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Accurate somatic variant detection using weakly
supervised deep learning
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Identification of somatic mutations in tumor samples is commonly based on statistical

methods in combination with heuristic filters. Here we develop VarNet, an end-to-end deep

learning approach for identification of somatic variants from aligned tumor and matched

normal DNA reads. VarNet is trained using image representations of 4.6 million high-

confidence somatic variants annotated in 356 tumor whole genomes. We benchmark VarNet

across a range of publicly available datasets, demonstrating performance often exceeding

current state-of-the-art methods. Overall, our results demonstrate how a scalable deep

learning approach could augment and potentially supplant human engineered features and

heuristic filters in somatic variant calling.
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Identification of somatic mutations from DNA sequencing of
tumor samples is key to cancer research and the imple-
mentation of precision oncology. The process of calling

mutations in tumor DNA is convoluted by both biological var-
iation (e.g. tumor heterogeneity) and technical noise (e.g.
sequencing errors) in the samples. Existing best-in-class methods
for somatic variant calling commonly rely on statistical models of
variant allele frequencies in combination with a series of heuristic
filters to remove false positives1,2. Importantly, these methods
have been developed through human expert knowledge of DNA-
sequencing data and tumor biology.

Machine learning offers a complementary data-centric
approach that can exploit the vast amounts of next-generation
sequencing data generated today. For example, Strelka22 sup-
plements its probabilistic variant model with a machine learning
model, which uses variant quality features to predict an aggregate
confidence score for each candidate variant. SMuRF3 is an
ensemble somatic variant caller that uses machine learning and
variant features from four distinct variant callers to predict high-
confidence variants. Neusomatic4 uses a deep learning model to
make somatic variant predictions from the aggregated base and
read counts in a small neighborhood around candidate variant
sites. DeepVariant5, a germline variant caller, uses images of
aligned DNA reads in combination with a deep learning model to
predict variants, mimicking how human experts perform a
manual review of candidate variants6. Intriguingly, deep learning
models operating on raw DNA read alignments may learn rich
representations of reads comprising both their complex inter-
dependencies as well as the sequence context around mutated
sites. However, this concept has not been explored for somatic
variant calling where variants have to be evaluated in the context
of deeper tumor sequencing data, intratumor heterogeneity, and
matched normal reads.

Here we describe VarNet, which uses deep learning models
trained on large amounts of tumor-sequencing data to predict
somatic single nucleotide variants (SNV), insertions, and dele-
tions (indels). VarNet creates image representations of aligned
reads from tumors and matched normal genomes including their
properties such as base quality, mapping quality, and strand bias.
As supervised deep learning requires access to large labeled
datasets, which are typically scarce and expensive to generate in
cancer genomics, VarNet uses a weakly supervised learning
approach where high confidence pseudo-labels are generated
across 7 cancer types and more than 300 cancer whole genomes.
We evaluate the performance of VarNet on both real and syn-
thetic tumor benchmark datasets, demonstrating consistent per-
formance often exceeding existing methods.

Results
Overview of approach. VarNet was trained on data from over
300 matched normal and tumor genomes comprising seven
cancer types (lung, sarcoma, colorectal, lymphoma, thyroid, liver,
and gastric cancers). All samples were whole-genome sequenced
(WGS) at depths of 50–150×. Since ground-truth labels were
unavailable, an ensemble method (SMuRF) was used to generate
mutation calls (SNV and indels) from callsets of four popular
mutation callers in the bcbio-nextgen pipeline (see the “Methods”
section). Training datasets containing equal numbers of mutated
and non-mutated sites were created to train two deep learning
models, one for SNV calling (2.5M sites) and the other for indel
calling (2.1M sites) (Fig. 1a). Image-like representations of these
sites are generated using the information in raw alignments
overlapping these sites such as base, base quality, mapping
quality, strand bias as well as the reference base. These properties
are numerically encoded at each candidate site in distinct input

channels along with the surrounding sequence context of
neighboring sites so the model can learn relevant mutational
signatures of alignment properties. Deep convolutional networks
were then trained on these image-like representations to predict
the probability of mutation at each site.

Benchmarking on real tumor samples. We tested the perfor-
mance of VarNet on independent and publicly available bench-
mark datasets comprising both real and in-silico generated
mutations. The International Cancer Genome Consortium (ICGC)
Gold Set comprises verified somatic mutations in chronic lym-
phocytic leukemia (CLL) and medulloblastoma (MBL) tumor-
normal pairs that were identified using high-coverage (~300×)
whole-genome sequencing (WGS) data from multiple sequencing
centers and further curated through manual review7. We down-
sampled the original high-coverage (~300×) tumor–normal WGS
data to coverage levels commonly adopted for tumor WGS
(~100×). We then evaluated the generalization performance of
VarNet for both SNV and indel calling on these two samples.
Overall, VarNet made calls at higher precision and recall compared
to other callers for both SNVs and indels (Fig. 2). On the MBL
sample, VarNet outperformed other callers achieving accuracy (F1)
scores of 0.84 (SNV) and 0.79 (indel), compared to Strelka2’s 0.79
(SNV) and 0.65 (indel), and Mutect2’s 0.68 (SNV) and 0.40 (indel).
On CLL, VarNet again outperformed other callers achieving
F1 scores of 0.87 (SNV) and 0.62 (indel) whereas Strelka2 achieved
0.85 (SNV) and 0.52 (indel). NeuSomatic, which was trained on
mutations from a synthetic tumor sample, performed incon-
sistently on these real tumor samples, achieving F1 scores of 0.43
(CLL) and 0.76 (MBL) for SNV calling, and 0.16 (CLL) and 0.22
(MBL) for indel calling.

We further benchmarked callers on COLO829, a metastatic
melanoma cell line with a multi-institutionally defined reference
set of somatic mutations8, and a SEQC2 established somatic
reference callset derived from a breast cancer cell line9. These two
somatic reference callsets were created by a consensus approach
using data from multiple sequencing and variant calling pipelines.
The SEQC2 reference callset was partially validated using targeted
sequencing (>2000-fold coverage) to establish high confidence
calls. For SNV calling on COLO829, all callers performed well
with VarNet achieving the highest F1-score (0.94) (Fig. 3 and
Supplementary Fig. 6a). For indel calling, Strelka2 and Mutect2
achieved higher accuracy (0.76 and 0.66) than VarNet (0.63)
(Fig. 3 and Supplementary Fig. 6b). For SNV calling on the
SEQC2 reference callset, VarNet achieved the highest F1-score
(0.92) along with Mutect2 (0.92) (Fig. 3 and Supplementary
Fig. 7). Strelka2 achieved the highest F1-score (0.74) for indel
calling followed by VarNet (0.70) and Mutect2 (0.70).

In summary, on SNV calling in real tumor samples, VarNet
outperformed all other callers in our analysis (avg. max. F1-
score= 0.89), ahead of current methods such as Strelka2 (0.85)
and Mutect2 (0.74). On indel calling, VarNet also often
outperformed existing callers with an average F1-score of 0.69,
followed by Strelka2 (0.64) and Mutect2 (0.49). Overall, VarNet
showed accurate and consistent performance when evaluated on
real tumor benchmarks.

Performance on low variant allele fraction mutations. We next
evaluated the impact of variant allele frequency (VAF) levels on
VarNet’s accuracy. The MBL tumor sample consists of a tetra-
ploid background combined with altered ploidy at five chromo-
somes while the CLL tumor sample comprises large copy number
variants7. This genomic background generated somatic mutations
at distinct VAF levels, enabling us to evaluate the performance of
VarNet at different VAF ranges (Fig. 4a, b). For mutations with
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VAF < 0.3, VarNet had higher accuracy (average F1 score across
CLL and MBL of 0.70) compared to Strelka2 (0.49), Mutect2
(0.31), and Freebayes (0.08). The performance of all methods
expectedly improved at higher allele fractions. However, cur-
iously, Strelka2 and Freebayes showed noticeably lower F1 scores
at allele fractions >0.5 (29% and 35% lower than 0.45–0.5 range,
respectively), potentially mistaking some somatic mutations to be
germline mutations at higher VAFs. Overall, VarNet demon-
strated high accuracy across both low and high VAF levels as
compared to other callers.

Performance at low tumor purity and read depth. We next
evaluated the impact of tumor purity levels (fraction of cancer
cells in tumor) as well as low read depths. The ICGC MBL sample
was estimated to have high tumor purity (>95%) and an average
read depth of ~300×7. Hence, we diluted the MBL sample with
reads from the matched normal sample to simulate increasing
levels of tumor impurity, as well as downsampled the tumor
sample to 40× coverage to simulate low read depth (see the
“Methods” section). The lowered read depth alone only had a
minor effect on performance for all methods (~1%, Fig. 4c). All

Fig. 1 Overview of approach. a Matched tumor/normal genomes were used to generate training data. Training labels were generated using high-
confidence calls from 4 variant callers (via SMuRF). b Each genomic position selected for training is encoded as a multi-dimensional matrix of reads and
associated features (e.g. base quality and mapping quality) and fed to a CNN for training. Source data are provided as a Source Data file.
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Fig. 2 Variant calling accuracy on ICGC tumors. a, b Precision/recall curves for SNV calling in the MBL and CLL samples, respectively. c, d Precision/recall
curves for indel calling in the MBL and CLL samples, respectively. Solid circles indicate the highest F1-accuracy score obtained for each method. Source data
are provided as a Source Data file.
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methods expectedly demonstrated lower recall with increasing
levels of tumor impurity (Fig. 4c). At 70% purity (30% normal
dilution), VarNet achieved the highest F1 score (0.80) ahead of
Strelka2 (0.76) and Mutect2 (0.58). While VarNet’s recall drop-
ped 7% from the original read depth (~100×) and purity, preci-
sion increased from 0.96 to 0.97, suggesting reliable calls even at
low read depths and purity levels (Supplementary Fig. 8). At 50%
tumor purity, VarNet still achieved the highest F1 score (0.77)
ahead of Strelka2 (0.73) and Mutect2 (0.54). VarNet provided a
recall of 0.64 at this lower purity level without any drop in pre-
cision (0.97).

Benchmarking on DREAM challenge synthetic tumor samples.
We further benchmarked VarNet on synthetic tumors from the
DREAM Somatic Mutation Challenge10. This dataset comprises

synthetic tumors generated from a cell line sequenced to 80×
(split into normal and tumor samples) and where in silico gen-
erated SNVs and indels have been added to the tumor sample.
On SNV calling, VarNet outperformed most other methods
(Supplementary Figs. 3 and 4). VarNet achieved a top F1 score of
0.90 on average across the synthetic tumors, ahead of Strelka2
(0.86) and Mutect2 (0.81). The only method with better overall
performance on the synthetic tumors was NeuSomatic, likely
because this method was trained on a subset of the DREAM
tumor data4. Indeed, while NeuSomatic had the highest SNV
calling performance (F1= 0.96) across the DREAM synthetic
tumors, its performance was not consistent when tested on the
ICGC real tumor samples (average F1= 0.60, Fig. 2). On indel
calling, VarNet achieved an average F1 score of 0.66 across
DREAM tumors behind Strelka2 (0.68) and Mutect2 (0.81)
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Fig. 3 Variant calling accuracy across real tumor datasets. Maximum F1-accuracy scores achieved by methods on real tumor benchmark samples (MBL:
medulloblastoma, CLL: chronic lymphocytic leukemia, COLO829: melanoma, SEQC2: breast cancer) for SNV calling (top) and indel calling (bottom).
Source data are provided as a Source Data file.
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(Supplementary Fig. 5). While Mutect2 achieved the best per-
formance for indel calling in the DREAM synthetic tumors, it
showed considerably lower performance on the real ICGC
tumors (0.41), suggesting a high-variance model. In contrast,
VarNet’s indel calling performance was consistent across real
and synthetic tumors (F1= 0.69 versus 0.66). Strikingly, the
indel calling performance of Neusomatic was the lowest of all
methods (average F1= 0.09) across the DREAM synthetic
tumors. Overall, VarNet performed consistently across real and
synthetic tumors, often outperforming existing methods.

Interpreting features exploited by VarNet. Finally, we sought to
interpret the features learned by VarNet’s deep learning model.
To aid interpretation, we generated heatmaps of importance
assigned by VarNet to individual pixels in its input using guided
backpropagation, which is a technique that uses model gradients
to assign importance scores to pixels11. We visualized these pixel
importance scores using heatmaps to illustrate VarNet’s ability to
identify variant alleles at an individual mutated site (Fig. 5) as
well as an average across many randomly selected sites to inter-
pret commonly used features (Fig. 6). Although VarNet’s deep
learning model is not trained with any specialized knowledge of
mutations or genomic data, these visualizations revealed how the
model has learned to identify variant alleles at the candidate site
in the tumor. High importance was assigned to pixels containing
individual variant alleles at the candidate site across all input
channels including base and mapping quality. Activation for the
mapping quality feature was evenly distributed across the input
image for non-mutated positions (Fig. 6b) but showed higher
importance at the mutated site and upstream bases in the pre-
sence of mutations (Fig. 6d). Positions upstream of the candidate
mutation site are activated across input channels, potentially
suggesting the use of the immediate sequence and read context by
the model. The reference base channel showed higher activation
for non-candidate sites suggesting it may not be important for
predicting mutations in general and we observed no noticeable
differences in pixel activation between low and high VAF
mutations (Supplementary Fig. 9). All input channels indicated
the highest activation at the tumor candidate site across both
mutated and non-mutated inputs (Supplementary Fig. 9). Overall,
these data demonstrate how VarNet uses multiple positions and
properties of the encoded alignment images to predict mutations.

Discussion
We have described an accurate deep learning approach for
somatic variant calling using matched tumor and normal
sequencing data. Compared to existing callers, VarNet takes a
unique approach that does not use human-engineered features to
predict mutations. Instead, we train the deep learning models on
rich representations of raw sequence alignments. Conceptually,
this process is mimicking how human experts often manually
visualize and curate somatic mutations.

In contrast to Neusomatic4, an existing deep learning-based
somatic mutation caller, VarNet was trained on real mutations in
multiple cancers and exploits raw alignment data. While Neu-
somatic summarizes feature statistics of all alignments in a 7 bp
window around candidate sites, VarNet encodes raw alignments
in a larger (30 bp for SNV; 70 bp for indels) sequence context to
learn signatures of somatic mutations. We further demonstrated
the effectiveness of our input encoding and training strategy by
directly benchmarking VarNet and NeuSomatic using the same
training cohort (Supplementary Note 1).

We performed genome-wide benchmarking of VarNet on
different real tumors and demonstrated best-in-class accuracy
and ability to generalize to simulated mutations as well. More-
over, VarNet was able to achieve robust performance in chal-
lenging regions of the genome that are not highly alignable12

(Supplementary Note 2). Intriguingly, VarNet was also able to
outperform the ensemble calling method used to generate
pseudo-labels in the training dataset, on independent benchmarks
(Supplementary Figs. 3–5). These results suggest that the deep
learning approach is able to successfully learn and generalize
when presented with sufficiently large datasets using weak
supervision.

Yet, there still remain significant challenges for somatic variant
calling. As our independent benchmarks have demonstrated, indel
calling remains a significant challenge for all existing callers. Notably,
we found in our experiments that indel calling benefited from
additional training samples more than SNV calling, since indels
occur at lower rates than point mutations and are also more difficult
to pseudo-label accurately (see the “Methods” section). As additional
tumor datasets become available, VarNet could leverage more
training data through weak supervision or potentially pseudo-labels
generated by VarNet itself (self-training) to improve indel calling
performance. This self-training technique has been successfully

Fig. 5 Inference of model activation. a VarNet encoding (base channel) of an SNV on chromosome 10 in MBL. The candidate position is repeated 5× in
both the normal and tumor image. Variant alleles are visible at the candidate site in the tumor sample image. b Heatmap visualization showing ‘pixels’ in
the base channel most important to VarNet’s deep learning model. VarNet has identified variant alleles at the candidate site in the tumor. Pixel-wise
importance scores were computed using Guided Backpropagation11.
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exploited by other deep learning approaches for biological problems,
e.g. AlphaFold213.

In conclusion, we present an accurate method for somatic
variant calling, demonstrating how a scalable deep learning
approach could augment and potentially supplant human-
engineered features and heuristic filters in somatic variant calling.

Methods
Training data. Training data was generated using WGS tumor data from regional
hospitals and research institutes including National University Hospital Singapore,
National Cancer Centre Singapore, Genome Institute of Singapore as well as TCGA
(https://www.cancer.gov/tcga). All samples in training cohorts were obtained with
written informed consent from patients. Analysis of local samples was approved by
the institutional review boards at National Cancer Center Singapore and National
University Hospital Singapore. The data repository included 356 matched tumor/
normal samples across seven cancer types i.e., lung, thyroid, colorectal, sarcoma,
gastric, liver, and lymphoma (see Supplementary Table 6). The gastric14 and liver15

cancer cohorts were obtained from previously published studies after signing data-
use agreements. Samples were sequenced using Illumina HiSeq (Paired-End,
medium depth 50–150×) and processed by the bcbio-nextgen16 pipeline. Reads
were aligned to GRCh37 using BWA-MEM17 followed by marking and removal of
duplicate reads. GATK318 with local realignment around indels was used for post-
processing.

We generated pseudo-labels using SMuRF, an ensemble somatic mutation
caller3. Ensembling multiple (noisy) labels is a theoretically justified19 and
practically useful approach for weakly supervised learning20. The bcbio-nextgen
framework was used to generate somatic variant calls using four callers: MuTect21,
Freebayes somatic21, VarDict22, and VarScan23. Variant and auxiliary features

generated by these callers were fed to SMuRF, which makes predictions using its
random forest classifier.

A total of 2.5 million and 2.1 million training data points were generated for
SNV and indel model training, respectively. Fewer indel sites were used for training
as indels are generally less common in tumors than point mutations. Both SNV and
indel training sets were class-balanced to contain equal numbers of mutated and
non-mutated sites (non-mutated sites significantly outnumber mutated sites in any
tumor). Calls made by SMuRF were chosen as mutated sites while sites that were
not called by SMuRF but called by at least one of the four callers, were chosen as
non-mutated sites. We reasoned that this approach would make the classification
task more challenging and yield more discriminative information when training
VarNet.

Cancer-type bias and training set size. We tried to balance the trade-off between
downsampling over-represented cancer types (e.g. colorectal cancer) to reduce bias
and maintain the overall size of the training set. While down-sampling over-
represented cancer types in the SNV training set improved the generalization
performance of the SNV model, the indel model benefited from all available
training data without balancing cancer types as indels are typically far less frequent
than SNVs. Moreover, pseudo-labels for indels are expected to contain more errors
than SNVs since variant callers are typically less accurate for indels. Larger training
sets can alleviate this label noise when training machine learning models.

Input encoding. For each candidate mutation site, aligned reads are encoded in an
image-like representation with features including base, mapping quality, base
quality, and strand bias; the reference base is encoded in a separate channel. Each
base is assigned a distinct numerical value; deleted bases are also encoded by a
unique numerical value different from that of A/T/G/C. Insertions are encoded in-
place with adjustments to the reference base channel since inserted bases do not
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have corresponding loci in the reference. As most short-indels are <10 bp, indels no
longer than 35 bp are encoded to fit within the image. Normal and tumor images
are encoded adjacently (Fig. 1b). For each site, an input tensor (SNV: (100,70,5),
indel: (140,150,5)) encodes the candidate as well as the surrounding sequence
context in both tumor and normal so the model is able to learn relevant mutational
signatures (Fig. 5a). The candidate site is repeated 5× in the SNV input-encoding to
amplify the signal at the candidate mutation site. This is not done for indels as it
would affect input-encoding width due to their variable length. The SNV model
uses up to 100 overlapping alignments while the indel model can use up to 140. If
read coverage exceeds this, alignments are randomly sampled.

Deep-learning model and training. After experimentation with multiple archi-
tecture designs, we designed a convolutional neural network (ConvNet) for SNV
calling while the InceptionV3 architecture was used for indel calling. The SNV
calling model is composed of a convolutional neural network with 10 convolutional
blocks each containing convolution, ReLu activation, and Batch Normalization24

layers. Two average-pooling layers are used to downsample information between
blocks. Convolutional layers are followed by three densely connected (comprising
256, 128, and 64 units) layers that are followed by a sigmoid output layer that
computes the probability of mutation. There are ~3.5 million trainable parameters
in the SNV model. For indel calling, a larger model, Inceptionv325, was used. Both
models were trained with the Adam26 optimizer with an initial learning rate of 1e
−4 and a mini-batch size of 32. Tensorflow27 was used to train models on a Nvidia
Titan-X GPU.

Genome pre-filtering. VarNet takes as input binary alignment map (BAM) files of
matched tumor–normal pairs. For new samples, as most sites in the sample are
unlikely to be mutated (e.g. contain no variant alleles), VarNet first filters positions
that have a very low likelihood of being a somatic mutation (Supplementary
Tables 1 and 2). The goal of this pre-filtering is to reduce computation cost while
retaining high sensitivity for mutated sites (Supplementary Tables 3 and 4). After
filtering, candidate sites are processed using the trained deep learning models.
VarNet also accepts browser extensible data (BED) files of genomic regions to
restrict mutation calling and filtering, which is useful for Exome sequencing data.

Germline variant filtering. VarNet performs germline variant filtering, without
local re-assembly and haplotype determination, of its somatic variant callset to
remove calls with high likelihood of being germline variants, i.e., variant alleles
with significant (>10%) representation in the normal sample. VarNet scans the
neighboring 10 bp window around each site in its somatic callset to identify sus-
pected germline SNPs and short-indels. VarNet then filters those somatic muta-
tions that overlap or are within one base pair of an identified germline SNP or
indel. This filtering procedure is performed as post-processing of the somatic
callset, hence, its computational cost is minimal with sensitivity comparable to that
of using a standalone germline variant caller.

Test datasets and in silico dilutions. Benchmark datasets, MBL and CLL7,
COLO8298, DREAM tumors10 were processed similarly to the training data. The
SEQC2 reference sample9 was aligned to GRCh38 and processed using GATK4.
MBL and CLL samples were downsampled from their original high read depths
(~300×) to commonly used whole-genome sequencing read depths (~100×). For
benchmarking callers on the SEQC2 reference sample, we used a Illumina HiSeq
sample (WGS_IL_N_1,WGS_IL_T_1; https://sites.google.com/view/seqc2/home/
sequencing) and restricted our evaluation to the high confidence regions estab-
lished by the consortium. The MBL tumor and normal samples were further
subsampled and merged using SAMtools28 at various proportions to simulate
distinct tumor purity levels.

Performance metrics. We have reported precision-recall curves for all bench-
marks, where precision (positive predictive value) refers to the percentage of pre-
dicted mutations that are correct, and recall refers to the percentage of true
mutations that were correctly identified. We varied scores produced by each caller
(VarNet’s Score, Strelka2’s SomaticEVS, Mutect2’s TLOD, Freebayes’ ODDS,
NeuSomatic’s Score, Varscan’s SSC) to generate precision-recall curves for each
method. We have also reported F1 scores, which is the harmonic mean of precision
and recall.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Sequence data for all benchmark samples are from previously published studies. The
MBL data are available in the European Genome-Phenome Archive (EGA) under
accession code EGAD00001001859, the CLL data are available in EGA under accession
code EGAD00001001858, the COLO829 data are available in EGA under accession code
EGAD00001002142, the SEQC2 data are available in the Sequence Read Archive (SRA)

under accession codes SRX4728512 and SRX4728509. The first three ICGC-TCGA
DREAM Somatic Mutation Calling Challenge synthetic samples are available from SRA
under accession codes SRX570726, SRX1025978, and SRX1026041. The remaining
synthetic samples, i.e., DREAM4 and DREAM5, are available upon request through the
ICGC Data Access Compliance Office (https://daco.icgc-argo.org/). Sequence data for the
gastric cancer training cohort are from a previously published study and available from
EGA under accession code EGAD00001000782, the liver cancer training cohort is also
from a previously published study and available upon request through Genomic Data
Commons (GDC) [https://portal.gdc.cancer.gov/projects/TCGA-LIHC] (instructions to
obtain access can be found here: https://gdc.cancer.gov/access-data/obtaining-access-
controlled-data). Sequence data for the remaining training cohorts, i.e., sarcoma,
lymphoma, colorectal, thyroid, and lung, are available upon request due to a lack of
patient consent to deposit in a repository. Requests for access will be processed within
1 month subject to the signing of a data-use agreement (e-mail skanderupamj@gis.a-
star.edu.sg), access will be provided for the duration of the project requiring the data.
Source code is described in the “Code availability” section. Source data for figures and
tables are provided with this paper. Source data are provided with this paper.

Code availability
VarNet is available as a Python package at https://github.com/skandlab/VarNet. The
results in this paper were based on VarNet v1.1.029. VarNet relies on NumPy30,
Tensorflow31, Pysam (https://github.com/pysam-developers/pysam), pandas32,33,
Pybedtools34,35, and Joblib (https://github.com/joblib/joblib). A Docker image containing
all required libraries is also available, described in the repository. Computational
requirements are reported in Supplementary Table 5.
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