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Alisol B 23-Acetate (AB23A) is a naturally occurring triterpenoid, which can be indicated in
the rhizome of medicinal and dietary plants from Alisma species. Previous studies have
demonstrated that AB23A could inhibit intestinal permeability by regulating tight junction
(TJ)-related proteins. Even so, the AB23A protective mechanism against intestinal barrier
dysfunction remains poorly understood. This investigation seeks to evaluate the AB23A
protective effects on intestinal barrier dysfunction and determine the mechanisms for
restoring intestinal barrier dysfunction in LPS-stimulated Caco-2 monolayers. According to
our findings, AB23A attenuated the inflammation by reducing pro-inflammatory cytokines
production like IL-6, TNF-α, IL-1β, and prevented the paracellular permeability by inhibiting
the disruption of TJ in LPS-induced Caco-2 monolayers after treated with LPS. AB23A
also inhibited LPS-induced TLR4, NOX1 overexpression and subsequent ROS generation
in Caco-2 monolayers. Transfected with NOX1-specific shRNA diminished the up-
regulating AB23A effect on ZO-1 and occludin expression. Moreover, transfected with
shRNA of TLR4 not only enhanced ZO-1 and occludin expression but attenuated NOX1
expression and ROS generation. Therefore, AB23A ameliorates LPS-induced intestinal
barrier dysfunction by inhibiting TLR4-NOX1/ROS signaling pathway in Caco-2
monolayers, suggesting that AB23A may have positive impact on maintaining the
intestinal barrier’s integrity.

Keywords: alisol B 23-acetate, intestinal barrier, tight junctions (TJs), NADPH oxidase-1 (NOX-1), toll-like receptor-4
(TLR4)

INTRODUCTION

The increase in gut permeability is the most prominent feature resulting from intestinal barrier
dysfunction, which may facilitate the passage of foreign antigens and pathogens across the epithelial
barrier (Arrieta et al., 2006). Tight junctions (TJs) are vital for constructing a barrier between
intestinal epithelial cells at the epithelium’s apical regions and serve as paracellular gates that restrict
diffusion depending on size and charge, maintaining organ and tissue homeostasis (Zihni et al.,
2016). Numerous TJ proteins have thus been found, such as cytoplasmic proteins zonula occludens-1
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(ZO-1), the transmembrane proteins occluding and claudins
(Clark et al., 2006). The gut TJ barrier disruption leads to a
“leaky” TJ barrier, resulting in a rise in gut permeability, and
permitting paracellular permeation of luminal antigens that
enhance intestinal inflammation, which is associated with
various diseases comprising irritable bowel syndrome, diabetes,
coeliac disease, non-alcoholic fatty liver disease, Crohn’s disease
and so on (Barbara et al., 2021; Portincasa et al., 2021; Prospero
et al., 2021; Riedel et al., 2021; Xu et al., 2021).

In Gram-negative bacteria, lipopolysaccharide (LPS) is not
only a component of the cell wall but one of the leading causes of
the pathogenesis of septic shock and endotoxemia (Wang et al.,
2019). Toll-like receptors (TLRs) play a vital role in inflammation
provoked by diverse stimuli as the primary receptors of innate
immunity, resulting in activating the inflammatory pathway, such
as TLR2, TLR4, and so on (Wang et al., 2017). Among them,
TLR4 was the initial TLR discovered in humans, which is
responsible for recognizing bacterial LPS, initiating endotoxin-
mediated inflammation (Miyake, 2004). Numerous studies have
found that LPS-induced low-grade chronic systemic
inflammatory will lead to a significant alteration in the
function and key TJ proteins expression (Tao et al., 2017;
Feng et al., 2022). Inhibiting LPS-mediated activation of TLR4
and subsequent inflammation pathway might be a useful way to
against the impairment of intestinal barrier.

Excessive reactive oxygen species (ROS) production and cell
redox imbalance have been shown to have a key role in the
pathophysiology of the inflammatory response (Veith et al.,
2019). NADPH oxidase (NOX) was firstly recognized as a
main source of ROS in immune cells; and recently has been
revealed to have a vital role in inflammation-related-cellular
signalling, including NOX1, NOX2, NOX3, NOX4, NOX5, and
DOUX1 and DOUX2 (Vermot et al., 2021). Among all these
homologs, NOX1 is abundantly expressed in the gastrointestinal
tract and has been implicated in inflammatory responses and
local innate immune (Geiszt et al., 2003a; Juhasz et al., 2017).
Recent studies demonstrated a pivotal role of NOX1-derived ROS
in gut intestinal epithelial homeostasis and barrier functions
regulation, indicating NOX1, a reactive oxygen species (ROS)-
producing oxidase might be important for endotoxin-induced
intestinal barrier dysfunction (Geiszt et al., 2003b; Yasuda et al.,
2012; Yokota et al., 2017).

Rhizoma alisamatis (Ze xie in Chinese, Takusha in Japanese,
and Taeksa in Korean, AR) is one of a widely used medicinal and
dietary plants in some East Asian countries (Jang and Lee, 2021).
Alisol B 23-acetate (AB23A) was isolated from the rhizome of
Rhizoma alisamatis as a natural triterpenoid and has been proven
to show outstanding bioactivity, comprising anti-hyperlipidemia,
hepatoprotective, and anti-inflammatory (Meng et al., 2015;
Wang et al., 2019). Moreover, A novel study indicated that
AB23A enhances intestinal permeability and microecological
disorders in mice with colitis-associated cancer (CAC) (Zhu
et al., 2021). Our previous study also has confirmed that
AB23A could inhibit high fat diet-induced down-regulation of
TJ-related proteins in NAFLD mice (Xia et al., 2021). Even so,
AB23A mechanism on intestinal permeability is poorly known.
Hence, assessing the protective effects and basic AB23A

mechanism on intestinal barrier function in Caco-2
monolayers was the objective of this investigation.

MATERIALS AND METHODS

Reagent
Chengdu Must Biotechnology Co., Ltd. (Chengdu, China) and
Beyotime Biotechnology (Jiangsu, China) provided AB23A
(purity > 98%) (Supplementary Figure S1) and LPS from
E. coli (0111: B4), respectively. AB23A stock solutions were
made in 0.1% DMSO, and working solutions were made in a
culture medium followed by filter sterilization (0.2 mm) just prior
to utilization. Gibco Life Technologies provided Dulbecco’s
Modified Eagle’s Medium (DMEM) culture medium and fetal
bovine serum (FBS). All biochemical indicator kits and other
chemicals used in the study were commercially available unless
otherwise mentioned.

Cell Culture
Human Caco-2 cells were graciously donated by the Chinese
Academy of Sciences’ Cell Bank/Stem Cell Bank (Shanghai,
China) and cultured in DMEM supplemented with 10% FBS,
100 units/mL penicillin, 100 mg/ml streptomycin. The cells were
cultured at 37°C in a humidified incubator containing 5% CO2

and routinely trypsinized. Every 2–3 days, the culture media was
replaced.

Cell Viability Assessment
The Caco-2 cells were seeded at a density of 1 × 104 cells/well per
100 μl in 96-well plates and underwent incubation overnight, and
then underwent treatment with various concentrations (0.1, 1, 10,
and 100 μg/ml) of LPS or AB23A (0, 0.625, 1.25, 2.5, 5, 10, 20, and
40 μM) in a humidified incubator with 5% CO2 at 37°C for 12 h.
The culture media was collected following treatment, and 100 μl
of 1/10 (vol/vol) CCK-8 reagent in medium was added per each
well. After 2 h of incubation at 37°C, the absorbance was
measured at 450 nm utilizing a Synergy H1 multifunctional
microplate reader (Biotek, United States). The cell viability
was estimated by dividing the sample’s optical density by the
control group’s optical density.

Intestinal Barrier Permeability Assay
The establishment of intestinal barrier in vitro and the
permeability assay were performed in accordance with the past
investigation (Hubatsch et al., 2007). Briefly, prior to the trials, on
a permeable polycarbonate membrane 24-Transwell supporting
system with 0.4 um holes, cells were plated at a density of 5 × 104/
cm2. (Corning, United States). To confirm the integrity of Caco-2
monolayers cultured under static conditions in vitro.
Transepithelial electrical resistance (TEER) was measured
every 2 days starting from day 8 with an ohm/volt meter 2
(EVOM2; World Precision Instruments, United States) in
compliance with the manufacturer’s instructions. In
accordance with the previous study, when the cells attained
confluence (TEER > 300Ω cm2) (Hubatsch et al., 2007),
various concentrations (2.5, 5 and 10 μM) of AB23A were
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added to the cells with or without 10 μg/ml LPS for 12 h.
Following treatment, apical to basolateral flux of 10 kDa
fluorescein isothiocyanate-labeled dextran (FITC-dextran) was
utilized for assessing barrier function. FITC-dextran (100 μl,
1 mg/ml) was introduced to the apical chamber, and then the
basolateral medium was collected after 2 h. The fluorescence in
the basolateral medium was measured utilizing a Synergy H1
multifunctional microplate reader (Biotek, United States) at
427 nm excitation and 536 nm emission. The apparent
permeability coefficient (Papp) was calculated according to the
equation (Hubatsch et al., 2007):

Papp(cm/s) � dQ/dt
AC0

A = filter surface (0.33 cm2), C0 = initial concentration of FITC-
dextran in the apical chamber (1 mg/ml), dQ/dt = amount of
FITC-dextran (μg/s).

Immunofluorescence Assay
Cells were cultured on coverslips in 6-well plates at a density of 3 ×
105 per well. Monolayer of cells forms after about 9–12 days, various
concentrations of AB23A (2.5, 5, and 10 μM) were added with or
without 10 μg/ml LPS for 12 h. Following three washes with PBS.
The cells were kept in 4% paraformaldehyde for 10 min before being
permeabilized in 0.1% Triton X-100 in PBS for 15 min (ZO-1) or
10 min (occludin) at room temperature. Then cells were blocked for
1 h at room temperature with 2% BSA/PBS, and underwent
incubation with an anti-ZO-1 (1:50, Invitrogen, United States) or
occludin (1:125, Invitrogen, United States) antibodies at 4°C
overnight. The cells were rinsed with PBS (3 × 10min) and then
underwent incubation with FITC-conjugated goat anti-rabbit IgG
secondary antibody (1:200, Affinity, United States) at room
temperature for 45 min. After further washing with PBS (3 ×
10min), nuclei were counterstained with a 1:10,000 dilution of
4′, 6-diamidino-2-phenylindole (DAPI, Beyotime Biotechnology,
Shanghai, China) at room temperature for 2 min. Excess dye was
removed by rinsing three times with PBS (3 × 10min). Anti-
fluorescence quenching solution (Beyotime Biotechnology,
Shanghai, China) was dropped on the slide. Coverslips were
placed onto slides and then detected with confocal laser scanning
microscope (LSM 880 with AiryScan, Zeiss, Germany).

ROS Generation Analysis
In compliance with the manufacturers’ instructions, the ROS
generation was evaluated utilizing the cellular ROS assay kit
(Abcam, Cambridge, United Kingdom). Cells underwent
incubation with 10 μM 2′–7′-dichlorofluorescin diacetate
(DCFH-DA) at 37°C in the dark for 30 min. By measuring
intracellular ROS, the fluorescence density of 2′–7′-
dichlorfluorescin (DCF) was detected utilizing Synergy H1
multifunctional microplate reader (Biotek, United States) or
fluorescence microscope (Leica DMI8, Germany).

Enzyme-Linked Immunosorbent Assays
Utilizing an Enzyme-Linked Immunosorbent Assays (ELISA)
kit, the pro-inflammatory cytokines production comprising

IL-6, TNF-, and IL-1 from Caco-2 cells was detected
(Mutisciences, Hangzhou, China). Briefly, Caco-2 cells
underwent treatment with varying concentrations of AB23A
(2.5, 5, and 10 M) with or without 10 μg/ml LPS for 12 h. In
compliance with the manufacturer’s instructions, IL-6, TNF-α,
and IL-1β concentrations were evaluated by collecting cell
supernatants. Absorbance was read utilizing Synergy H1
multifunctional microplate reader at 450 nm (Biotek,
United States).

Transfection With Short Hairpin RNA
GeneChem provided the plasmid utilized in TLR4 and NOX1-
specific Short Hairpin RNA (shRNA)-mediated knockdown
experiments (Shanghai, China). The negative control was
constructed utilizing an empty plasmid (sh-Ctrl). Cells were
seeded at the density of 5 × 105 per well in 6-well plates. In
compliance with the manufacturer’s instructions, plasmids
were transiently transfected into cells by utilizing a
Lipo3000 kit (Invitrogen, Shanghai, China). Following gene
transfection, the cells were subsequently cultured for 48 h
before being treated with or without LPS and AB23A as
mentioned above.

RNA Isolation and qPCR
In compliance with the manufacturer’s instructions, the
SteadyPure Universal RNA Extraction Kit II was utilized for
isolating total RNA (Accurate biotechnology Co., Ltd.,
Shenzhen, China). Nanodrop ND-8000 was utilized for
assessing RNA concentration and purity (Thermo Fisher
Scientific, Waltham, MA, United States). Then, the RNA
was reverse transcripted to cDNA utilizing the Evo M-MLV
RT Premix (Accurate biotechnology Co., Ltd., Shenzhen,
China). Transcript levels of TLR4, NOX1, and β-actin were
quantified utilizing the SYBR Green Premix Pro Taq HS qPCR
Kit (Accurate biotechnology Co., Ltd., Shenzhen, China) on a
CFX96 Real-Time System (Bio-Rad, United States). Table 1
demonstrates the primers utilized for different genes
amplification. The quantity of mRNA was normalized with
β-actin as an internal standard.

Western Blot Analysis
Each well was emptied of its cell culture medium and rinsed
twice with PBS. In compliance with the manufacturer’s
instructions, RIPA lysis buffer was utilized for extracting
total proteins (Beyotime, Shanghai, China). Utilizing BCA
protein assays, all samples were analyzed (Thermo,

TABLE 1 | Primer sequences of NOX1, TLR4 and β-actin in this study.

Gene Sequences (59 → 39)

NOX1 F: TCTTAAAGGCTCACAGACCCTG
R: CAGCCCTAACCAAACAACCAGAA

TLR4 F: GGAGAGAAAGACACCGAGAATG
R: CCCAAGGCACACAGTTGATA

β-actin F: TGGCACCCAGCACAATGAA
R: CTAAGTCATAGTCCGCCTAGAAGCA
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United States). Protein supernatant was combined with
sodium dodecyl sulfate-polyacrylamide gel electrophoresis
(SDS-PAGE) loading buffer and immersed for 5 min in a
boiling water bath. Following standard protocols, equal
quantities of proteins were separated with 8%, 10%, or 12%
SDS-PAGE gels and afterward transferred to a PVDF
membrane (Millipore, United States). The PVDF membrane
was blocked with 5% non-fat milk for 2 h, and underwent
incubation overnight at 4°C with primary antibodies, including
anti-human polyclonal antibodies that recognize TLR4 (1:
1,000, Invitrogen, United States), NOX-1 (1:1,000,
Proteintech Group, Wuhan, China), ZO-1 (1:500,
Invitrogen, United States), occludin (1:500, Invitrogen,
United States) and β-actin (1:2,000, Beyotime
Biotechnology, Jiangsu, China), At room temperature, to
mix the primary antibodies for 1–2 h, the secondary goat
anti-rabbit horseradish peroxidase (HRP)-IgG antibody (1:
2,000, Affinity, United States) was added. ECL (Beyotime
Biotechnology, Shanghai, China) was utilized for visualizing
proteins under the iBright intelligent imaging system FL1000
(Invitrogen, United States).

Statistical Analysis
One-way analysis of variance (ANOVA) was followed by
Tukey’s multiple comparisons test or Newman-Keuls
multiple comparisons test and Student’s t test with
GraphPad Prism software to analyze group differences
(version 8.3.0). The data were reported as mean ± standard
deviation (SD). p < 0.05 indicated statistically significant
differences.

RESULTS

LPS and AB23A Effects on Caco-2 Cell
Viability
CCK-8 assay was conducted to evaluate cytotoxicity. As shown
in Figure 1, the relative viabilities of the cell treated with

100 μg/ml of LPS were significantly lower compared to the
group of LPS (0 μg/ml). For AB23A treatment, 20, 40 μM of
AB23A caused a marked cytotoxicity on Caco-2 cells.
Therefore, we selected 10 μg/ml of LPS and 2.5, 5, and
10 μM of AB23A in further assays (Figures 1A,B).

AB23A Inhibits LPS-Induced
Pro-Inflammatory Cytokines Expression in
Caco-2 Cells
By ELISA, TNF-α, IL-6, and IL-1β concentrations in the cell
supernatants were detected. LPS alone enhanced TNF-α, IL-6,
and IL-1β expression levels in Caco-2 cells significantly.
However, AB23A dose dependently reduced the LPS-
induced elevation in TNF-α, IL-6, and IL-1β levels in a
(Figures 2A–C). Similar with result of AB23A on AOM/
DSS-Induced CAC Mice (Zhu et al., 2021), these findings
revealed that AB23A could inhibit LPS-induced pro-
inflammatory cytokines expression in Caco-2 cells.

AB23A Attenuates LPS-Induced ROS
Generation in Caco-2 Cells
DCFH-DA staining with fluorescence microscopy was utilized
for measuring ROS production. The intensity of green
fluorescence indicated the level of ROS generation in Caco-
2 cells. The LPS-treated cells presented a stronger green
fluorescence intensity at the cell edges and inside of the
cells than that observed in control group. While, AB23A
attenuated the intensity of green fluorescence compared
with LPS treatment group (Figure 3A). As evident from the
Figure 3B, the attenuating effects of AB23A (2.5, 5, and
10 μM) on ROS generation (mean fluorescent intensity:
4,014.00 ± 59.27, 2,704.00 ± 120.76, and 1,677.00 ± 32.54,
respectively) were observed compared to that noted in the LPS-
induced cells (mean fluorescent intensity: 5,048.50 ± 123.70).
These findings revealed that LPS-induced intracellular ROS
generation is significantly attenuated by AB23A in a
concentration-dependent manner.

FIGURE 1 | LPS and AB23A effects on the cell viability of Caco-2 cells. Caco-2 cells underwent treatment with various AB23A or LPS concentrations for 12 h. (A)
Effect of different concentrations of LPS in Caco-2 cell viability. (B) Effect of various AB23A concentrations on Caco-2 cell viability. **p < 0.01 vs. AB23A (0 μM) or LPS
(0 μg/ml).
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AB23A Inhibits LPS-Induced Intestinal
Barrier Permeability in Caco-2 Cells
For examining AB23A effect on intestinal barrier function, a vitro
model was utilized where Caco-2 epithelial cell monolayers
underwent treatment with LPS (10 μg/ml). As shown in
Figure 4A, TEER increased with the increase of culture time,
and the mean TEER reached 467.8Ω cm2 on day 23, revealing an
in vitro model of the intestinal barrier for Caco-2 cells was
successfully established. LPS (10 μg/ml) elevated apical to
basolateral flux of FITC-dextran (Hubatsch et al., 2007).

Moreover, AB23A effectively reduced LPS-induced the apical
to basolateral flux of FITC-dextran in Caco-2 epithelial cell
monolayers (Figure 4B). These results suggested that AB23A
enhances barrier integrity in Caco-2 monolayers.

AB23A Alleviates LPS-Induced Abnormal
Structural Changes and Distribution of TJ in
Caco-2 Cells
For evaluating AB23A effect on the intercellular distribution
and occludin and ZO-1 expression, an immunofluorescence

FIGURE 2 | AB23A effects on the TNF-α, IL-6 and IL-1β levels induced by LPS in Caco-2 cells. Caco-2 cells underwent treatment with various AB23A
concentrations (2.5, 5 and 10 μM) with or without 10 μg/ml LPS for 12 h. (A) TNF-α level. (B) IL-6 level. (C) IL-1β level. **p < 0.01 vs. control; ##p < 0.01 vs. LPS.

FIGURE 3 | AB23A effect on the ROS generation induced by LPS. Caco-2 cells underwent treatment with AB23A concentrations (2.5, 5 and 10 μM) with or without
10 μg/ml LPS for 12 h. (A) Utilizing a fluorescent microscope, intracellular ROS was noticed, and the corresponding cell morphology was captured utilizing a bright field
(BF) (magnification, ×10). (B) ROS were detected under a multifunctional microplate reader. **p < 0.01 vs. control; ##p < 0.01 vs. LPS (10 μg/ml).
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assay of Caco-2 cells with a specific antibody against occludin
and ZO-1 was undertaken. In control group, results revealed
that TJ proteins showed a normal, organized structure and
well-characterized localization around the cell boundaries,
whereas the LPS-treated cells had fainter and abnormal
structural staining at the same location. AB23A (2.5, 5, and
10 μM)-treated cells showed a stronger staining, compared
with that of the LPS treatment alone (Figures 5A,B). These
results indicated that AB23A might enhance the barrier
integrity by restore TJ structure and distribution in Caco-2
monolayers.

AB23A Inhibits LPS-Induced TLR4 and
NOX1 Expression in Caco-2 Cells
LPS alone dramatically elevated the TLR4 and NOX1 protein
expression com-pared to that observed in the control. While,
AB23A attenuated TLR4 and NOX1 proteins expression

stimulated by LPS in a dose-dependently manner (Figures
6A,B). Consequently, AB23A downregulated the TLR4 and
NOX1 proteins expression induced by LPS.

AB23A Attenuates LPS-Induced ROS
Generation by Inhibiting NOX1 Expression
in Caco-2 Cells
To further evaluate whether the reduction of ROS by AB23A was
involved in the suppression of the NOX1 expression, we
transfected shRNA of NOX1 into Caco-2 cells and measured
the ROS production. The expressions of NOX1 on mRNA and
protein level were significantly decreased when NOX1 was
knocked down by shRNA against NOX1 (Figures 7A,B).
Additionally, AB23A significantly attenuated the ROS
generation by 1.66-fold decrease compared to the observed
with LPS treatment alone in normal Caco-2 cells (ROS mean
fluorescence intensity induced by LPS = 8,287.0 ± 160.87; ROS

FIGURE 4 | AB23A effects on intestinal barrier permeability induced by LPS. (A) At various time points, the transepithelial electrical resistance (TEER) was
assessed. (B) The apparent permeability coefficient (Papp) test was utilized for assessing intestinal permeability in vitro. **p < 0.01 vs. control; ##p < 0.01 vs. LPS
(10 μg/ml).

FIGURE 5 | AB23A effects on LPS-induced TJ structure and distribution in Caco-2 cells. Cells were cultured in the medium for several days before being treated
with or without LPS (10 μg/ml) and various concentrations of AB23A (2.5, 5 and 10 μM) for 12 h. Immunofluorescence staining of (A) ZO-1 and (B) occludin. DAPI
staining of the nuclei was utilized as a control image. Confocal laser scanning microscope was utilized to observe ZO-1and occludin protein localization in Caco-2 cells
with or without LPS and AB23A (magnification, ×20), respectively.
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mean fluorescence intensity induced by LPS + AB23A = 5,003.3 ±
117.32). However, following NOX1-shRNA transfection, the
attenuating effect of AB23A on LPS-induced ROS generation
was diminished (ROS mean fluorescence intensity induced by
LPS = 5,985.3 ± 258.75; the mean fluorescence intensity of ROS
induced by LPS + AB23A = 4,664.8 ± 67.43; fold decrease = 1.28).
These results suggested that AB23A attenuates LPS-induced ROS
generation by inhibiting NOX1 expression.

AB23A Attenuates LPS-Induced Intestinal
Barrier Permeability by Inhibiting NOX1/
ROS Expression in Caco-2 Cells
To determine if AB23A attenuates LPS-induced intestinal barrier
permeability by inhibiting NOX1/ROS expression, we selectively
silenced NOX1. As demonstrated in Figure 8, In comparison
with the control group, LPS significantly diminished the occludin
and ZO-1 proteins expression levels and AB23A treatment
elevated the occludin and ZO-1 proteins expressions levels
induced by LPS. While, after transfection of Caco-2 cells with
NOX1 shRNA, AB23A treatment has no significant difference
compared to that were treated with LPS alone on LPS-induced
occludin and ZO-1 proteins expression, demonstrating the
increased effect of AB23A was abolished on LPS-induced
occludin and ZO-1 proteins expression. Therefore, we
speculated that AB23A might attenuate LPS-induced intestinal
barrier permeability by inhibiting NOX1/ROS expression in
Caco-2 cells.

TLR4-NOX1/ROS Axis Might Play a Key
Role in LPS-Induced Intestinal Barrier
Permeability in Caco-2 Cells
Above data demonstrated that AB23A effect on intestinal barrier
permeability was associated with inhibiting NOX1/ROS

expression. AB23A also showed a significant inhibition of both
TLR4 and NOX1 during LPS induction. However, the inter-
action of TLR4 with NOX1/ROS on intestinal barrier
permeability remains unknown. As shown in Figures 9A,B,
TLR4 expressions on mRNA and protein level were
significantly decreased after treatment with TLR4-shRNA. In
comparison with that in the control group, LPS alone
diminished the occludin and ZO-1 proteins expression levels
while transfection with TLR4-shRNA inhibited the decrease of
occludin and ZO-1 protein expressions induced by LPS,
suggesting that TLR4 might have a vital role in LPS-induced
intestinal barrier permeability (Figures 9C,D). More
importantly, the TLR4-shRNA down-regulated NOX1 protein
expression and ROS generation with or without LPS stimulation
(Figures 9E,F). Therefore, we hypothesized that TLR4-NOX1/
ROS might play a key role in LPS-induced intestinal barrier
permeability in Caco-2 cells.

DISCUSSION

Fatty liver diseases comprising steatohepatitis (NASH) and non-
alcoholic fatty liver disease (NAFLD) are related to elevated
intestinal barrier permeability and translocation of bacteria or
bacterial products into the blood circulation, according to
accumulating studies (Mouries et al., 2019). Past investigations
have demonstrated that AB23A maintains the intestinal barrier
integrity and reduces the endotoxin level in HFD-induced
NAFLD or colitis-associated cancer (CAC) mice (Xia et al.,
2021; Zhu et al., 2021). Even so, AB23A protective
mechanisms on the function of the intestinal barrier remain
poorly understood.

Tight junctions (TJs) are vital for establishing a barrier
between various compartments of the body, and their major
physiological purpose is to serve as paracellular gates that restrict

FIGURE 6 | AB23A effects on the TLR4 and NOX1 proteins expression induced by LPS. (A) The TLR4 protein expression level. (B) The NOX1 protein expression
level. All gel images are from the same sample. β-actin was utilized repeatedly as a control image. **p < 0.01 vs. control; ##p < 0.01 vs. LPS (10 μg/ml).

Frontiers in Pharmacology | www.frontiersin.org June 2022 | Volume 13 | Article 9111967

Xia et al. Mechanism of AB23A on Intestinal Barrier

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


FIGURE 7 | AB23A effects on the ROS generation induced by LPS in TLR4-shRNA transfected cells. (A) The NOX1mRNA expression level. (B) The NOX1 protein
expression level. (C) AB23A effects on the ROS generation induced by LPS in NOX1 knockdown cells. **p < 0.01 vs. control; ##p < 0.01 vs. LPS (10 μg/ml); &#p < 0.01 vs.
NOX1-shRNA; &&p < 0.01 vs. NOX1-shRNA + LPS (10 μg/ml).

FIGURE 8 | AB23A effects on the intestinal barrier permeability induced by LPS in association with the inhibition of NOX1/ROS. Following transfection with NOX1
shRNA, the cells underwent treatment with or without LPS and AB23A for 12 h. (A) The occludin and ZO-1 protein expression levels. (B) ZO-1 protein expression level.
All gel images are from the same sample. β-actin was utilized repeatedly as a control image. **p < 0.01 vs. control; ##p < 0.01 vs. LPS (10 μg/ml); &#p < 0.01 vs. NOX1-
shRNA.
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FIGURE 9 | AB23A effects on the LPS-induced intestinal barrier permeability by inhibiting the TLR4-NOX1/ROS pathway. Following transfection with TLR4 shRNA,
the cells were subsequently cultured for 48 h before being treated with LPS for 12 h. (A,B) ThemRNA and protein expression level of TLR4. (C,D) The occludin and ZO-1
protein expression level. (E) The NOX1 protein expression level after transfected with TLR4-shRNA with or without LPS stimulation. (F) The ROS production following
transfection with TLR4-shRNA with or without LPS stimulation. All gel images are from the same sample. β-actin was utilized repeatedly as a control image. **p <
0.01 vs. control; #p < 0.05 vs. TLR4-shRNA + LPS (10 μg/ml); ##p < 0.01 vs. TLR4-shRNA + LPS (10 μg/ml).
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diffusion on the basis of size and charge (Zihni et al., 2016). The
disruption of intestinal epithelial TJ formation by pathogens is
one of the most critical factors in determining gut permeability,
such as pathogenic bacteria, LPS, inflammatory mediators (Ling
et al., 2016). Disruption of the intestinal barrier is present in a
wide range of gut-associated diseases. As the first TJ-associated
protein to be discovered, ZO-1 is widely regarded as an effective
marker for identifying intact cell-to-cell connections and
evaluating TJ integrity (Montalto et al., 2004). Occludin is an
integral membrane protein particularly linked with tight
junctions, which is directly encompassed in cell-cell adhesion
and colocalize with ZO-1, maintaining intestinal barrier integrity
(Van Itallie and Anderson, 1997; Arrieta et al., 2006; Zihni et al.,
2016). More importantly, signaling at tight junctions appears to
have a critical role in the cellular stress response (Nusrat et al.,
2000; Barrios-Rodiles et al., 2005; Lockwood et al., 2008). In our
in vitro investigation, we reveal that LPS stimulation not only
decreases occludin and ZO-1expression, but also affects occludin
and ZO-1 proteins’ location in Caco-2 monolayers, resulting in
enhanced intestinal permeability. AB23A displays a protective
effect on intestinal permeability by upregulating and restoring
occludin and ZO-1 expression and distribution. These findings
are consistent with our previous results in NAFLD mice showing
that AB23A maintains intestinal barrier integrity by inhibiting
HFD-induced downregulation of TJ expressions, including ZO-1
and occludin (Xia et al., 2021).

By activating redox-sensitive protein kinases and
transcription factors, ROS has been identified as essential
signaling molecules that regulate the transcription of several
genes (Cakir and Ballinger, 2005; Yasuda et al., 2012). NOX
has been implicated to be the major source of ROS generation
in the pathogenesis of gut-associated diseases (Yokota et al.,
2017). More importantly, NOX1 is more abundantly expressed
than other isoforms throughout the gastrointestinal tract, and
has been implied to play a role in local innate immunological
and inflammatory responses (Rokutan et al., 2006; Kamizato
et al., 2009). Thus, we speculated that ROS generated from
NOX1 in response to LPS may stimulate the impairment of
intestinal epithelial TJ formation by up-regulating pro-
inflammatory cytokines expression, comprising TNF-α, IL-
6, and IL-1β. Indeed, through up-regulation of chemokines,
inflammatory cytokines and iNOS, NOX1/NADPH oxidase
has a vital role in the TNBS-induced colonic inflammation
pathogenesis, according to past studies (Yokota et al., 2017).
The Caco-2 cells exposure to IL-1β activated NOX1 expression
and ROS generation, leading to increase of epithelial
permeability (Tesoriere et al., 2014). In the current study,
AB23A attenuated TNF-α, IL-6, and IL-1β expression.
AB23A also attenuated ROS generation and significantly
reduced NOX1 overexpression in LPS-stimulated Caco-2
monolayers. In addition, using shRNA (to NOX1), we
proved that AB23A attenuates ROS generation by inhibiting
NOX1 expression in Caco-2 cells. These findings proved that
AB23A inhibits the NOX1 expression and subsequent ROS
generation in LPS-stimulated Caco-2 monolayers. Moreover,
we also found that ZO-1 and occludin expression were elevated
after NOX1 knockdown with shRNA (to NOX1) in Caco-2

cells. All these data reveal that NOX1/ROS has a crucial role in
intestinal epithelial TJ permeability and AB23A maintains
intestinal barrier integrity by suppressing NOX1 expression
and reducing the subsequent production of ROS.

Bacterial endotoxin-induced systemic inflammatory response
is the main cause of high fat diet-induced metabolic diseases
development, including NAFLD or obesity-associated diabetes
(Tsalik and Woods, 2009; Porras et al., 2017). As the most
important component of bacterial endotoxin, LPS has been
shown to aggravate metabolic disorders by elevating IL-1β,
TNF-α, and IL-6 expression, which might be related to TLRs
(Vaez et al., 2016). TLRs are important proteins involved in non-
specific immunity and associated with specific immunity (Wang
et al., 2019). TLR4 is a member of the TLR family, as a pattern
recognition receptor for LPS from Gram-negative bacteria, which
is closely related to immune or inflammatory diseases (Miyake,
2004). In the present study, AB23A inhibits TLR4 overexpression
in LPS-stimulated Caco-2 monolayers. By using shRNA against
TLR4, we found that ZO-1 and occludin expressions were
elevated in Caco-2 monolayers after being stimulated with or
without LPS. Moreover, after knocking down TLR4 with shRNA,
we found that TLR4 expression influenced NOX1 expression and
subsequent ROS production. Consistent with previous studies,
TLR can activate NADPH oxidases to produce ROS and
modulate inflammation by affecting the expression of NADPH
oxidases in different tissues and organs. For example, increased
TLR4 signaling in colitis drives DUOX2 expression and H2O2
production in epithelial cells (Burgueño et al., 2021). In ROS-
mediated inflammatory diseases, suppressing TLR2 or TLR4 is a
novel therapeutic strategy (Hsieh et al., 2016). Wang et al. (2019)
indicated that blocking the TLR4/NOX2 signaling might be a
potential therapy for endotoxin-induced cardiac dysfunction.
Inhibition of NOX1/ROS prevented the enhancement of lung
tumor burdens by LPS-induced acute lung infection in non-small
cell lung cancer (NSCLC) cells (Liu et al., 2015). Therefore, the
TLR4-NOX1/ROS axis may be a potential candidate for AB23A
to be used as a protective target to against Intestinal barrier
permeability.

In conclusion, despite the importance of our results, the
study still has some limitations. In the current study, only
Caco-2 monolayers were utilized for investigating AB23A
protective effects on intestinal barrier dysfunction and no
further validation were conducted in vivo. Our findings still
demonstrated that AB23A protects the intestinal barrier
integrity. AB23A-mediated protective effect mechanisms on
intestinal barrier function encompass the up-regulation of TJ-
associated proteins and suppression of pro-inflammatory
cytokine expression (Figure 7C). The TLR4-NOX1/ROS
signaling pathway may be a potential candidate for AB23A
to be used as a protective target to against intestinal barrier
permeability.
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