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Abstract

Myocardial infarction (MI) is a major condition causing heart failure (HF). After MI, the renin angiotensin system (RAS) and its signalling octapep-
tide angiotensin II (Ang II) interferes with cardiac injury/repair via the AT1 and AT2 receptors (AT1R, AT2R). Our study aimed at deciphering the
mechanisms underlying the link between RAS and cellular components of the immune response relying on a rodent model of HF as well as HF
patients. Flow cytometric analyses showed an increase in the expression of CD4+ AT2R+ cells in the rat heart and spleen post-infarction, but a
reduction in the peripheral blood. The latter was also observed in HF patients. The frequency of rat CD4+ AT2R+ T cells in circulating blood, post-
infarcted heart and spleen represented 3.8 � 0.4%, 23.2 � 2.7% and 22.6 � 2.6% of the CD4+ cells. CD4+ AT2R+ T cells within blood CD4+ T
cells were reduced from 2.6 � 0.2% in healthy controls to 1.7 � 0.4% in patients. Moreover, we characterized CD4+ AT2R+ T cells which
expressed regulatory FoxP3, secreted interleukin-10 and other inflammatory-related cytokines. Furthermore, intramyocardial injection of MI-induced
splenic CD4+ AT2R+ T cells into recipient rats with MI led to reduced infarct size and improved cardiac performance. We defined CD4+ AT2R+ cells
as a T cell subset improving heart function post-MI corresponding with reduced infarction size in a rat MI-model. Our results indicate CD4+ AT2R+

cells as a promising population for regenerative therapy, via myocardial transplantation, pharmacological AT2R activation or a combination thereof.
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Introduction

Cardiac diseases are the leading causes of mortality and morbidity in
industrialized countries. Despite many improvements in prevention,
diagnosis and management, prevalence of heart failure (HF) is still
rising, and small progress has been achieved in terms of survival pro-
longation [1].

Myocardial infarction (MI) is the major condition leading to HF. In
experimental animal models, MI is commonly induced by induction of
the left anterior descending coronary artery (LAD) [2]. The resulting
inflammatory response comprises attenuated activation of cytokines
and adhesion molecules, ventricular dilatation and interstitial fibrosis
in the non-infarcted myocardium. This remodelling process leads to
changes in the left ventricle (LV) geometry, which contribute to the
development of HF [3–5].

Following MI, neurohumoral activation involving the renin
angiotensin system (RAS) leads to persistent vasoconstriction, LV
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hypertrophy, sympathetic nervous activation and endothelial dys-
function [6, 7]. Suppression of RAS may become an important
means for treatment of HF after MI. Angiotensin II (AngII), a RAS
octapeptide found at higher concentrations in the heart tissue than
in plasma [8], acts through two known receptors: angiotensin II
type 1 receptor (AT1R) and angiotensin II type 2 receptor (AT2R)
[9]. The mere 32–34% sequence homology between both recep-
tors reflects their different functions. AT1R is mostly responsible
for sodium and water retention, vasoconstriction, cellular growth,
proliferation and endothelial dysfunction [10]. To date, AT2R has
been reported to exert anti-inflammatory [11, 12], anti-apoptotic,
anti-fibrotic [13, 14] and protective [15] functions. Furthermore,
AngII induces interactions between leucocyte and endothelial
niches via AT1- and AT2R [16]. Moreover, an up-regulated level of
AT2R during ischemic cardiovascular injury [17, 18] speaks in
favour of its potential role in regulating adaptive cardiovascular
repair.

Guzik et al.[19] have shown that upon long-term infusion of AngII
in mice, the number of peripheral blood T lymphocytes was
increased. Kvakan et al. [20] observed a beneficial role of naturally
occurring T regulatory cells after adoptive transfer into AngII-induced
inflamed mice exhibiting cardiac damage. Additionally, the preventive
role of post-MI activated AT2R-expressing CD8+ T cells secreting
interleukin-10 (IL-10) has been reported by our group with the excep-
tion that only post-MI activated AT2R-expressing CD8+ T cells, which
secreted IL-10 reduced the infarction size in MI recipient rats [18].
This cell population reduced the infarction size in MI recipient rats.

To clarify the inflammatory mechanisms following MI and the acti-
vation of RAS, we analysed the expression of AT2R on CD4+ cells in
human and in a rat model. In this study, CD4+ AT2R+ were shown for
the first time to act as a ‘regulatory’ T cell subset facilitating cardiac
regeneration, as evident from improved cardiac function and reduced
infarction size.

Materials and methods

Rat model of myocardial infarction

Myocardial infarction was induced in adult male Wistar rats (200–
220 g) as described previously [17, 18]. Briefly, rats were anaesthetized

with ketamin/xylazine (Sigma-Aldrich, Seelze/Hannover, Germany)

80 mg/10 mg/kg i.p., incubated and ventilated with a small animal ven-

tilator (Harvard Apparatus ,March-Hugstetten, Germany). After thoracot-
omy, a suture was placed around the proximal LAD coronary artery.

Sham-operated rats underwent the same surgical procedure without

coronary ligature. Rats were killed at 1 or 4 weeks after operation. Ani-

mal housing, care and applications of experimental procedures complied
with the German law on animal protection.

Immunofluorescence staining

Immunofluorescence staining was performed according to standard pro-
tocols. For details please refer to Data S1.

Isolation and flow cytometry analysis of
CD4+ AT2R+ T cells from heart, spleen and blood

CD4+ T cells were isolated from heart, spleen and blood samples at 1 or

4 weeks after MI or sham-operation as described previously [17, 18], with

slight modifications. Briefly, cardiac mononuclear cells were obtained follow-
ing digestion and density gradient sedimentation. Mononuclear cell suspen-

sions prepared from heart, spleen and blood samples were stained with

mouse anti-CD4-phycoerythrin (PE) (1:10; eBioscience, Vienna, Austria) and
polyclonal anti-AT2 (1:50; Santa Cruz Biotechnology, Dallas, Texas, USA), fol-

lowed by anti-PE Microbeads (1:10, Miltenyi Biotec GmbH, Bergisch Glad-

bach, Germany) and donkey anti-rabbit Alexa Fluor 488 (1:50; Life

Technologies GmbH, Darmstadt, Germany). CD4+ T cells were enriched using
magnetic activated cell sorting (MACS; Miltenyi Biotec). CD4+ T cell popula-

tions were analysed using flow cytometry on a FACS LSRII� or, sorted

(CD4+ AT2R+ and CD4+ AT2R� cells) on FACSAria� (BD Bioscience, Heidel-

berg, Germany) using BD FACS Diva software (version 6.1.2; BD Bioscience).

qRT-PCR

qRT-PCR was performed according to standard protocols. For details
please refer to Data S1.

Ex vivo characterization of CD4+ AT2R+ T cells

Blood mononuclear cells were stained with primary antibodies [rabbit anti-

AT2R or goat anti-AT2R polyclonal (Santa Cruz Biotechnology, each 1:50)],

then secondary antibodies [donkey anti-rabbit Alexa 488 (1:50) or donkey
anti-goat allophycocyanin (APC; 1:40; R&D Systems, Wiesbaden-Norden-

stadt, Germany)], mouse anti-CD4-PE (1:40; eBioscience) or mouse anti-

CD4-FITC (1:40; eBioscience)., Intracellular staining was performed with

mouse anti-FoxP3-APC (1:40; BD Bioscience), mouse anti-FoxP3-PE (1:50;
BD Bioscience), mouse anti-CD25-APC (1:40; BD Bioscience), rat anti-IL-

10-APC (1:50; BD Bioscience) or mouse anti-tumour necrosis factor (TNF)-

a-PE-Cy7 (1:40; eBisocience). At least 1 9 104 events in the CD4+ cells

gate were acquired for each sample.

Functional role of AT2R in cytokine expression of
CD4+ AT2R+ T cells

To investigate an effect of AT2R stimulation on cytokine expression, freshly

sorted human blood CD4+ AT2R+ and CD4+ AT2R� T cells were cultured in
U-bottom 96-well plates at a density of 106 cells/ml in RPMI 1640 medium

supplemented with 10% FBS (Fetal Bovine Serum, PAN-Biotech, Aidenbach,

Germany). Cultured cells were exposed to Ang II (0.5 nM; Sigma-Aldrich)

in the presence or absence of AT2R blocker PD123319 (PD; 5 nM; Tocris
Bioscience, Bristol, United Kingdom). After 24 hrs, cells were harvested for

intracellular cytokine staining of IL-10/TNF-a and flow cytometric analysis.

Preparation of donor CD4+ AT2R+ T cells and
intramyocardial transplantation

Donor CD4+ AT2R+ and CD4+ AT2R� T cells were prepared from
spleens of male rats 7 days after induction of MI. Immediately after
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LAD ligation, 2.5 9 105 CD4+ AT2R+ or CD4+ AT2R� T cells
resuspended in 50 ll saline were injected into the border zone of the

ischemic myocardium of each recipient female rat. Myocardial infarction

rats injected with saline served as control group.

Evaluation of cardiac injury

Four weeks after MI and cell transplantation, recipient rats were killed.

Cardiac injury was analyzed as described previously [21]. Briefly, heart
sections of four horizontal infarct levels (5 lm) were stained with Fast

Green FCF (Sigma-Aldrich) and Sirius Red (Division Chroma). Stained

sections were mounted with FluorSaveTM Reagent (Merck Chemicals

Ltd., Darmstadt, Germany), and visualized under Leica DMLB fluores-
cence microscope equipped with a digital camera (type DFC 420C; Le-

ica Camera AG, Wetzlar, Germany). Sirius Red positive stained areas in

the remote area near endocardial border were acquired in ten randomly
chosen fields per section (two sections/level) with Leica Application

Suite software (LAS, version 2.7.1 R1) using 409 Plan-Achromat

objective. Two contiguous levels of the heart which represent the major

infarct ratio were analyzed using computerized planimetry (Axio Vision
LE Rel. 4.5 software; Carl Zeiss GmbH, Jena, Germany). The ratio of

scar length and entire circumference defined the infarct extent for the

endocardial and epicardial surfaces, respectively, The infarct area was

determined as the average of endocardial and epicardial surfaces and
was given in percent.

Evaluation of cardiac function

Four weeks after MI and cell transplantation, recipient rats were subjected

to pressure-volume (P/V) loop measurements using the Millar Pressure-

Volume System (Catheter model SPR-838), Millar Pressure Conductance

Unit (model MPCU-200) and PowerLab data acquisition hardware (emka
Technologies, Paris, France). Following a small incision in the external

jugular vein, a plastic catheter was inserted and 200 UI/kg of heparin

was administrated. Up to 0.4 ml blood was collected, immediately applied
into two cylindrical holes with defined volumes (95 or 300 ll) and cali-

bration of volume was performed. Thereafter, calibration of pressure at 0

and 100 mmHg was performed. The right carotid artery was subse-

quently exposed by a small incision on the neck and the laterally retrac-
tion of the osmohyoid muscles. After a small incision between the two

ligatures, the Millar catheter was carefully inserted. To secure the cathe-

ter, the loose ligature around it was tied. Values of parallel conductance

volume (Vp) were acquired via thrice injection of PBS, averaged and used
for the correction of conductance volume. IOX Version 1.8.3.20 software

(emka Technologies) was used to analyse all P/V loop data recorded at

steady-state (baseline) and under stress conditions (Dobutamine, 10 lg/
kg/min. i.v., Sigma-Aldrich).

Detection of cell engraftment by fluorescent
in situ hybridization

Fluorescent in situ hybridization (FISH) was performed according to
standard protocols. For details please refer to ‘Data S1’.

Isolation and analysis of human circulating
CD4+ AT2R+ T cells

Peripheral venous blood was obtained from patients with a clinical diag-

nosis of chronic HF according to current guidelines of the European

Society of Cardiology and American Heart Association at the Depart-
ment of Cardiology, Campus Virchow – Klinikum. Blood from healthy

donors was obtained from the Institute for Transfusion Medicine, Cha-

rit�e-Universit€atsmedizin Berlin. Written informed consent according to
the Declaration of Helsinki was received prior to inclusion in the study.

Around 25 ml of blood was drawn from an antecubital vein into K-ethy-

lenediaminetetraacetic acid tubes and processed within 8 hrs. Mononu-

clear cells were isolated by density gradient centrifugation at 400 9 g
at 20°C for 35 min. The CD4+ T cells were isolated by MACS as

described above. For cytokine measurement, enriched CD4+ T cells were

further divided into CD4+ AT2R+ and CD4+ AT2R� T cells using fluores-

cence-activated cell sorting. Alternatively, enriched CD4+ T cells were
also stained with primary rat anti-human/mouse CD44-eFluor 450 and

mouse anti-human CD62L-PE-Cy7 (each 1:40; eBioscience) and directly

subjected to FACS analysis.

Statistics

Results were expressed as mean � SEM. Two-group comparisons were

analysed by two-tailed Student’s t-test. Multiple comparisons were anal-
ysed with one-way ANOVA followed by Bonferroni post hoc test. Differ-

ences were considered significant at a value of P < 0.05.

Results

Human CD4+AT2R+ T cell population in health
and heart failure

The baseline characteristics of patients with HF are presented in
Table S1. A CD4+ AT2R+ T cell population was detected by flow
cytometry in mononuclear cells isolated from peripheral blood of both
patients with HF (Fig. S1A) and healthy controls. AT2R expression
was confirmed on mRNA level (Fig. S1B). To study the adaptive dis-
tribution of CD4+ AT2R+ T cells during cardiac injury, we compared
the frequency of these cells in peripheral blood of patients with HF
with those of healthy controls. The frequency of CD4+ AT2R+ T cells
in blood CD4+ T cells was reduced from 2.6 � 0.2% in healthy con-
trols to 1.7 � 0.4% in patients with HF (Fig. 1A), revealing a potential
accumulation of CD4+ AT2R+ T cells infiltrating the failing heart. As a
result of the essential role of regulatory T cells (Treg) in controlling
immune response under physiological and pathological conditions,
we have addressed the expression of immunoregulatory transcription
factor FoxP3, Treg surface marker CD25 within the CD4+ AT2R+ T cell
subset, and the potential to produce anti-inflammatory IL-10 cytokine.
In human CD4+ AT2R+ T cells, the frequency of FoxP3-positive cells
was increased by 2.1-fold (Fig. 2, P < 0.0001), the frequency of IL-
10-secreting cells was increased by 12.6-fold (healthy donors) and
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41.2-fold (HF) compared to CD4+ AT2R� T cells (P < 0.01, P < 0.05,
respectively; Fig. 2B and C). However, no difference in CD25 expres-
sion was detected (Fig. 2, right plot).

To address a potential cardioprotective role of AT2R, we deter-
mined whether AT2R influenced the regulation of inflammatory-
related cytokines IL-10 and TNF-a in the CD4+ AT2R+ T cells. Upon
AngII stimulation, IL-10 expression in the CD4+ AT2R+, but not in
CD4+ AT2R� T cells was significantly increased (2.6-fold in compari-
son to the control group, Fig. 3A and B), while TNF-a expression in
the CD4+ AT2R+ T cells was reduced 2.0-fold (Fig. 3C and D). Both
effects were completely abolished by the AT2R blocker PD123319.
Interestingly, a highly increased level of TNF-a expression was
observed exclusively in the CD4+ AT2R+ T cells (Fig. 2D and E).

A further detailed analysis of the distribution of CD4+ AT2R+ T
cells within CD4+ CD44+ CD62L� or CD4+ CD44+ CD62L+ T cell sub-
sets (Fig. 4A and B) showed that a significant decrease of blood
CD4+ AT2R+ T cells in patients with HF was exclusively assigned to

the CD4+ CD44+ CD62L� T cell subset, a known activated T cell frac-
tion located mainly at inflammatory sites [22].

Recruitment of CD4+ AT2R+ T cells in response
to ischemic heart injury

Our recently established methods [18] allowed us to elucidate a
potential functional relevance of AT2R for cardiac infiltration with
CD4+ T cell subsets. Seven days after MI, we detected CD4+ AT2R+ T
cells (Fig. S2A) in infarcted myocardium, circulating blood and
spleen. AT2R expression was again verified on the mRNA level.
(Fig. S2B). Infiltrating CD4+ AT2R+ T cells in myocardium were
mainly detected in the peri-infarct zone (Fig. S2C and Fig. 5). In
blood, infarcted heart and spleen, 3.8 � 0.4%, 23.2 � 2.7% and
22.6 � 2.6% of CD4+ cells expressed AT2R, respectively (Fig. 5).
Together, these data reflect an adaptive and selective recruitment of
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the CD4+ AT2R+ T cell population into the myocardium in response to
ischemic insult.

Immunoregulatory potential of the CD4+ AT2R+ T
cell population

We have shown that AT2R circumvents the cardiac inflammatory
reaction via CD8+ T cells [18]. To better understand the functional rel-
evance of AT2R in CD4+ T cells, we dissected the expression of the
immunoregulatory transcription factor FoxP3 and the cytokine IL-10
in CD4+ AT2R+ T cells derived from the peripheral blood of rats with
MI. As shown in the upper panels of Figure 6, the intracellular pro-
duction of FoxP3 and IL-10 was significantly up-regulated 4- and 74-
fold, respectively, in CD4+ AT2R+ T cells, when compared with
CD4+ AT2R� T cells (P < 0.05 and P < 0.01, respectively). These
increased IL-10 expression levels in the CD4+ AT2R+ T cells were
confirmed by real-time PCR analysis of IL-10 mRNA (Fig. 6, bottom).

Thus, our data reveal an immunoregulatory potential of CD4+ AT2R+

T cells.

Cardioprotective role of the CD4+ AT2R+ T cell
population in vivo

To determine whether the immunoregulatory potential of CD4+ AT2R+

T cells has functional relevance in vivo, we evaluated the effects of in-
tramyocardial transplantation of splenic CD4+ AT2R+ T cells on car-
diac remodelling and performance in rats with MI. Four weeks after
transplantation, the engraftment of the transplanted cells from male
donor rats in peri-infarct myocardium of female recipient rats was
proven via single-colour FISH using a Y-chromosome-specific probe
(Fig. S3). CD4+ AT2R+ T cells significantly ameliorated cardiac
remodelling in recipient rats compared to controls. Furthermore,
CD4+ AT2R+ T cells from the same donor rats, led to a significant
reduction of infarction size (1.8- and 1.2- fold, respectively, Fig. 7).

52DC3PxoF

IL-10 control IL-10 HF

TNF-α control TNF-α HF

A

B C

D E

Fig. 2 Characterization of human blood

CD4+ AT2R+ T cells. Flow cytometric

analysis was performed on gated
CD4+ AT2R+ and CD4+ AT2R� subpopula-

tions of mononuclear cells (MNCs) from

healthy donors (A, Foxp3, n = 8; CD25,

n = 11); Predominant IL-10 expression
was observed in the CD4+AT2R+ (versus

CD4+ AT2R�) T cells of healthy controls

(B, n = 6) and HF patients (C, n = 7).
Increased TNF-a expression was observed

in the CD4+ AT2R+ (versus CD4+ AT2R�)
T cells of healthy controls (D, n = 6) but

not HF patients (E, n = 7). ns, not signifi-
cant; **P < 0.01, ***P < 0.001.
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No significant differences were observed between the control and the
CD4+ ATR� groups (P = 0.3171).

Moreover, transplanted CD4+ AT2R+ T cells considerably
improved recipient cardiac performance compared with CD4+ AT2R�

T cells and control groups. The ejection fraction at steady-state of MI
plus CD4+ AT2R+ animals was increased by 1.5-fold and 1.2-fold,
compared with control and MI plus CD4+ AT2R� animals, respec-
tively (Fig. 8A and Table S2). An additional parameter relevant to car-
diac systolic function, namely the maximal peak rate of LVP (dP/
dtmax, mmHg/sec.) under both baseline and stress conditions as
increased in CD4+ AT2R+ group. For baseline, respective values were
enhanced 1.7- and 1.4-fold as compared to the control and the
CD4+ AT2R� groups (Fig. 8A). Under stress, the values were elevated
1.2- and 1.3-fold in comparison to the control and the CD4+ AT2R�

groups (Fig. 8B and Table S2).
Adoptive transfer of CD4+ AT2R+ T cells also markedly improved

diastolic indices as shown by a reduced relaxation time at steady-
state (Tau, from 17.0 � 1.3 to 11.0 � 1.9; Fig. 8C). It likewise
improved the minimal peak rate (�dP/dtmin., mmHg/sec.) under
stress conditions from �6808 � 292.2 to �5408 � 296.0 when
compared with the CD4+ AT2R� animal group (Fig. 8D and
Table S2).

Overall, these data support a cardioprotective role for the
CD4+ AT2R+ T cell population by ameliorating post-infarct inflamma-
tory injury in vivo.

Discussion

In this study, we report for the first time AT2R expression on
CD4+ T cells in human as well as in rat, and describe its regula-
tion in cardiac disease. AT2R expression on human peripheral
blood CD4+ T cells was higher in healthy donors than in HF
patients. In a rat MI model displaying cardiac remodelling with
fibrosis/elevated collagen density and loss of heart function, as is
typical for HF, CD4+ AT2R+ T cell number was increased in the
heart and spleen but diminished in blood compared to sham-trea-
ted animals. Our findings are in accord with previous reports of
elevated AT2R levels in the adult heart after MI induction [17]
and specific AT2R activation after MI induction [13]. Whereas
previous work has mostly addressed AT2 receptor levels in whole
tissues: Altarche-Xifr�o et al. showed ATR up-regulation in c-kit+

stem cells of rats subjected to MI, and Curato et al. detected
splenic AT2R+ – expressing CD8 T cells. Based on these and our

IL-10

TNF-α

A B

C D

Fig. 3 IL-10 and TNF-a expression in

human blood CD4+ AT2R+ T cells. Sorted
cells were analysed after 1 day of cultiva-

tion. AT2R mediated IL-10 production in

the CD4+ AT2R+ (A) but not in the
CD4+ AT2R� (B) T cells of healthy con-

trols as observed after AT2R stimulation

with angiotensin II (AngII) in presence or

absence of AT2R blocker PD123319 (PD).
Increased TNF-a expression was observed

in the CD4+ AT2R+ (versus CD4+ AT2R�)
T cells of healthy controls (C, n = 6) but

not HF patients (B, n = 7). AT2R shows a
tendency to down-regulate TNF-a produc-

tion in the CD4+ AT2R+ (C) but not in

CD4+ AT2R� (D) T cells of healthy

donors, as shown after AT2R stimulation
with AngII in the presence or absence of

AT2R blocker PD123319 (PD). ns, not sig-

nificant; **P < 0.01.
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novel findings in animal models, it is likely that the mobilization
of CD4+ AT2R+ T cells to the heart after RAS activation may
cause their reduction in peripheral blood. Given previous observa-
tions of AT2R stimulating cell differentiation and migration [17,
23], it seems likely that AT2R is actively involved in the selective

extravasation of effector CD4+ AT2R+ T cells into injured myocar-
dium.

Flow cytometric analysis of the frequency of CD4+ T cells in
peripheral blood of patients with HF (Fig. S4) showed a significant
increase compared to healthy donors, indicating the importance of
this T cell subset during the progression of cardiac remodelling to HF.

It has long been appreciated that T cell subsets in inflammatory
sites, like cardiac allografts and ischemic injury [24, 25] down-regu-
late CD62L (also known as L-selectin), the lymphoid homing receptor,
but up-regulate CD44, a marker of activated effector T cells [22]. A
reduction of CD4+ AT2R+ T cells was also found in blood
CD44+ CD62L� effector T cells of patients with HF, but not in
CD44+ CD62L+ cells, confirming our hypothesis that AT2R is influ-
enced specifically on T cell subsets involved in cardiac inflammation
and regeneration.

Myocardial damage is due to a failure of self-tolerance, where
infiltrating lymphocytes are reacting against self-antigens. To
elucidate the role that infiltrating CD4+ AT2R+ T cells may play in this
process, we analysed inflammatory properties of these cells.
CD4+ AT2R+ T cells from MI rats as well as healthy and HF human
donors overexpressed FoxP3 compared to CD4+ AT2R� T cells,
whereas CD25 remained unchanged. Treg cells were reported to con-
tribute to prevention of autoimmune disease through the expression
of FoxP3 [26], and Tang et al. [27, 28] observed reduced
CD4+ CD25+ FoxP3+ CD127low Treg cells in HF, suggesting that
defective Treg might be involved in disturbed immune homeostasis
and also responsible for uncontrolled T cell activation in HF. While
AT2R does not seem to be selective for Treg, the detected overex-
pression of FoxP3 suggests an anti-inflammatory potential of
CD4+ AT2R+ cells.

One of the immunosuppressive properties characteristic for Treg
cells is the potential to secrete IL-10 [29]. Notably, CD4+ AT2R+ T
cells produced significantly more IL-10 than CD4+ AT2R� T cells in vi-
tro, and AngII stimulation further induced IL-10 up- as well as TNFa
and interferon (IFN)-c down-regulation (Fig. S5) in these cells. AT2R
was required for the regulation, as demonstrated by selective inhibi-
tion with PD123319. The anti-inflammatory cytokine IL-10 activates

A

B

Fig. 4 Distribution of the CD4+ AT2R+ T cells within

CD4+ CD44+ CD62L� or CD4+ CD44+ CD62L+ T cell subsets A. A
decreased frequency of CD4+ AT2R+ T cells within the

CD4+ CD44+ CD62L� cell subset was observed in patients with HF. No

significant difference was detected within the CD4+ CD44+ CD62L+ T

cell subset (B). ns, not significant; *P < 0.05, n = 5.

Fig. 5 Adaptive redistribution of the CD4+ AT2R+ T cell population in response to myocardial infarction in rats. Frequency of the CD4+ AT2R+ T cells

in CD4+ T cells of blood (sham, n = 7; MI, n = 14), heart (sham, n = 5; MI, n = 12), and spleen (sham, n = 3; MI, n = 7) was evaluated by flow

cytometry analysis. Quantitative analysis reveals a significant increase of CD4+ AT2R+ T cells in post-infarct heart and spleen, coincident with a

decrease in blood; *P < 0.05, **P < 0.01.
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JAK and/or STAT proteins leading to an induction of JAK1/Tyk2 pro-
teins, which further activate STAT3 and SOCS3 responsible for central
anti-inflammatory responses of IL-10 in macrophages. IL-10 indi-

rectly inhibits NF-kB activation induced via TNF-a [30]. The elevated
IL-10 secretion by CD4+ AT2R+ T cells might inhibit the activation of
TNF-a.

FoxP3 IL-10

IL-10 mRNA

A

B

Fig. 6 Characterization of CD4+ AT2R+ T

cells in rats after myocardial infarction.

FoxP3 and IL-10 (respectively, graphs on

the top) were significantly up-regulated in
blood CD4+ AT2R+ T cells (A) confirmed

by qRT-PCR for IL-10 (B); *P < 0.05,

n = 5.

MI+(Saline) MI+(CD4+AT2R+) MI+(CD4+AT2R—)

Fig. 7 Effects of CD4+ AT2R+ T cells on

cardiac injury in recipient MI rats. Intra-

myocardial transplantation of splenic

CD4+ AT2R+ T cells (versus MI+(Saline)
and CD4+ AT2R�) significantly reduced

infarction size in recipient MI rats 4 weeks

after transplantation. Therapy groups

obtained around 2.5 9 105 splenic cells,
either of CD4+ AT2R+ or CD4+ AT2R�,
resuspended in 50 ll saline and injected

into a border zone. Control group received
only 50 ll saline. Representative ventricu-

lar cross sections of infarct areas are

shown in lower panels. *P < 0.05,

**P < 0.01; n = 8; scale bar = 500 lm.
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Under consideration of the above described evidence of
CD4+ AT2R+ T cell anti-inflammatory potential, especially in HF indi-
viduals or under RAS stimulation, we suggested that CD4+ AT2R+ T
cells of MI rats transplanted to recipient MI hearts might improve car-
diac function. Indeed, pressure and volume assessment in the LVs of
rats with MI plus injected splenic CD4+ AT2R+ T cells showed
improved myocardial performance in comparison to those rats with
CD4+ AT2R� injected cells. Hearts derived from rats with MI+

(CD4+ AT2R+) presented a significant reduction in infarct size com-
pared to hearts from the MI+ (CD4+ AT2R�) group. Our findings align
well with studies of AT2R stimulation with Compound 21 (C21),
which led to an improvement in hemodynamics and reduction in
infarct size because of C21-suppressed inflammatory actions as
shown by significant decrease in cytokines (IL-1b, MCP-1, IL-2, IL-6)
in plasma and peri-infarct zone [13].

In an animal model of autoimmune diabetes, injected regulatory T cells
were markedly present in lymph nodes rather than at the site of inflamma-
tion [31]. In contrast, in a model of multiple sclerosis, transplanted cells

accumulated directly at the site of inflammation in the nervous system
[32]. Therefore, it remains to be clarified whether the beneficial actions of
transferred CD4+ AT2R+ cells observed by us occur directly in the
inflamed heart or whether draining lymph nodes are involved.

Irrespective of the final site of action, we provide evidence that
AT2R+ CD4+ cells possess high regenerative potential. Their selective
stimulation may open up promising treatment opportunities for car-
diac therapy. Here, the AT2R agonist Compound 21 may be a suitable
candidate for future applications [33].

In sum, we identified CD4+ AT2R+ as a novel regulatory T cell
subset with beneficial impact on cardiac function after MI.
CD4+ AT2R+ T cells were up-regulated in HF patients as well as MI
rats and displayed anti-inflammatory properties (overexpression of
FoxP3 and IL-10, downregulation of TNF-a and IFN-c) compared to
CD4+ AT2R� cells. Myocardial transplantation of CD4+ AT2R+ T cells
led to improved cardiac function and reduced infarct size in a rat MI
model. Our results introduce the AT2 receptor as a beneficial AngII-
mediating receptor, implying that CD4+ AT2R+ cells are a highly

BASELINE DOBUTAMINE

BASELINE DOBUTAMINE

A

C D

B

Fig. 8 Assessment of LV functions in recipient MI rats via pressure-volume loops. Intramyocardial transplantation of splenic CD4+ AT2R+ T cells led
to an increase in ejection fraction (EF) at steady-state and maximal peak rate of LVP (dP/dtmax, mmHg/sec.) under both baseline and stress condi-

tion (Dobutamine, 10 lg/min./kg) (A and B), and improved diastolic indices including reduced time during relaxation (Tau) at steady-state and

improved minimal (�dP/dtmin., mmHg/sec.) peak rate under stress condition (C and D) as evaluated with conductance-catheter method. Around
2.5 9 105 splenic cells one of the T cell subpopulation were injected in 50 ll saline into a border zone. MI+Saline, n = 10, MI+ CD4+ AT2R+,

n = 10; MI+ CD4+ AT2R�, n = 15; ns: not significant, *P < 0.05, **P < 0.01.
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promising population for regenerative therapy, as they are suitable for
myocardial transplantation, pharmacological AT2R activation or a
combination thereof.
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