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Abstract

Parietal epithelial cells (PECs) are crucially involved in the pathogenesis of rapidly progressive glomerulonephritis (RPGN) as
well as in focal and segmental glomerulosclerosis (FSGS). In this study, transgenic mouse lines were used to isolate pure,
genetically tagged primary cultures of PECs or podocytes using FACsorting. By this approach, the morphology of primary
glomerular epithelial cells in culture could be resolved: Primary podocytes formed either large cells with intracytoplasmatic
extensions or smaller spindle shaped cells, depending on specific culture conditions. Primary PECs were small and exhibited
a spindle-shaped or polygonal morphology. In the very early phases of primary culture, rapid changes in gene expression
(e.g. of WT-1 and Pax-2) were observed. However, after prolonged culture primary PECs and podocytes still segregated
clearly in a transcriptome analysis - demonstrating that the origin of primary cell cultures is important. Of the classical
markers, synaptopodin and podoplanin expression were differentially regulated the most in primary PEC and podocyte
cultures. However, no expression of any endogenous gene allowed to differentiate between the two cell types in culture.
Finally, we show that the transcription factor WT1 is also expressed by PECs. In summary, genetic tagging of PECs and
podocytes is a novel and necessary tool to derive pure primary cultures with proven origin. These cultures will be a powerful
tool for the emerging field of parietal epithelial cell biology.
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Introduction

In recent years, major advances in our understanding of the

function and biology of glomerular parietal epithelial cells (PECs)

have been made. In particular, PECs play a major role in

glomerular physiology and diseases. First, it has been shown that in

murine kidney development about 10% of the podocytes are

recruited from PECs and/or transitional cells located at the

vascular stalk of the glomerulus [1]. Podocytes are unable to

undergo complete cellular division, and a loss of a critical number

of podocytes is sufficient to trigger FSGS [2,3]. PECs undergo

cellular division throughout life [4] and are in direct continuity

with podocytes at the vascular stalk. For this reason, it has been

proposed that podocytes can be repopulated from PECs also in

adult mammals [1,5]. More recently, a crucial role of PECs has

been shown in two major glomerular disease entities. Early cellular

crescents in rapid progressive glomerulonephritis are formed

exclusively by glomerular epithelial cells (PECs and podocytes)

[6,7]. Activated PECs have been observed also within the sclerotic

lesions in patients affected by focal and segmental glomeruloscle-

rosis (FSGS). Within these lesions, activated PECs deposit matrix

changing the traditional concept about this disease [8,9]. These

findings have been made possible by the development of

transgenic tools and mouse lines, that allow the specific

manipulation of PECs in vivo [1]. Genetic tagging and lineage

tracing are powerful tools to study the behavior and physiology of

a specific cell type in vivo or to prove the origin of specific cells in

development or in a specific disease model. A major breakthrough
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for podocyte biology has been triggered by the generation of

podocyte-specific transgenic tools [10–12] but the generation of

podocyte cell lines, which recapitulate the phenotype in vivo as

closely as possible (for review see [13,14]) proved to be equally

important.

An immortalized cell line derived from murine PECs has

previously been described [15]. However, so far no reliable

method to determine the origin of glomerular epithelial cells

existed. In this study, specific genetic tagging was used to

overcome this problem.

Results

Primary cultures of genetically tagged glomerular
outgrowths

In order to trace the origin of cellular outgrowths, parietal cells

were specifically and irreversibly labeled by administration of

doxycycline (Dox) in female triple transgenic PEC-rtTA/LC1/

R26R mice (Fig. 1A). In previous studies, we have shown that

approximately 70% of parietal cells undergo Cre recombination

and activate constitutive expression of beta-galactosidase in this

mouse model. No other glomerular cells are labeled, specifically no

podocytes [1,7].

After a washout of at least 7 days, capsulated glomeruli were

isolated and subjected to culture. Cellular outgrowths emerged

after 4–7 or after 7–10 days using EGM-MV or RMPI media,

respectively. Most of the cells were of a spindle-shaped or

squamous morphology with multiple lamellipodia and a high

proliferative activity (Fig. 1B). As shown by X-gal stainings, the

majority of cells emerging from the capsulated glomeruli were

genetically labeled parietal cells (Fig. 1C, D). Some beta-gal-

negative cells showed a similar morphology to beta-gal positive

PECs, most likely representing unlabeled parietal cells. Primary

parietal cells conserved their morphology at least during the first

six passages of culture in EGM-MV (Fig. 1E, passage 6, P6). When

co-culturing genetically tagged parietal cells with outgrowths from

decapsulated glomeruli (i.e. presumptive podocytes), the two cell

types showed a different and characteristic morphology in the

majority of cases (Fig. 1F). Genetically tagged primary PECs

predominantly showed a spindle-shaped or squamous (polygonal)

morphology (similar to PECs in vivo) while untagged presumptive

primary podocytes were mostly larger in size and formed multiple

intracytoplasmic extensions radiating from the nucleus into the

periphery (Fig. 1F, arrowheads). As shown in Video S1 and

representative stills (Fig. 1G), parietal cells transition between the

spindle-shaped and polygonal phenotype in culture.

Morphology of primary podocytes
In order to analyze primary podocytes in more detail, primary

cellular outgrowths were generated from triple transgenic Pod-

rtTA/LC1/R26R mice. In these mice, more than 70% of the

podocytes had been specifically labeled by transient Dox

administration as described above (Fig. 1H) [7]. Using X-gal

stainings on primary outgrowths, it was verified that more than

50% of the primary podocytes exhibited the morphology described

above (large cells with multiple intracytoplasmic extensions, i.e.

thickenings, Fig. 1I, J). In the early primary outgrowths, the

remaining podocytes also showed a more spindle-shaped mor-

phology and smaller size, similar to parietal cells (Fig. 1I, arrow).

Derivation of primary cultures from podocytes or parietal
cells

Specific genetic labeling allowed, for the first time, the

generation of primary parietal cells or podocytes using FACS cell

sorting (Fig. 2). In brief, either podocytes or parietal cells were

genetically labeled in triple transgenic mice by administration of

Dox for 14 days as described above (see Figs. 1H and A,

respectively). After a washout period of 7 days, de-capsulated or

capsulated glomeruli were prepared from female Pod-rtTA/LC1/

R26R or PEC-rtTA/LC1/R26R mice, respectively. Glomerular

preparations were .90% pure, as verified by phase contrast

microscopy (Fig. 2A). Glomerular preparations were cultured for

7–14 days to obtain primary cellular outgrowths. About 50625%

or 20%615% of primary outgrowths were derived from the

podocyte or parietal cell lineage, respectively. This was verified by

enzymatic staining for the genetic marker beta-galactosidase

(Fig. 2B,C). Labeling frequency was lower in parietal cells, because

of the more prominent mosaicism in the parietal mouse (PEC-

rtTA [1,7]). Single-cell suspensions of primary cultures were

treated with fluorescein di-beta-D galactopyranoside (FDG), which

is hydrolyzed by beta-galactosidase (beta-gal) into a fluorescent

product, and subjected to FACS sorting. The target cells could be

identified as a specific distinct cell population (Fig. 2D–D0, E–E0

‘‘target cells’’). In podocyte preparations, increased background

fluorescence was noted in the negative cell population if the cells

were suspended in HBSS instead of RPMI (Fig. 2D9 and D0,

arrows). Nevertheless, both populations were still clearly distinct

from each other even when using HBSS. After FACS sorting, the

cells remained viable. In general, about 2–56105 cells derived

from podocytes and 2–56104 cells derived from parietal cells were

obtained per adult mouse (as verified in a post-sort FACS analysis).

After six passages in culture, we could not find any evidence for

non-labeled contaminating cells. Of note, when culturing primary

podocytes in EGM-MV media at low cellular densities, their

characteristic morphology (large cells with intra-cytoplasmic

extensions) remained preserved even after more than six

(Fig. 2F–G9) or nine passages (not shown). Similarly, the vast

majority of cells were beta-gal positive as shown by metabolic

labeling with FDG and subsequent FACS analysis (Fig. 2H, I,

gray, negative control without FDG). After 9 passages in culture,

primary cultures were still virtually free of non-labeled cells (not

shown).

Transcriptome analysis of primary podocyte and parietal
cell cultures

Two independent primary podocyte and parietal cell prepara-

tions were characterized on a genome-wide scale after six passages.

To this end, the transcriptomes were determined by microarray

analysis (see File S1 for primary data). To investigate the influence

of different media, both cell preparations were cultured either in

RPMI+10% FCS or EGM-MV+20% FCS. Thus, eight tran-

scriptomes were determined in total. Principle component analysis

(PCA) was used to identify the major source of variation in gene

expression between the eight transcriptomes (Fig. 3A). The largest

variance (47.8%) was explained by the difference in gene

expression between the two cell types (principle component 1,

PC1, between podocytes versus PECs). On the other hand, the two

culture media accounted only for 11.8% of the total variance

(PC2). These results indicated that primary cultures of PECs and

podocytes retained significant differences in gene expression

depending on their origin. The type of culture medium

contributed only a minor influence to the similarity or dissimilarity

between primary podocyte and PEC cultures - although the media

influenced significantly the morphology of primary podocytes as

shown above.

Overall, expression of 2,507 genes out of the 22,237 monitored

genes differed significantly among the eight transcriptomes.

Cluster analysis of the significantly differentially expressed genes

PECs and Pods with Proven Origin
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confirmed the segregation of primary cultures with respect to the

origin of the cells (podocyte vs. PEC) and – to a lesser extend – to

culture media (RPMI+10% FCS vs. EGM-MV+20% FCS)

(Fig. 3B).

As shown in File S1, the transcriptomes were analyzed to

identify genes that were differentially regulated between primary

podocytes and PECs and which were not significantly influenced

by the media EGM-MV and RPMI (i.e. by less than a factor of 2).

Primary podocytes expressed relatively high mRNA levels of

biglycan, RhoGTPase activating protein 28, podoplanin, integrin

beta V, synaptopodin and LIM homeobox transcription factor 1

beta. In vivo, many of these transcripts are expressed in a podocyte-

specific fashion (for reference see www.proteinatlas.org [16]).

Similarly, when evaluating the expression pattern of PEC-specific

transcripts, several genes were identified which were also expressed

by PECs in vivo, while podocytes were negative (i.e. cadherin-3,

Figure 1. Cell lineage tracing of cellular outgrowths. A–E. Outgrowths from isolated capsulated glomeruli of PEC-rtTA/LC1/R26R mice are
predominantly derived from genetically tagged parietal cells. A. Genetic map of triple transgenic PEC-rtTA/LC1/R26R mice (cPodxl, rabbit podocalyxin
promoter; rtTA, reverse tetracycline transactivator; Dox, doxycycline). B. Phase contrast image of cellular outgrowths from two capsulated glomeruli.
C. Cellular outgrowths are derived from parietal cells as shown by X-gal staining (arrowhead). Within the glomerulus, magnetic beads used for
isolation are still visible. D. Genetically tagged parietal cells at later time points (X-Gal staining, after 7 days of culture). E. After six passages, genetically
tagged parietal cells show a spindle-shaped morphology (arrows; X-Gal crystals, arrowheads). F. A mixed culture of untagged primary podocytes and
genetically tagged primary parietal cells was established to compare the morphology of the two cell types. Beta-gal-negative podocytes formed
mostly larger cells (arrowheads) compared to beta-gal-positive parietal cells, which were mostly spindle-shaped (arrows, X-gal staining). G. Stills from
time-lapse video (Video S1, seconds indicated on lower right, 1 sec. = 75 min. capture time) of pure cultured parietal cells (see below). Arrowhead
indicates a cell transitioning between spindle-shaped and polygonal morphology. H–J. Cellular outgrowths from decapsulated glomeruli of
genetically tagged Pod-rtTA/LC1/R26R mice (after 7 or 10 days). H. Genetic map of the transgenic mice. I–J. In most cases, primary podocytes (blue)
show a distinct morphology (larger cell body with prominent cytoplasm, arrowhead). For comparison, other cells without a genetic tag can be seen
(J, arrow).
doi:10.1371/journal.pone.0034907.g001

PECs and Pods with Proven Origin
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Figure 2. Generation of primary cultures of murine podocytes or parietal cells. A. First capsulated or decapsulated glomeruli were purified

PECs and Pods with Proven Origin
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using magnetic beads (arrow with tails, .90% purity), to prepare primary mixed podocyte or parietal cell cultures respectively. For direct comparison,
a capsulated glomerulus (arrows) is shown next to a decapsulated glomerulus (arrowheads). B, C. After 7–14 days of culture in EGM-MV media,
primary outgrowths were obtained and stained for the genetic marker (X-gal). D, E. Next, suspensions of primary cells were treated with a
luminescent substrate for beta-galactosidase (‘‘labeled’’, D9, E9) or not (controls, D, E) and were FACS-sorted using the indicated gate (‘‘target cells’’).
In the example shown, 35,2% of the cells were defined as podocytes (D0) and 6.6% of the cells were defined as parietal cells (E0). F, G. The purity of
enriched primary podocytes (F, F9) and parietal cells (G, G9) was evaluated after six passages in culture. Staining for the genetic marker beta-gal (X-gal)
revealed that virtually all of the cells were either derived from podocytes or parietal cells (merged images: phase contrast+X-gal stainings). H, I.
Similarly, in a FACscan analysis, virtually all cells were positive for the genetic tag beta-galactosidase (as revealed by metabolic labeling with FDG). In
this representative analysis, 97.1% and 99.4% of the primary podocytes or PECs were defined as beta-gal positive, respectively.
doi:10.1371/journal.pone.0034907.g002

Figure 3. Transcriptome analysis of primary podocyte and PEC cultures. A. Eight transcriptomes were determined from two independent
primary podocyte cultures and two independent primary PEC cultures grown in two different media (EGM-MV+20% FCS or RPMI+10% FCS),
respectively. Transcriptomes were subjected to principal component analysis. PEC cultures (red spheres) are separated from podocyte cultures (blue
spheres) along the axis of principle component 1 (PC1), which accounts for 47.8% of the overall variance in gene expression. Cells cultured in RPMI
(light red and light blue spheres) segregate from those cultured in EGM-MV (bright red and bright blue spheres) along the axis of PC2, accounting for
11.8% of the variance. B. Primary podocyte and PEC cultures can also be clearly distinguished by cluster analysis of 2,507 significantly differentially
regulated genes. C. Differential expression of the gene mRNA transcripts cadherin-3, EPH receptor A7, ladinin and scinderin in primary PEC cultures
correlated with preferential expression in PECs versus podocytes in human kidney in vivo (arrowheads; images from www.proteinatlas.org [16]). D.
Expression levels of selected genes in primary podocyte and PEC cultures. Expression levels are given as mean logarithmic values to the base 2 of
arbitrary intensity units.
doi:10.1371/journal.pone.0034907.g003

PECs and Pods with Proven Origin
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EPH receptor A7, ladinin and scinderin, www.proteinatlas.org,

Fig. 3C). This indicated that some characteristic protein

expression patterns remain preserved in primary PEC cultures.

Next, expression levels of selected genes were analyzed, which

have been implicated in discerning primary podocyte and PEC

cultures (Fig. 3D). Podocyte as well as PEC cultures expressed

caveolin-1, claudin-1, Pax2, but not podocin (Nphs2) or nephrin

(Nphs1 with a log(2) expression value of <5.5). The expression

levels of these genes were somewhat similar between podocyte and

PEC cultures. A differential expression was observed in primary

podocyte cultures versus primary PECs for synaptopodin and

podoplanin, and also for WT-1 although to a lesser extent

(Fig. 3D).

Characterization of primary cell cultures
Primary cell cultures were characterized in more detail by

immunohistology and immunoblotting. Most importantly, it was

verified that primary parietal cells did not express endothelial or

mesangial cell markers (von Willebrandt factor, vWF; Fig. 4A, A9

or alpha-SMA; Fig. 4B, B9, respectively). As already indicated by

transciptome analysis, the parietal marker claudin-1 was expressed

by PECs (Fig. 4C, C9) and confirmed by immunoblotting (Fig. 4F).

Claudin-1 expression was also noticed in an immortalized

podocyte cell line IHPC when grown under non-permissive

conditions (38.5uC, no INF-gamma) and also in primary podocytes

(not shown). Caveolin-1, a second parietal cell marker, was also

expressed by primary parietal cells as detected by immunofluo-

rescence (Fig. 4D, D9) or immunoblotting (Fig. 4G). Expression of

caveolin-1 was also detected in lysates of primary podocytes as well

as of IHP cells under non-permissive conditions. Similar to our

results of the transcriptome analysis, expression of synaptopodin

was significantly higher in podocytes compared to PECs after six

passages in culture (Fig. 4E, E9). No de novo expression of podocin

was detected by immunoblotting in PECs (Fig. 4H) and podocin

expression was down regulated after six passages of culture in

primary podocytes and in IHPC cells (again consistent with our

transcriptome analysis). Finally, differential expression of podo-

planin was verified by immunoblotting lysates of primary PECs

and podocytes after six passages in culture. Consistent with our

transcriptome analysis, podoplanin was differentially expressed in

primary podocytes compared to PECs.

WT-1 and Pax2
Transcription factors WT-1 and Pax2 are considered to play a

crucial role in renal development and are differentially expressed

in PECs and podocytes [17]. So far, WT-1 has generally been used

as a podocyte marker. To determine the expression pattern of

these two transcription factors, lysates from primary PECs or

podocytes were prepared after FACS sorting and subjected to

SDS-page and immunoblotting. As shown in Fig. 5A, Pax2 was

strongly expressed in primary PECs (arrow) – similar to PECs in

vivo. Interestingly, a weaker band was also detected in primary

podocytes. Endothelial cells (HUVEC) were used as negative

controls. After six passages, Pax2 was expressed in primary PECs

but also in primary podocytes (Fig. 5B). Persistent nuclear Pax2

expression was also confirmed by immunofluorescence (Fig. 5C).

The transcription factor WT-1 was expressed already in primary

podocytes, as shown by immunoblotting (Fig. 5D). Notably, WT-1

was also expressed in primary PECs (Fig. 5D). Lysates of HUVEC

were used as negative controls. After six passages, primary PECs

and podocytes still expressed significant levels of WT-1 within the

nuclei (Fig. 5E). An immortalized podocyte cell line, IHPC, was

used as positive control (Fig. 5E0). These results were nicely

corroborated by our transcriptome analysis of Pax2 and WT-1

(Fig. 3C). To test if WT-1 is also expressed in parietal cells in vivo,

immunohistological stainings from normal mouse kidneys were

performed using two different antibodies (ab) and renal tissues of

different species (Fig. 5F–I). As described previously, a significant

nuclear staining within the podocytes was noticed (arrows).

However, the nuclei of parietal cells were also positive for WT-1

– albeit to a lesser extent (arrowheads). No WT-1 expression was

observed within proximal tubular cells lining Bowman’s capsule

(white arrow). Similar results were obtained in renal tissues from

mice with a mixed (F, F9) or Sv129 genetic background (G), from

Wistar rats or humans (H–I). It was concluded, that WT-1 is also

expressed by parietal cells in vivo.

Analysis of primary cellular outgrowths from
decapsulated or capsulated glomeruli

In order to analyze the differentiation status of very early

primary outgrowths from isolated glomeruli in more detail,

parietal cells (PECs) or podocytes were specifically labeled by

transient expression of histone-eGFP (Fig. 6). Upon administration

of Dox using a bigenic system (PEC- or Pod-rtTA/tetO7-

Hist1H2BJ/GFP), the nuclei of parietal cells were loaded with

histone-eGFP, a protein with a very long half-life [18] (Fig. 6A).

With this labeling, double fluorescent stainings could be

performed. In addition, the intensity of the eGFP labeling

correlates inversely with the number of cellular divisions, since

no additional expression of histone-eGFP occurred in the absence

of Dox. Nuclear eGFP labeling is lost entirely in proliferating cells

after more than six cellular divisions (own observations).

Early cellular outgrowths were analyzed in primary PECs using

the histone-eGFP labeling method. A generalized expression of

Pax2 was observed in early cellular outgrowths (for a represen-

tative example see Fig. 6A9). Pax2 expression was higher in eGFP-

labeled primary PECs (positive correlation between eGFP and

Pax2 fluorescent intensities). WT-1 was also expressed at lower

levels in primary PECs in culture (Fig. 6C).

When analyzing Pax2 expression in primary podocytes, a de-

novo expression was observed in early cellular outgrowths

(Fig. 6D). Primary podocytes with high eGFP intensities and

located close to the decapsulated glomerulus did not express

detectable levels of Pax2 (Fig. 6D, long white arrows). However, a

weak de novo expression of Pax2 could be observed in podocytes

with weak eGFP labeling (Fig. 6D, short white arrows). WT-1

expression on the other hand was down regulated in primary

podocytes but WT-1 expression persisted in eGFP low or negative

cells (Fig. 6E).

Discussion

In the present work, we describe four major findings. First, we

have used the technology of irreversible genetic tagging to

unequivocally determine the origin of cellular outgrowths from

isolated glomeruli in culture. With this technology, we could

overcome a long known fundamental issue that almost all cells

undergo significant changes of their phenotype in culture so that

their origin can no longer be determined with certainty. Even with

our improved protocol, it is almost impossible to enrich for purely

decapsulated glomeruli using the conventional techniques avail-

able. It has been shown, that even a fraction of only 5–10% of

capsulated glomeruli are sufficient to obtain primary cultures of

cells that originated most likely from parietal cells [3]. Further-

more, it was well documented that remnant parietal cells located at

the vascular stalk emerge even from decapsulated glomeruli [3,19].

In this study, the primary cultures retained a distinct and highly

reproducible expression profile depending on their origin even

PECs and Pods with Proven Origin
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after six passages in culture. It was previously shown, that

podocytes loose expression of some specific markers, such as

podocin or nephrin [14], as also confirmed in our study.

Interestingly, the influence of different media (either RPMI or

the growth-factor enriched EGM-MV) had only a minor influence

on the transcriptional profile. Of note, several gene transcripts

with differential expression between primary PEC and podocyte

cultures could be identified in this study, which are also

Figure 4. Characterization of the primary PEC lines. PECs were negative for the endothelial marker von Willebrand factor (vWT, A) and for
myofibroblast marker alpha-SMA (B). HUVECs (A9) or human dermal fibroblasts (B9) were used as positive controls. Polyclonal parietal cells were
positive for claudin-1 (C) and caveolin-1 (D). C9, D9. Negative controls were performed using isotype-matched irrelevant primary antibodies. E. A
significantly lower expression of synaptopodin was observed in parietal cells expressed even after six passages compared to primary podocytes (E9)
or an immortalized podocyte cell line IHPC (E0). The findings were confirmed by SDS-page with subsequent immunoblotting using lysates of parietal
cell cultures 2, 8 and 11 (F–H). Lysates of polyclonal primary podocyte cultures as well as of an immortalized podocyte cell line IHPC also showed
expression of claudin-1 and calveolin-1. No expression of caveolin-1 was observed in Hel-1, GDM or Set-1 cell lines (G). Equal loading was verified by
Ponceau S stain. H. Podocin expression is absent in primary PECs and down regulated in primary podocyte cells and in an immortalized podocyte cell
line IHPC. I. Podoplanin is differentially expressed in primary podocytes relative to primary PECs after six passages in culture (arrow), consistent with
mRNA expression analysis. Lysates of isolated glomeruli are used as positive control (H, I).
doi:10.1371/journal.pone.0034907.g004

Figure 5. Expression of podocyte marker proteins by primary parietal or podocyte cell lines. A. Lysates of primary PECs or podocytes
were subjected to immunoblotting for Pax2 expression. Primary PECs expressed significant amounts of Pax2, lower amounts were detected in
primary podocytes (arrow). Lysates of endothelial cells (HUVEC or glomerular endothelial cells) were used as negative controls. B. After six passages,
Pax2 was expressed in primary PECs and podocytes (arrow). Total kidney lysates were used as positive controls, endothelial cells were used as
negative controls. C, C9 In immunofluorescent stainings on primary PECs and podocytes after six passages of culture, Pax2 was expressed in a nuclear
fashion. Isotype-matched irrelevant antiserum was used as control (C9). D. Immunoblotting lysates of primary PECs or podocytes using ab sc192
showed that WT-1 is expressed in both cell types with significantly higher levels in primary podocytes (arrow). Lysates of endothelial cells were
negative for WT1. E. After six passages, WT1 was expressed both in PECs and podocytes in a nuclear fashion (immunofluorescent staining using ab
sc192). F. Parietal cells express low levels of WT1 also in vivo in mice with a mixed genetic background using ab sc846 (F, F9, arrowheads,
immunohistological staining). For comparison, a strong expression of WT-1 was detected in podocytes (arrows). No WT-1 expression was noted
elsewhere in the renal cortex, specifically not in proximal tubular cells (white arrowheads). G. Similarly, PECs expressed WT-1 also in other mouse
genetic backgrounds (Sv129; WT-1/PAS staining) H, I. PECs (arrowheads) expressed low amounts of WT-1 also in normal Wistar rats (H) and humans (I).
H9. Isotype matched controls were negative.
doi:10.1371/journal.pone.0034907.g005
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differentially expressed in vivo. Two of these might even be useful as

a marker for primary podocytes in culture (i.e. synaptopodin and

podoplanin). These results are very reassuring that primary

cultures with defined origin have the potential to be a useful

model to the field of glomerular biology.

Second, we could resolve the morphology of primary cells

originating from podocytes or parietal cells. Primary parietal cells

were spindle-shaped or squamous (polygonal, flat) cells forming

multiple lamellipoda. Podocytes showed two different morpholo-

gies: On the one hand, they formed large flat cells with

intracytoplasmic thickenings that extended in a radial fashion

from the nucleus into the periphery, so that the cells appeared

‘‘arborized’’. This morphology was characteristic for primary

podocytes, it was never observed in parietal cells and thus it can be

used to identify the origin of podocytes in culture – albeit only as a

positive marker since podocytes could also form a phenotype

similar to parietal cells, as described above. In time-lapse videos,

we could observe that the primary outgrowing podocytes may

switch from a PEC-like morphology to a Pod-like morphology and

vice versa (not shown). Mundel et al. has already shown that

Figure 6. Expression of Pax2 and WT-1 in cellular outgrowths of primary parietal cells and podocytes. Parietal cells were fluorescently
labeled in transgenic PEC-rtTA/(tetO)-HIST1H2BJ/GFP mice (A–C), which express histone-eGFP in a doxycycline-inducible fashion in parietal cells but
not in podocytes. After labeling of parietal cell nuclei was completed in living mice (genotypes are indicated on the right), the glomeruli were isolated
and the cellular outgrowths were analyzed. A–A0, eGFP labeled nuclei can be observed within the capsule of a glomerulus (black arrow). Labeled
cellular outgrowths can be observed (white arrows). Unlabeled cellular outgrowths – most likely podocytes - originate from a decapsulated
glomerulus (arrowhead). Pax2 is expressed within the nucleus by the majority of cellular outgrowths independent of their origin from parietal cells or
podocytes (A9). B, Control staining from the same experiment as in A using irrelevant primary antiserum. Background staining can be observed within
the three-dimensional structures of the glomeruli and outside the nucleus of some cells. C, Cellular outgrowths from capsulated glomeruli (black
arrow) express WT-1. Nuclear expression of WT-1 can be detected in all cellular outgrowths derived from GFP positive parietal cells (arrows). D,
Cellular outgrowths from decapsulated glomeruli of Pod-rtTA/Hist1H2BJ/GFP transgenic mice (black arrows) upregulate Pax2 expression. Pax2 is not
expressed within the nuclei of early podocyte outgrowths (white arrows with long tails). Pax2 expression is upregulated in podocyte-derived
outgrowths with lower nuclear histone-eGFP levels, presumptively because these cells have already undergone cellular divisions (white arrow with
short tail). Cellular outgrowths without histone-eGFP labeling (proliferating podocytes or parietal cells) express the highest levels of Pax2
(arrowheads). E, EGFP labeled podocyte-derived cells express WT-1 in a nuclear pattern (white arrow). EGFP negative (and presumably less
differentiated) cells express significantly less WT-1 (white arrowhead).
doi:10.1371/journal.pone.0034907.g006
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podocytes can be pushed towards the arborized Pod-like

phenotype by specific culture conditions [20]. In this study, we

could select for the characteristic morphology of cultured

podocytes using EGM-MV medium +20% FCS in combination

with low cell densities.

Our findings are consistent with the observations of other

investigators [3,19,21–23], who have already observed the distinct

cellular morphologies. Interestingly, these investigators have also

observed both morphologies emerging from glomeruli indepen-

dent of the presence of a capsule with PECs. Our study clarifies,

that primary podocytes may show different phenotypes and thus

provides an explanation for the results of the previous studies.

Third, our result allow to conclude that podocytes can undergo

repeated cellular divisions in vitro. Even after more than 35

passages, primary podocytes with proven origin proliferated in

culture. Primary parietal cells could also be kept in culture for

more than 35 passages and no obvious phenotypic changes were

observed after prolonged culture (not shown). We were able to

prepare individual clones of parietal cells by limited dilution (not

shown). In primary podocytes, subcloning using limited dilution

was not possible with these cells (not shown). Prolonged culture

was only performed as additional information on the proliferative

behavior of these cells. The characterizion of the cells was focussed

on the early passages (i.e. passage 6), which are relevant for

biological experiments. Podocytes are generally believed to be

terminally differentiated, post-mitotic cells, so that they are unable

to undergo complete cellular divisions under normal conditions

[24,25]. Some groups have observed that podocytes display only a

very limited mitotic capacity when subjected to culture [5], but so

far it has been impossible to trace podocytes in culture.

We and others have shown that podocytes participate in the

formation of cellular crescents in rapidly progressive glomerulo-

nephritis [6,7,26,27]. Cellular crescents are extracapillary prolif-

erations derived from podocytes and – potentially even more

important - from parietal cells. They contribute to loss of renal

function by blocking the tubular outflow of the primary urine [28].

In this context, our finding that podocytes can undergo repeated

cellular divisions in culture supports our previous findings in

proliferative glomerular diseases.

Forth, we show clearly that WT-1 is expressed by parietal

epithelial cells (PECs) in vivo as well as in vitro. When PECs are

subjected to culture, all PECs express WT-1 even shortly after

emerging from the glomerulus. In primary podocytes, WT-1 was

expressed at significantly higher levels but over time WT-1 was

down regulated to expression levels comparable to that of PECs –

even in podocytes with an arborized phenotype. Therefore, it was

concluded that WT-1 cannot be used as a podocyte-specific

marker gene.

We also observed that Pax2 is expressed de novo in primary

podocytes. After prolonged culture, podocytes as well as PECs

expressed similar levels of Pax2 similar to WT-1. In our hands, the

markers that were expressed at higher levels in podocytes were

synaptopodin and podoplanin. From these results, we conclude

that parietal cells and podocytes cannot be unambiguously

distinguished in culture using conventional markers.

Finally, this work establishes for the first time primary parietal

cell and podocyte cultures with proven origin using a reliable and

reproducible methodology. In addition to using genetic tagging of

the primary target cells, several additional methodological

improvements were implemented (e.g. an improved protocol to

isolate capsulated glomeruli).

Although changes of the phenotype occur in all cells in culture,

primary cell culture probably still mimics closest the situation in

vivo. FACS sorting of genetically labeled cells allowed the

preparation of primary cultures. These primary cellular prepara-

tions could be frozen and revitalized, so that these primary cells

are a significant novel contribution to the in vitro models of

glomerular research and have the potential to be a useful novel

experimental model for glomerular research.

Materials and Methods

Animals
All transgenic animals were housed under SPF-free conditions.

All procedures were approved by the German government officials

(LANUV NRW 8.87–51.05.20.09.251; 8.87–51.05.20.11.038,

total number of animals = 32). To induce the genetic labeling,

animals received doxycycline hydrochloride (Fargon GmbH&Co,

Barsbüttel, Germany) via drinking water for 14 days followed by at

least 7 days of washout as described [1].

Perfusion and isolating glomeruli
Mice were anesthetized using ketamin/rompun and perfused

via the left ventricle with magnetic beads (Dynabeads M450

Tosylactivated Lot: 472610 Invitrogen Oslo, Norway) diluted in

20 ml 0,9% NaCl. Kidneys were transferred into RPMI 1640

medium (Invitrogen) containing 1% penicillin/streptomycin and

cut into small fragments. To enrich for decapsulated glomeruli

these fragments were treated for 30 minutes at 37uC with 1 mg/

ml collagenase TypIV (49H11312, Worthington). This step was

omitted to enrich for capsulated glomeruli. The small kidney

fragments were gently sieved through a 100 mm strainer,

centrifuged and resuspended in PBS. The glomeruli were isolated

using a magnetic particle concentrator (DynaMag TM-2,

123.21D, Invitrogen).

FACS sorting
Capsulated or decapsulated glomeruli were isolated from

transgenic Pod-rtTA/LC1/R26R or PEC-rtTA/LC1/R26R

mice, respectively, and cultivated for 7–14 days in EGM-MV

media. After trypsinization, the cells were suspended in RPMI

1640 medium (21875 Invitrogen) +1% pen/strep (to reduce

fluorescence background) and treated for 1 minute at 37uC with

2 mM fluorescein di-ß-galactopyranoside (FDG, F1179, Molecu-

lar Probes). Subsequently the samples were diluted 10-fold with

RPMI media for further incubation on ice for 60 minutes. The

emission at 514 nm was detected using a BD FACSAria II cell

sorter. The sorted cells were cultured as described.

Cell culture
Primary parietal cells and podocytes were cultured in

RPMI+10% fetal calf serum (FCS) (Biowest Florida, United

States) or EGM-MV (Lonza Basel, Switzerland) +20% fetal calf

serum as indicated. EGM-MV is enriched for growth factors and

FCS to promote survival of primary cells in culture, it was used to

isolate human parietal cells by Ronconi et al. [1,5]. Cells were

passaged when 70–90% confluency was reached and were seeded

at 1–56105 cells/ml media. Primary cells should be propagated in

EGM-MV during the first three passages. Primary PECs can

subsequently be cultured in RPMI. HUVEC’s (human umbilical

vein endothelial cells and ihGEC (immortalized human glomer-

ular endothelial cells) were cultured in EGM-2 medium (cc-4176

EGM-2 SingleQuot Kit Suppl. & Growth Factors, Lonza). An

immortalized human podocyte cell line IHPC [29] was cultured in

VRAD Medium containing DMEM/F12 (Invitrogen) +10% fetal

calf serum, 1% pen/strep, 1% L-glutamat (Invitrogen), all trans

retinoic acid 1 mM and 25-hydroxycholecalciferol 1 nM (H4014,

Sigma-Aldrich, St Louis, MO, USA). 3T3 Mouse and human
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dermal fibroblasts were cultured in RPMI 1640 medium +10%

fetal calf serum, 1% pen/strep and 1% L-glutamine. COS7 cells

(green monkey kidney cells) were cultured in DMEM medium

(Gibco, Oslo, Norway) +10% FCS, 1% pen/strep and 1% L-

glutamine.

Beta-galactosidase assays
For enzymatic X-gal staining, the cells or glomeruli were fixed

with 2% glutaraldehyde in PBS supplemented with 1 mM MgCl2

and 0,02% NP40. After three wash with PBS, the samples were

incubated overnight at 28uC in a humidified atmosphere 1 mg/ml

X-gal, 5 mM potassium ferricyanide, 5 mM potassium ferrocya-

nide, and 2 mM MgCl2 in PBS, pH 7.8 and mounted (Immu-

Mount, Thermo Scientific, Waltham, MA). The images were

analyzed using Leica DMR X microscope (Leica Microsystem

GmbH Wetzlar, Germany) and collected with AnalySIS (Soft

Imaging System, Muenster, Germany).

Expression analysis
Two independent primary podocyte cultures and two indepen-

dent primary PEC cultures maintained in EGMV+20% FCS or in

RPMI+10% FCS were used for transcriptome analysis at passage

number 6. Three days after the last medium change, RNA was

isolated using Trizol (Invitrogen) followed by purification using the

RNA Clean-Up and Concentration Micro Kit (Norgen). RNA

quantity and purity was measured at 260/280/230 nm with a

Nanodrop photospectrometer (Thermo Scientific). RNA integrity

was assessed by using the Bioanalyzer 2100 (Agilent). Total RNA

(200 ng) was reverse transcribed into cDNA, amplified, and in vitro

transcribed to cRNA. Sense-strand cDNA was generated from

10 mg of purified cRNA using random primers, followed by

fragmentation and labeling using 5.5 mg of purified sense-strand

DNA. Biotinylated sense-strand DNA was then hybridized onto

the Affymetrix GeneChipH Mouse Gene 1.0 ST arrays for 16 h.

Arrays were washed and stained using the Fluidics Station 450.

Scanning was performed by Scanner 3000 7 G (Affymetrix); raw

CEL files were generated using the GCOS software. Data of the

eight microarrays were analyzed with JMP Genomics 4.0 (SAS

Institute Inc.) using the ENSG 14.0 custom CDF (Microarray Lab,

Dept. of Psychiatry/Molecular and Behavioral Neuroscience

Institute, University of Michigan, MI, USA). Data were log2

transformed, quantile-normalized and RMA background correct-

ed. Data points with large residuals (outliers) were filtered out,

using three iterations and a false discovery rate (FDR) of 0.05.

Multiple testing was done using ANOVA and a post-hoc t-test with

an FDR of 0.05, resulting in an adjustment of the p-value

threshold. In our study, eight transcriptomes, each containing

22,237 genes, were compared. Thus, at an overall FDR of 0.05,

individual p-values had to be lower than 0.00148 to be considered

statistically significant. Transcriptomes were deposited at the Gene

Expression Omnibus (GEO) database (Acc# GSE33714).

Immunofluorescence
Cells were fixed with either 220uC acetone or 3% paraformal-

dehyde followed by permeabilization with 0,3% TritonX. Cells

were incubated with primary antibodies and secondary antibodies

diluted in 2% bovine serum albumin in PBS for 60 or 30 minutes,

respectively. The following primary antibodies were used:

polyclonal mouse anti-synaptopodin antibody (1:100, 65294;

Progen, Heidelberg, Germany), polyclonal rabbit anti–von Will-

ebrand factor (1:100, A0082; DAKO, Glostrup, Denmark),

monoclonal mouse anti–alpha-smooth-muscle actin (1:100,

M0851, DAKO), polyclonal chicken anti-nestin antibody (1:40,

Abcam, Cambridge, UK), polyclonal rabbit anti-podocin antibody

(1:100, P0372 Sigma-Aldrich), polyclonal rabbit anti-caveolin1

antibody (1:50, sc894, Santa Cruz Biotechnology, California,

USA), monoclonal mouse anti-e-cadherin antibody (1:800,

BD610181, BD Bioscience, NJ, USA), monoclonal mouse anti-

pan-cadherin antibody (1:400, C1821, Sigma-Aldrich), polyclonal

rabbit anti- claudin1 antibody (1:50, ab15098-500, Abcam),

polyclonal rabbit anti-pax2 antibody (1:50, 716000, Invitrogen)

polyclonal rabbit anti-wt1 antibody (1:50, sc-192, Santa Cruz

Biotechnology), monoclonal mouse anti-GFP (1:100, 632381,

Clontech), polyoclonal rabbit anti-GFP (1:100, 632460, Clontech),

rabbit or mouse serum (Dianova). Secondary antibodies used

(Dianova): Cy2 rabbit anti-mouse (315-225-003 Lot. 58409), Cy3

goat anti-rabbit (111-165-003 Lot. 60256), Cy3 donkey anti-

chicken (703-165-155 Lot. 71533), DyeLight549 donkey-anti

mouse (1:200, 715-505-151), DyeLight549 donkey anti-rabbit

(1:200, 711-505-152), DyeLight488 donkey anti mouse (1:200,

715-485-151), DyeLight488 donkey anti rabbit (1:200, 715-505-

152). Nuclear staining HOECHST 33342 (Sigma Aldrich). The

stained cells on glass coverslips were mounted onto a glass slide

with Immumount (Thermo ScientificImmu-Mount). The stainings

were analysed using Leica DMR X microscope (Leica Micro-

system GmbH Wetzlar, Germany) and collected with AnalySIS

(Soft Imaging System, Muenster, Germany).

Immunoblotting
Cellular lysates were prepared by homogenization in RIPA

buffer (150 mM NaCl, 50 mM Tris-Cl, pH8, 1% NP40, 0,5%

deoxycholic acid, 0.1% SDS, 5% glycerol, 2 mM CaCl2, 10 mM

EGTA) including protease inhibitors (P8340, Sigma-Aldrich) on

ice. NuPAGE 4–12% bis Tris Zoom Gels (Invitrogen) were loaded

with 2–10 mg of protein per well. SDS page gels were transferred

onto nitrocellulose membranes (Amersham Bioscience), followed

by reversible Ponceau S staining (P7170 Sigma St Louis) to control

for loading and protein transfer. The membrane was blocked

overnight in 5% skimmed milk in TBST (7.7 mM Tris, 150 mM

SoNaCl, 0.5% Tween20) or Roti-Block (carl Roth GmbH), and

incubated with the indicated antibody diluted in 2% skimmed milk

or in Roti-Block or in 1% BSA in PBS. ECL or SuperSignal West

Femto Maximum Sensitivity Substrate (Thermo Scientific) was

used for detection in a Las-3000 Fujifilm machine.

List of primary antibodies (all polyclonal rabbit) anti-podocin

(1:2500, P0372 Sigma-Aldrich), anti-caveolin1 (1:500, sc894,

Santa Cruz Biotechnology), anti-claudin1 (1:500, ab15098-500,

Abcam), anti-pax2 (1:500, 716000, Invitrogen), anti-WT1 (1:500,

sc192, Santa Cruz Biotechnology) and the monoclonal Golden

Syrian Hamster anti-podoplanin (1:500, NB600-1015, Novus

Biologicals). Peroxidase labeled goat anti rabbit (Q0303 Vector

Laboratories Burlingame, CA, USA) was used as secondary

antibody (1:10000) and streptavidin, horseradish peroxidase

(1:10000, SA-5004 Vector Laboratories Burlingame, CA, USA)

as Biotin-avidin system.

Immunohistochemistry
Paraffin sections were deparaffinized and blocked for endoge-

nous avidin/biotin (Avidin/Biotin Blocking Kit, Vector Labora-

tories, Burlingame, CA) and peroxidase activity (3% H2O2).

Subsequently, the sections were incubated with rabbit polyclonal

anti-WT1 antibody (180) (1:100, sc846, Santa Cruz Biotechnol-

ogy, used for immunohistochemistry on mouse kidney sections) or

anti-WT1 antiserum (C-19) (1:100, sc192, Santa Cruz Biotech-

nology, CA, used for immunoblotting, IF of primary cells and for

immunohistochemistry on rat and human kidney sections). As a

secondary antibody, a biotinylated goat anti-rabbit was used

(Vector Laboratories). Detection was carried out with Vectastain
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ABC Kit (Vector Laboratories) with the use of peroxidase as a

label and 3-amino-9-ethylcarbazole as a substrate. Images were

acquired using an Olympus BX 41 microscope and AnalySIS

software.

Video microscopy
The glomeruli were plated in glass bottom dishes (Willco-dish

GWSt-5040) for four days. Phase contrast and epifluorescence

images were acquired using an Axiovert 200 microscope (Carl

Zeiss) equipped with a Plan-Neofluar 106/0.30 numerical

aperture objective. Images were recorded with a cooled, back-

illuminated charge-coupled device camera (Cascade 512B;

Princeton Instruments, Trenton, NJ) driven by IPLab Spectrum

software (Scanalytics, Fairfax, USA). Digital handling of the

images was done using IPLab Spectrum, ImageJ and Adobe

Photoshop 8.0 (Adobe Systems, USA). The Delay between frames

was 5 minutes. Phase contrast exposure time was 500 msec and

fluorescence exposure time was 500 or 750 msec. The video shows

15 frames per second, so that 1 sec. corresponds to 75 min.

capture time.

Supporting Information

File S1 Table A. ‘‘Podocyte-specific genes’’: List of differentially

regulated transcripts, for which the expression in EGM-MV and

RPMI did not differ by a factor of 2 or more in podocytes as well

as in PECs, calculated as podocyte/PEC ratio. Only ratios of .4

were included and sorted by ratio. Table B. ‘‘PEC-specific genes’’:

PEC/podocyte ratio, selected and sorted as described above.

(DOC)

Video S1 After FACsorting, cultured parietal cells were filmed

over a period of 70 hrs. (1 frame per 5 minutes). Cells can be seen

transitioning between spindel-shaped and polygonal morphologies

and undergoing complete cellular divisions. At the end of the

aquisition, cells were fixed and stained for beta-gal confirming that

all cells were derived from parietal cells (not shown).

(MOV)
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