megakaryocyte/erythroid progenitor (MEP)22. Its level is 
downregulated as MEPs differentiate towards the megakaryocytic lineage yet remains high in the erythroid line-
age22. By using both gain- and loss-of-function approaches, we12,22 and others23–25 have found that the expression 
levels of EKLF impacts the bipotential lineage decisions that are made by the MEP; specifically, EKLF inhibits the 
formation of megakaryocyte colony and cell numbers while at the same time stimulating erythroid differentiation.

Fourth, there are now links between KLF1 mutation and altered mammalian hematology26–28. For example, 
the semi-dominant mouse mutation Nan (neonatal anemia), which presents with hereditary spherocytosis, was 
mapped to a single amino acid change (E339D) within the second zinc finger of EKLF29–31. The mutation alters 
the DNA binding specificity of EKLF such that it no longer binds promoters of a subset of its DNA targets29. In 
addition, recognition of a novel target DNA sequence by Nan-EKLF leads to ectopic expression of genes not nor-
mally expressed in the red cell, yielding a neomorphic phenotype with cellular and systemic consequences32,33.
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Excitingly, this murine mutation has converged with human disease, particularly a subtype of congenital 
dyserythropoietic anemia (CDA)34–39, where the same amino acid is altered (albeit to another charged residue, 
lysine) in human EKLF/KLF1. These patients are severely anemic with highly elevated HbF and reticulocyte 
levels, membrane abnormalities, severe hemolytic anemia, erythroid hyperplasia with dyserythropoiesis, spleno-
megaly, and growth delay36. KLF1/E325K is recognized as a characteristic feature of CDA type IV40.

Additionally, the regulation of some genes are uniquely sensitive to haploinsufficient levels of KLF1 (Lu, 
Bcl11a, HbA2), leading to altered genetic expression patterns and hematologic parameters in humans, of which 
hereditary persistence of fetal hemoglobin (HPFH) is particularly relevant to clinical outcome4,5,26,41–43.

Collectively these functional properties suggest that genetic mutation or altered levels of KLF1 may also be a 
causative factor for a specific subset of hematopoietic disease. We focused our attention on two types of disorders. 
Myeloproliferative neoplasms (MPN) are chronic hematological malignancies that yield an excessive prolifera-
tion of blood cells with normal differentiation44,45. On the other hand, unrestricted proliferation and impaired 
differentiation are characteristic of acute myeloid leukemia (AML)46,47. Our test hypothesis is that dysregulation 
of KLF1 function may contribute or lead to either of these human malignancies.

Results
Chromosomal associations. 19p13.13, the chromosomal locus of KLF1, has been associated with varia-
tion in blood cell traits in meta-analysis studies48. Recent studies provide an extensive catalogue of SNP variants 
of consequence for red cell parameters49. Perusal of the data enable us to extract the ones most relevant to KLF1 
as summarized in Table 1, suggesting these KLF1 gene variants are significantly associated with altered MCH, 
MCV, and MCHC red cell indices, and RBC and RET numbers. In combination with studies summarized in the 
Introduction, we felt justified to address whether mutagenic changes in KLF1 might also be associated with aber-
rant or malignant red cell parameters.

Genomic analyses of KLF1 in selected populations. The complete human KLF1 transcription unit is 
only 3.5 kB50, enabling us to interrogate its proximal promoter, 5′ UTR, introns, exons, and 3′ UTR by eight over-
lapping amplimers. The proximal promoter contains highly conserved transcription factor binding sequences that 
are critical for its expression in erythroid cells51–55. To begin our evaluation of human KLF1 genomic status, we 
focused first on sequencing human leukemia cell lines that retain erythroid and/or megakaryocytic features56,57. 
These lines are derived from CML, AML-M6 or -M7 patients (F36P, HEL, JK1, K562, KMOE2, KU812, LAMA84, 
OCIM1, TF1), and include those with mixed erythroid/megakaryocytic features (CMK, KG1, Meg01). We con-
clude from genomic sequence comparison of these lines to the 1000 Genomes project58,59 that the KLF1 genomic 
changes observed represent known single nucleotide polymorphisms (SNPs), but no novel mutations (Table 2).

We then directly assessed primary human DNA samples from a selected cohort of patients. Given that KLF1 
levels may be playing a directive role in erythroid/megakaryocyte bipotential decisions, we focused on myelopro-
liferative neoplasms (MPNs) as cells whose aberrant properties might result from expression of mutated KLF1. 
MPNs are a heterogeneous group of clonal hematological malignancies that are characterized by hypercellular 
bone marrow, panmyelosis, and a gradual evolution to myelofibrosis (MF) and acute leukemia60,61. These disor-
ders are clonal and yield an excessive proliferation of blood cells that exhibit normal differentiation44. We were 
particularly interested in two subtypes of MPNs: polycythemia vera (PV) and essential thrombocythemia (ET), 
which represent abnormalities in the proliferation of erythroid and megakaryocytic lineage respectively45. We 
therefore sequenced genomic DNA from a collection of individuals with PV (eighteen), ET (eleven), and MF 
(five) samples. No novel mutations were identified, only SNPs (Table 2). Although rs115672848 is a rare variant, 
we found no evidence for its selective enrichment.

Many KLF1 target genes overlap with the expression signature identified in the differential analysis of myelod-
ysplastic syndrome (MDS) patients that vary in their response to lenalidomide treatment62. We hypothesized that 
the mutational status of KLF1 may provide a mechanistic basis to explain the differential expression signature in 
these patients, and potentially predict whether they will respond to lenalidomide. We analyzed 26 samples each 
of responders and non-responders. All variants identified in these samples were known SNPs (Table 2), and none 
partitioned significantly to either of the two differentially responding groups. There were no significant difference 

Associated 
Blood Index rsID BP (GRCh37) REF/ALT MAF (%)

Univariable Analysis

Estimate of Additive 
Allelic Effect

Standard Error 
of Estimator −log10 P Unadjusted R2

RET# rs3817621 12998205 G/C 23.9 −0.038 0.0042 18.6 0.000527

RET% rs3817621 12998205 G/C 23.9 −0.046 0.0042 27 0.000776

RBC# rs56397034 13000550 G/C 38.9 −0.049 0.0036 41.3 0.001166

MCV rs56397034 13000550 G/C 38.9 0.068 0.0036 78.5 0.002203

MCH rs56397034 13000550 G/C 38.9 0.071 0.0036 85.3 0.002411

MCHC rs11085824 13001547 A/G 37.6 0.029 0.0035 15.8 0.000407

Table 1. KLF1 loci associated with RBC traits. SNPs (rsID) at or near the KLF1 gene associated with red blood 
cell indices are tabulated with respect to chromosome 19 location (Ch37), percent minor allele frequency 
(MAF), and nucleotide change compared to the reference genome (REF/ALT). Univariable analysis indicates 
the direction and significance of the allelic effect on the index parameter. Data from49.
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in clinical parameters between the most common rs3817621 (p = 0.44) and rs2072597 (p = 0.53) SNPs. In addi-
tion, while rs201870270 and rs182276666 are rare variants, they are not selectively enriched.

We next examined ten acute megakaryoblastic leukemia (AMKL) samples63, including four from patients with 
Down syndrome (DS) and six from those without DS. AMKL is an aggressive form of leukemia where a major-
ity of the expanding cells are abnormal megakaryoblasts64, and whose DNA methylation patterns are distinct 
between DS and non-DS cells65. Again, all samples contain known KLF1 SNPs (Table 2).

As indicated in Table  2, many of these variants have been noted before26. The ones that result in 
non-synonymous coding changes are predicted not to affect KLF1 function66,67 (with the possible exception of 
rs2072596 as highlighted in Table 2). However, it is noteworthy that a geographical analysis68,69 shows that, unlike 
ones whose variation is common and universal (e.g., rs2072597), some with an overall low frequency (~5%) are 
nonetheless highly enriched (~20%) prevalently and exclusively in selected genetic or geographic sub-populations 
while completely absent in all others (e.g., rs16978754) (Fig. 1).

Alternative analyses. Given our hypothesis, we were surprised by the absence of mutations associated with 
our target samples/sources. To expand our analysis, we also considered an in silico approach and queried pub-
lished data from whole genome and exome analyses. These global analyses enable tabulation of altered genes to 
be accumulated in an unbiased manner. Consistent with our own directed sequencing studies, perusal of recent 
MPN70,71, acute erythroleukemia (250 samples total in two studies72,73), and AML tabulations74, along with those 
derived from The Cancer Genome Atlas (TCGA) data sets75,76 do not reveal a role for KLF1 in any case in these 
blood cancers. KLF1 is not one of 142 driver genes identified from an analysis of 1699 pediatric leukemias and 
tumors77. An shRNA screen of AML cells lines also did not implicate a role for KLF178, and KLF1 does not appear 
in differential analyses related to predicting therapy resistance in AML79. Examination of COSMIC data (v83)80 
indicates that, out of 3478 curated hematopoietic and lymphoid samples, only a single coding sequence variant 
was observed (F27V) in a CLL patient81, one predicted to be benign66,67.

We finally considered whether variation in levels of KLF1, rather than a mutated form, might be correlated 
with a particular blood cancer. This hypothesis arises from two bits of data. One, it is known that some genes are 
uniquely sensitive to haploinsufficient levels KLF1 (reviewed in4,26). Two, KLF1 levels vary considerably across 

Sample 
Type rsID BP (GRCh38) number

REF/
ALT

MAF 
(%) Location Predicted effect***

cell lines

rs3817621 12887391 8 G/C 32.5 **promoter (−188)

rs112631212 12886115 1 T/G 1.44 **M39L-class 1 likely benign

rs2072597 12885926 10 A/G 44.4 **S102P-class 1 likely benign

rs16978757 12884608 1 G/A 5.61 3′UTR

rs16978754 12884589 1 T/C 5.59 3′UTR

MPN

rs115672848 12888141 1 C/T *0.14 promoter (−938)

rs3817621 12887391 5 G/C 32.5 **promoter (−188)

rs79334031 12887288 2 C/T 1.58 **promoter (−85)

rs112631212 12886115 7 T/G 1.44 **M39L-class 1 likely benign

rs2072597 12885926 12 A/G 44.4 **S102P-class 1 likely benign

rs2072596 12885686 3 A/G 4.95 **F182L-class 1 likely benign****

rs16978757 12884608 1 G/A 5.61 3′UTR

rs16978754 12884589 1 T/C 5.59 3′UTR

MDS

rs201870270 12887780 1 delA *0.8 promoter (−577)

rs3817621 12887391 15 G/C 32.5 **promoter (−188)

rs79334031 12887288 4 C/T 1.58 **promoter (−85)

rs112631212 12886115 1 T/G 1.44 **M39L-class 1 likely benign

rs2072597 12885926 21 A/G 44.4 **S102P-class 1 likely benign

rs182276666 12885919 1 G/A *0.08 **A104V-class 1 likely benign

rs2072596 12885686 2 A/G 4.95 **F182L-class 1 likely benign****

rs16978754 12884589 2 T/C 5.59 3′UTR

AMKL
rs3817621 12887391 1 G/C 32.5 **promoter

rs2072597 12885926 5 A/G 44.4 **S102P-class 1 likely benign

Table 2. SUMMARY of genomic sequence analyses. Tabulation of all KLF1 SNPs (rsID) found in the present 
study, grouped together based on cell types as described in the Results. Included are the number of examples of 
each change, along with chromosome 19 location (Ch38), nucleotide change compared to the reference genome 
(REF/ALT), and percent minor allele frequency (MAF). Location with respect to the KLF1 transcription unit 
(promoter, coding region, 3′UTR) are as indicated, along with the amino acid change. “Class 1” refers to the 
tabulation in26, indicating that any amino acid change is likely benign, a conclusion supported by the “Predicted 
effect” based on other criteria66,67. KLF1 transcription initiation is at BP = 12887203 in Ch38 (based on50,54). 
*rare (<1%); **noted previously in reference26 as implicated in hypomorphic KLF1 expression; ***based 
on references66,67; ****PolyPhen suggests ‘possibly damaging’ due to cross-KLF family conservation of F 
(phenylalanine) at this position, possibly by decreasing its stability98.



www.nature.com/scientificreports/

4SCieNtiFiC RepoRtS |  (2018) 8:6587  | DOI:10.1038/s41598-018-24962-3

various malignancies as judged by tabulation of RNA sequence datasets82 (Fig. 2a). To further address this idea 
we queried a series of 200 AML samples to see whether KLF1 levels correlate with a particular AML subtype83. 
We were surprised by two observations (Fig. 2b). First, there is a wide range in KLF1 expression within the AML 
M6 and M7 categories that generally would be anticipated to express elevated levels of KLF1. Second, other AML 
subtypes, including M0-M5, contain samples that express similar high levels of KLF1. This was not expected as 
KLF1 is most highly enriched in erythroid, not myeloid, cells. Clearly, normal cellular and genetic control mech-
anisms are altered in many of these patient samples, as KLF1 levels do not even correlate with HBG expression 
(Fig. 2b), a target that is normally repressed by KLF1 and whose levels are indirectly proportional to that of 
KLF142. We conclude there is no apparent correlation between KLF1 levels and malignancy status across a range 
of AML malignancy subtypes.

Discussion
Given the molecular and biochemical properties of KLF1, along with its regulation of selected downstream tar-
get gene expression, it remains surprising that our study did not uncover any mutations associated with eryth-
roid dyplasia or malignancy. A simple explanation is that an insufficient number of samples have been analyzed. 
Although this possibility cannot be excluded, we directly analyzed nearly 150 samples, and in addition perused 
numerous databases without success. In any case, other explanations come to mind.

For instance, we have not considered whether the epigenetic status of the KLF1 gene may be playing a role 
in its regulation that may be of consequence to malignancy. For example, 5mC modification at the KLF1 locus 
inversely correlates with its expression when compared across a number of cell types84,85. In addition, the level and 
extent of 5hmC modification at the KLF1 locus is also inversely correlated with its expression as the CD34+ cell 
differentiates to the mature erythroid cell86. Intriguingly, the KLF1 gene exhibits a synergistic “type III/cluster 3” 
pattern of expression control such that KLF1 transcript levels are dramatically increased in Tet2/Dnmt3a double 
knockout cells87. Of relevance to the present discussion, increased KLF1 levels in a subset of AML is only seen 
in samples from patients with mutations in both genes87. The DNA modification locales overlap regions demon-
strated to be important for KLF1 expression control7,54,55. These studies demonstrate that the DNA modifica-
tion status of controlling regions in the KLF1 gene is important for establishing its optimal level of expression. 
However, the causative versus correlative nature of KLF1 gene epigenetic modification and aberrant erythropoie-
sis will remain challenging to tease out.

One final explanation for our findings is that KLF1 functions during late stages of erythropoiesis, which may 
circumscribe any search for an effect at early stages8. In other words, it is known that terminal maturation of 
erythroid cells, particularly at the transition from orthochromatic to reticulocyte stage, is completely dependent 
on KLF117. Part of the explanation for this requirement is KLF1 regulation of cell cycle inhibitors such as p18 and 
p27 specifically at this late stage. It is notable that these genes are not dependent on KLF1 at an earlier stage, for 
example in proliferating erythroblasts; indeed, there are no cell cycle differences when comparing such cells from 
WT vs KLF1-null17. Given that the blood cell disorders that we tested exhibit unrestricted proliferation, it remains 
possible that mutated KLF1 would not have a causative effect on cell cycle in this context in any case.

In spite of these considerations, we are still left with the example of the monoallelic mutation in KLF1 
that leads to CDA type IV, with its dominant effect on erythroid cell properties, including proliferation34,36,39. 
Nonetheless, our results suggest that if there are any KLF1 mutants implicated in erythroid malignancy, they are 
quite rare.

Methods
K562 cells were from our original lab stock88; all other cell lines were purchased from either the ATCC or DSMZ. 
K562 cells merit additional discussion. There are inconsistencies in the literature as to whether KLF1 is expressed 
in this cell line, with some studies indicating low to nil50,88,89, and others showing detectable levels90. There is a 
large body of work on its use as a cotransfection reporter line whose utility is dependent on lack of KLF1 expres-
sion (studies that began with88). This line was established decades ago91, and early on was noted to exhibit varia-
bility92,93. We have noted major differences in transfection efficiency upon comparing our lab K562 stock with the 

Figure 1. Geographical distribution68,69 of two KLF1 SNPs from Table 2 as examples of widely dispersed 
(rs2072597; >40%) or limited (rs16978754; ~5%) MAFs. Blue pie conveys a given MAF percentage out of 100% 
across the indicated global populations. rs16978754 is common (~20%) only in the Gambian, Sierra Leone, 
and Nigerian populations on the African continent, and beyond is commonly detected only in the African 
Caribbean and African American populations; otherwise it is not detectable.
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ATCC K562 line (unpublished observations) although we did not find any KLF1 genomic sequence differences. 
We suggest labs are working with dissimilar isolates, differing in levels of GATA1 and/or KLF194.

Patient samples were procured after informed consent and IRB approval within the individual institutions 
(Mount Sinai School of Medicine, Columbia University Medical Center, New York Blood Center, Northwestern 
University School of Medicine). All methods were performed in accordance with the relevant institutional guide-
lines and regulations. Mononuclear cells from MPN patients were provided by the Myeloproliferative Disorders 
Research Consortium Tissue Bank Core C.

Genomic DNA was isolated from all samples using a Qiagen DNeasy Blood & Tissue Kit. PCR primers 
spanning the complete KLF1 transcription unit were used to amplify eight overlapping regions across the locus 
(Supplemental Table 1). These were individually sequenced in both directions (with their corresponding PCR 
forward and reverse primer) using a 96-well format (Macrogen USA). With regards to comparison of clinical 
parameters in MDS samples, for continuous variables satisfying the normality assumption, a two-tailed unpaired 
t test was used.

Figure 2. Variation of KLF1 levels across aberrant erythroid sources. (a) BloodSpot (82; http/servers.binf.ku.dk/
bloodspot/?gene=KLF1&dataset=MERGED_AML) analysis of relative KLF1 levels in samples across dysplastic 
and leukemic sources, as well as that seen during normal hematopoiesis (concordant with murine studies22). (b) 
Left - Analysis of KLF1 expression in AML samples derived from a range of subtypes (M0-M7), also compared 
to CD34, promyelocytes (pros) and polymorphonuclear leukocytes (PMNs). nc = not categorized. Right – 
Graph showing lack of correlation between KLF1 and HBG levels in the same set of AML samples. Note that 
HBG expression within the five highest-expressing KLF1 samples vary tremendously.
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Discovery of any nucleotide change(s) followed alignment to the GRCh38 reference sequence using Vector 
NTI ContigExpress software (ThermoFisher Scientific). SNPs and any associated parameters were identified 
from the 1000 Genomes databases58,59,68. Other datasets queried included BloodSpot82, cBioPortal95, GGV69, 
UK10K96,97, COSMIC80, and NCBI public resources.
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