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Abstract 

Lung adenocarcinoma (LUAD), the most common histological subtype of lung cancer(1, 2), is a 
disease of the elderly, with an average age of diagnosis of about 70 years of age(3). Older age 
is associated with an increased incidence of KRAS-driven LUAD(4), a particularly deadly type of 
LUAD characterized by treatment resistance and relapse. Despite this, our understanding of 
how old age shapes KRAS-driven LUAD evolution remains incomplete. While the age-related 
increase in cancer risk was previously ascribed to the accumulation of mutations over time, we 
are now beginning to consider the role of host biology as an independent factor influencing 
cancer. Here, we use single-cell RNA-Sequencing of KP (KrasG12D/+; Trp53flox/flox) LUAD 
transplanted into young and old mice to define how old age affects LUAD evolution and map the 
changes that old age imposes onto LUAD’s microenvironment. Our data demonstrates that the 
aged lung environment steers LUAD evolution towards a primitive stem-like state that is 
associated with poor prognosis. We ascribe this differential evolution, at least in part, to a 
population of rare and highly secretory damage-associated alveolar differentiation intermediate 
(ADI) cells that accumulate in the aged tumor microenvironment (TME) and that dominate the 
niche signaling received by LUAD cells. Overall, our data puts aging center stage in 
coordinating LUAD evolution, highlighting the need to model LUAD in its most common context 
and creating a framework to tailor future cancer therapeutic strategies to the age of the patient 
to improve outcomes in the largest and most vulnerable LUAD patient population, the elderly. 

Main 

The aging process results in widespread changes in the body at the molecular, cellular, tissue 
and systemic levels(5). Given that cancer progression is guided by the selective pressures that 
the tumor’s environment exerts(6) we first sought to characterize the consequences of old age 
in the lung. Gene Set Enrichment Analysis (GSEA) of bulk RNA-Sequencing (RNA-Seq) data 
comparing young and old mouse lungs(7) revealed distinct transcriptional profiles in aged lungs, 
with enrichment for pathways related to UV response and p53 signaling (Fig. 1A, table S1) 
indicative of the accumulation of damage that occurs as a function of age, and is in line with the 
increase in senescence (Fig. 1B) and DNA damage (Fig. 1C) observed in the aged lungs. GSEA 
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also revealed an enrichment in pathways related to immune function and inflammation, 
including NF-κB signaling (Fig. 1A, table S1), which aligns with an age-related imbalance in the 
proportions of immune cells, including CD4 T-cells, CD8 T-cells and NK cells (Fig. 1D and fig. 
S1A) in accordance with previous literature(8, 9) as well as with the age-induced increase in 
abundance of various cytokines present in bronchioalveolar lavage fluid (Fig. 1E). While 
epithelial and stromal cell proportions remain largely unaltered by old age (Fig. 1F and G,  fig. 
S1B), aged lungs displayed an increase in collagen abundance (Fig. 1H), which highlights that 
the function of the aged stromal cells is likely changed and is consistent with the age-related 
increase in respiratory diseases such as idiopathic pulmonary fibrosis(10). Together, this data 
combined with literature(8, 11, 12) establishes the aged lung environment as a markedly 
different milieu compared to a young lung and raises the question of whether these changes 
alter the evolution of LUAD (Fig. 1).  

To uncouple the involvement of age-driven cell-intrinsic changes from cell-extrinsic 
environmental selective pressures in LUAD, we optimized a syngeneic transplantation model 
(Fig. 2A and fig. S2). We injected lung cancer cells derived from the KP (KrasG12D/+; 
Trp53flox/flox)(13) genetically engineered mouse model (GEMM) of LUAD into WT C57BL/6 mice 
and allowed tumors to form in the lungs for 4 weeks (Fig. 2A). This model generated tumors 
with morphological(14) (fig. S2A) and transcriptional (fig. S2B and C) features similar to those of 
the KP GEMM(15), validating this transplantation system as an appropriate tool to study tumor 
evolution in different host mice. Moreover, unlike the autochthonous KP model, which upon 
induction promotes the recombination of pro-tumorigenic alleles in all AT2 cells(13), this 
transplantation model enables the interrogation of intratumoral and adjacent normal AT2 cells, 
which are a feature of human LUAD(16) and whose function significantly changes with 
aging(12, 17). Transplantation of KP cells into the lungs of young (5 – 6 months) and aged (19 – 
24 months) mice did not produce significant differences in tumor burden, number or grade(14) 
between age groups (fig. S2D to H). Given that advanced age is linked to reduced LUAD 
initiation(18), these findings suggest that while the aged microenvironment may be less 
permissive to de novo tumorigenesis, it does not impede the growth of already transformed cells 
(fig. S2D to H). This raises the intriguing possibility that tumor initiation occurs significantly prior 
to diagnosis, and the trajectory and evolution of LUAD is shaped by the aged microenvironment 
well before diagnosis.  

To understand if aging alters the molecular landscape or evolution of LUAD, we next performed 
single-cell RNA-Sequencing (scRNA-Seq) on KP tumors micro-dissected from young and old 
mice (Fig. 2A and fig. S3). 30,547 cells were sequenced and all the expected major cell types(8) 
were recovered by our scRNA-seq analysis (Fig. 2B and fig. S3A). Notably, among all major cell 
types identified within the TME, the epithelial cell compartment, which contains the malignant 
KP cells transplanted, showed the most striking age-based segregation according to 
Unsupervised Uniform Manifold Approximation and Projection (UMAP) based dimensional 
reduction (Fig. 2B and C). Subsequent Louvain clustering further confirmed age-related shifts in 
malignant cell cluster proportions, unveiling common and unique subpopulations across ages 
(Fig. 2D and E, table S2). Trajectory inference analyses using scVelo(19) and Monocle(20) 
unveiled distinct trajectories of KP evolution, all originating from the common cluster 2 (Fig. 2F 
and G). This cluster also showed the highest correlation with cultured parental KP cells, 
reinforcing its role as the evolutionary starting point (fig. S4A). This trajectory analysis revealed 
two main paths of KP evolution that segregate by age. On one hand, we observe the canonical 
path of LUAD evolution previously established in the KP autochthonous model(15), where KP 
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cells transitioned from cluster 2 to cluster 3, which then gives rise to terminal branches 6, 7 and 
8 whose predominance depends on the age of the lung TME (Fig. 2D to G). To define the 
properties of each cluster, we compared them to known modules of canonical KP evolution in 
the autochthonous model(21) (Fig. 2H). We observed that clusters enriched in young mice 
showed high degree of correspondence with the established KP modules compared to clusters 
mostly prevalent in old mice (Fig. 2H). For example, the young age-specific cluster 1 matches 
the AT1-like state identified in the KP GEMM (Fig. 2H and I), which has been recently shown to 
be a driver of drug resistance in the context of the autochthonous model(22). Cluster 6 
recapitulated several common states of KP evolution, including the high plasticity, mixed, and 
gastric-like states (Fig. 2H and I), while also expressing higher levels of epithelial lineage genes 
such as Sftpc, Epcam, Lyz2 and Nkx2-1 (fig. S4B and table S2). In contrast, clusters 7 and 8, 
which also arise through the canonical path of KP evolution, more predominantly match the 
mesenchymal states that evolve within the autochthonous model(22) (Fig. 2H and I). However, 
their proportions significantly differ depending on the age of the lung, with cluster 7 being more 
predominantly found in LUAD developing in the young lung, and cluster 8 in the old lung (Fig. 
2E). Strikingly, old age also drove the evolution of terminal branches 4 and 5 from cluster 2 
directly (Fig. 2D to G). Intriguingly, these cell populations did not resemble canonical KP clusters 
(Fig. 2H) nor did they strongly match any other cell type or lineage signatures in the body(23-25) 
(fig. S5), suggesting that LUAD developing in an aged lung deviates away from canonical KP 
evolution. Collectively, these data demonstrate that the age of the host environment shapes the 
evolution of KRAS-driven LUAD and support a model of tumor progression in which the age of 
the TME plays a key role in the selection of either a canonical or non-canonical evolutionary 
path, leading to the expansion of different stable cell populations (Fig. 2J). 

To gain insights into the properties of LUAD cells that arise in the old lung environment, we 
performed GSEA of differentially expressed genes in malignant cells between young and old 
mice based on Canonical Pathways (CP) and Gene Ontology (GO) (Fig. 3A and B, tables S3 to 
5). Strikingly, these analyses unveiled a common theme, stemness, as evidenced by pathways 
associated with pluripotency, cell fate commitment, and specification (Fig. 3A to C, table S5). 
Indeed, some of the most highly differentially expressed genes between LUAD cells developing 
in old compared to young mice were well-known factors involved in cancer stemness such as 
Sox9(26) (Fig. 3D and E), Cd44(27) (Fig. 3F and G), Sox4(28), Zeb2(29) and Hmga2(30) (fig 
S4B, fig S6A and table S3). Strikingly, while these features are highly predominant in the cell 
populations that evolve through the non-canonical path (clusters 4 and 5), they are also a 
feature of cluster 8, which evolves across the canonical LUAD evolutionary continuum but is 
more predominant in old age (Fig. 3D, F and H, fig. S4B and S6A), highlighting the acquisition 
of stemness as a major feature of LUAD that evolves in the context of the old lung regardless of 
the specific path of evolution. Interestingly, clusters 4 and 5, but not cluster 8 which develops 
through the canonical evolutionary path, displayed an absence of defining markers apart from 
stemness-related genes (fig. S5, fig S6A and table S2) and a low number of detected genes and 
reads (fig. S6B), despite having high cellular complexity (fig. S6B). This observation was 
reminiscent of transcriptional quiescence, a staple of deeply quiescent stem cells(31), which 
was corroborated by the reduced numbers of LUAD cells with high RNA-Pol II CTD-Ser5, a 
marker of active transcription, in LUAD tumors developing in old mice (fig. S6C and D). This 
suggested that the aging-specific non-canonical path of LUAD evolution converges on a 
primitive stem-like state. In line with this idea, clusters 4 and 5 also displayed a much more 
pronounced loss of genes associated with lineage identity of alveolar type II (AT2) cells, the 
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cells of origin of LUAD(32), including Sftpc, Nkx2-1, Lyz2 (Fig. 3H and I, fig. S4B), indicating 
that old age accelerates the loss of lineage fidelity characteristic of LUAD cells(15). Together, 
this data supports a model whereby LUAD cells present in the old lung diverge from canonical 
LUAD evolution previously described in the context of young age(15, 21). Instead, when 
developing in an old environment, LUAD cells evolve towards a unique primitive stem-like state 
characterized by enhanced stemness and accelerated loss of lineage fidelity (Fig. 3J).  

The TME is now recognized as a dynamic interaction arena, in which tumor cells interact with 
both resident and recruited host cells sharing and/or competing for soluble growth factors, 
cytokines, chemokines, nutrients, metabolites and extracellular matrix components(33). 
Accordingly, the identity, number and function of cellular components of the TME radically 
influences the fitness landscapes that are selected for in tumor cell subpopulations, as well as 
the niche-specific signaling that supports or inhibits the survival, growth, expansion and ability to 
metastasize of tumor subpopulations(34). Having found that the old lung environment 
significantly alters the fate of otherwise similar LUAD cells, next we asked which factors within 
the aged TME may be steering this differential LUAD evolution. In-depth analysis of our scRNA-
Seq data focusing on TME cells (fig. S7) identified 13 other major cell types which can be 
further classified into 40 different cell subtypes present in LUAD’s TME (fig. S7 to S12). While 
the aged TME showed moderate alterations in the overall proportions of major cell populations 
compared to young counterparts, such as in NK cells, CD8+ T cells, neutrophils, and fibroblasts 
(fig. S7E), the biggest shift caused by old age was observed in the distribution of different cell 
subsets within these major populations (fig. S8E and S9F). For instance, we detected an 
enrichment of CTHRC1+ fibroblasts within the aged TME (fig. S8D to H), which are defined by 
tenascin C expression (fig. S8B) and are known to be pro-fibrotic and associated with human 
pulmonary diseases(35), possibly contributing to altered tissue architecture and tumor 
progression. Within the immune compartment, we noted an age-induced accumulation of NK-
like CD8+ T-cells (fig. S9C to I), which have been previously reported to accumulate in aged 
individuals(36) and during cancer progression(37), and have been proposed as a potential 
therapeutic target(38). This suggests that aging primarily influences the TME’s cell phenotypic 
diversity (tables S6 and S7) rather than causing dramatic changes in the abundance of major 
cell types. 

Considering the age-imposed phenotypic changes observed in many major cell types of the 
TME, we reasoned that these differences likely translate into distinct niche signaling 
mechanisms of communication between the TME and tumor cells thereby steering cell fate 
decisions and consequently altering LUAD’s features. Quantitative inference and analysis of 
intercellular communication networks from our scRNA-Seq data using CellChat(39) 
unexpectedly revealed that normal, non-malignant, epithelial cells, while low in abundance (fig. 
S7E), dominated the niche signaling within the aged LUAD TME, with the most numerous and 
strongest interactions (Fig. 4A). Deconvolution of the epithelial normal compartment of the TME, 
revealed 3 distinct subpopulations, an AT2 population, a Club/Ciliated population, and an 
epithelial proliferative population that did not match any of the canonical epithelial cell types of 
the lung (Fig. 4B, fig. S12A and B, table S8). Interestingly, it is this epithelial proliferative 
population that changes the most with old age, not only increasing significantly in proportion 
within the aged TME (Fig. 4C), but also becoming the most interactive population with a 
pronounced change in both outgoing and incoming interaction strengths when compared with 
the young TME (Fig. 4D, fig. S12C to F, table S9). In the alveoli, AT2 cells maintain lung 
homeostasis and enable re-generation after injury by proliferating and differentiating into new 
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AT1 cells specialized for gas exchange(40). Recently an  AT2-lineage population of cells, ADIs, 
were shown to arise during alveolar regeneration as an intermediate state between activated 
AT2 cells and their differentiation into AT1 cells, characterized by the absence of both AT2 and 
AT1 markers(41, 42). ADIs are rare at steady state but are significantly induced after injury by 
IL-1-mediated inflammatory signaling(41). ADIs aberrantly accumulate in conditions of continued 
damage or chronic inflammation in both mice and humans, thereby preventing differentiation 
into AT1 cells and impairing alveolar regeneration(41, 42). Considering our scRNA-Seq data as 
well as the well-known effects of aging in promoting damage (e.g., fibrosis) and chronic 
inflammation in the lung(43), we reasoned that the epithelial proliferative population, which 
arises in the context of old age and makes up more than 50% of the epithelial normal 
compartment in the old lung TME (Fig. 4C), might be ADIs. ADIs are characterized by the 
expression of senescence marker genes and p53 as well as induction of G2/M signaling while 
maintaining a proliferative capacity marked by the expression of Ki67 and upregulated 
glycolysis(41, 42). GSEA of the differentially expressed genes in the normal epithelial 
proliferative subpopulation when compared to the remaining epithelial normal cell populations 
revealed similarities between this population and ADIs, as observed by the enrichment of pro-
proliferative gene signatures (e.g., myc and E2F targets, mTORC1 signaling) as well as gene 
signatures related to p53 and senescence induction (e.g., G2M checkpoint, DNA repair; Fig. 4E 
and table S10). In line with this, the epithelial proliferative population identified in our scRNA-
Seq largely matched the described ADI transcriptional signature(41, 42) (Fig. 4F). IF analysis 
validated the presence of normal AT2 (SPC+/ p53+) cells within the tumors and showed a 
decrease in AT2 cells within the tumors of old mice (Fig. 4G and fig. S13A) corroborating the 
scRNA-Seq analysis (Fig. 4C). This age-induced change in AT2 cells was accompanied by an 
increased number of AT1 cells within LUAD tumors (Fig. 4H and fig. S13B). The presence of 
ADIs (KRT8+/p53+ cells (41, 42)) and their increase in LUAD tumors from old mice was also 
validated by IF (Fig. 4I). Importantly, while we also observed a substantial increase in ADIs in 
the normal lung tissue immediately adjacent to LUAD in the context of old age (Fig. 4J), in non-
tumor bearing (NTB) lungs the abundance of ADIs was much reduced and comparable between 
young and old mice (fig. S13C). This suggests that the presence of LUAD interacts with the old 
alveolar epithelium to drive ADI accumulation within the tumor and the adjacent lung tissue. To 
further validate this phenomenon and better distinguish between host-derived and transplanted 
LUAD cells, we employed a genetic lineage tracing approach. We transplanted KP cells into 
Spc-Cre/KbStrep mice, which express a Cre-driven StrepTagII(44) that is permanently 
incorporated into the MHC-I molecules of SPC-expressing AT2 cells (Fig. 4K). By 
immunostaining for both Krt8 and StrepTagII in lungs from these mice, we confirmed the 
presence of Krt8-expressing cells that were indeed derived from host SPC-expressing AT2 cells 
(Krt8+/StrepTagII+) (Fig. 4K). In line with our previous observation, this analysis showed an age-
related increase in host-derived ADIs (Fig. 4L and M) further confirming ADI accumulation as a 
feature of the old LUAD TME (Fig. 4I to M), but not of NTB old lungs (fig. S13C).  

Recently ADI-like states have been implicated in the transformation of AT2 cells into lung 
cancer(25, 45). However, the role of LUAD-infiltrating ADIs remains unknown. Thus, we 
questioned whether ADIs are also present and may also be relevant in human cancers. 
Therefore, we generated an ADI signature score composed of established marker genes from 
the literature(46) as well as non-overlapping marker genes from our own dataset within the top 
10 markers of the epithelial proliferative population (Fig. 4N and table S11). We then leveraged 
a scRNA-Seq database of human LUAD samples(47), and uncovered the presence of cells in 
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human samples matching to our ADI score (Fig. 4N), with a trend towards an increase in these 
cells with age (Fig. 4O). This finding is concordant with a previous report demonstrating the 
existence of these cells in humans with idiopathic pulmonary fibrosis (IPF)(46) and further 
establish the relevance of our findings for human disease. Interestingly, ADIs interact with most 
of the different LUAD clusters (fig. S12C and S13D), supporting that ADIs ability to steer LUAD 
evolution is likely driven by their abundance rather than a specific interaction with a subset of 
LUAD cells. Consistently, our analyses also revealed that a large part of the niche signaling 
originating from by ADIs is mediated by soluble or secreted ligands (fig. S13E, tables S9 and 
S12), suggesting that ADIs may not only signal to the LUAD cells in their vicinity but also have 
the potential to affect distal LUAD cells and highlighting the importance of ADIs not only within 
the TME, but also in the adjacent normal lung. Supporting old age-induced ADI accumulation in 
directing the differential evolution of LUAD into a primordial stem-like state, analyses of the cell-
to-cell communication mechanisms between ADIs and LUAD cells revealed several of these 
factors are well-known regulators of stemness, such as Wnt and Notch signaling (Fig. 4P to R, 
fig. S13D and F, tables S9 and S12) with ADI-derived ligands such as Wnt5a, Wnt7b, Dll4 and 
Jag1 found to interact accordingly with Fzd and Notch receptors on malignant cells (Fig. 4P to 
R, fig. SD and F, tables S9 and S12).  

Taken together, these findings demonstrate for the first time a role for the aged normal lung 
alveolar epithelium in shaping LUAD evolution toward a primordial stem-like state, which is 
typically associated with poor prognosis(48-50), putting the aging process center stage in 
dictating LUAD’s features. We traced this phenomenon, at least in part, to the ability of old age 
to prime the alveolar epithelium for ADI accumulation upon the presence of LUAD, which in turn 
creates a niche rich in stemness-inducing signals. Recent publications have highlighted 
hematopoietic aging as a major regulator of LUAD progression through an IL-1-mediated 
mechanism(51), as well as the reduced stemness of AT2 cells with old age, which lose their 
ability to differentiate into AT1 cells as well as their ability to initiate LUAD(18). Considering that 
ADIs are induced by the IL-1/IL1R1 signaling axis(52),  it is plausible that the increase in IL-1 
produced by the aged immune system recruited into the LUAD TME(51) drives AT2 cell 
differentiation, leading to the accumulation of cells stuck in the intermediate ADI state due to 
their age-induced inability to transition into AT1 cells(18). Additional work will be necessary to 
tease apart the mechanisms by which old age causes ADI accumulation. How broadly 
applicable might these finds be? Our findings that the normal lung alveolar epithelium is an 
important component of LUAD’s TME was only possible due to the choice of the model used, a 
transplant-based model that does not genetically engineer AT2 cells within the lung, thus it is 
likely that our findings will lead to the discovery of additional factors that cause ADI 
accumulation but were previously not detected (e.g. smoking, lung infections). Moreover, the 
lung is a major site of metastasis for several different cancers, including cancers of major 
incidence like breast cancer and melanoma. Thus, it is possible that ADI accumulation in the old 
lung environment also occurs during metastatic homing to this tissue which has potential 
important consequences for prognosis. Moreover, this comprehensive analysis of LUAD and its 
TME by age at single cell resolution provides a valuable resource for understanding age-related 
differences and provide a blueprint for the discovery of new therapeutic targets for LUAD in the 
context of old age, thereby having the potential to inform the development of age-specific 
treatment strategies.  

Methods 
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Mice 

Wild-type C57BL/6J mice of different ages were obtained from the National Institutes of Aging, 
NIH. Mice were housed in an AAALA-accredited animal facility in ventilated pathogen-free 
cages with food, water, bedding and nestling materials. All experiments involving mice were 
approved by the Institutional Animal Care and Use Committee (IACUC) prior to initiation. To 
induce Cre recombination and Strep-TagII expression in Spc-expressing cells, Spc-Cre/KbStrep 
mice were administered 75 mg tamoxifen (Sigma, 10540‐29‐1) per kg of body weight via 
intraperitoneal (IP) injection, once daily over 5 consecutive days. Histology or KP transplantation 
experiments were performed 10-14 days after the last tamoxifen injection.  

Cell culture 

KP 1.9 cells(53, 54) (gift from Dr. Zippelius) were maintained in DMEM high glucose medium 
(Cytiva) supplemented with 10% FBS (Gibco) and 1% penicillin/streptomycin (Cytiva) at 37°C 
and 5% CO2. 

Syngeneic Transplantation Model of LUAD 

KP 1.9 cells were counted using a Countess II FL automatic hemocytometer (Invitrogen) and 
collected in PBS at a concentration of 1 x 106 cells/ml. Mice were restrained using a conical tube 
and their tails were warmed with hot water to improve tail vein visibility. 100 µl of cell suspension 
(1 x 105 cells) was injected into the tail vein using a 27G needle (BD Biosciences). Four weeks 
post-injection, mice were euthanized via CO2 inhalation followed by cervical dislocation, and the 
lungs were collected for subsequent experiments.  

Immunohistochemistry 

Mouse lung tissue samples were dissected and fixed in 10% formalin. After 24 hours, samples 
were transferred to 70% ethanol for storage. Paraffin-embedded tissue cassettes were 
prepared, cut into sections, and stained using hematoxylin & eosin or Masson’s Trichrome 
stains by IDEXX BioAnalytics (Westbrook, ME, USA). Unstained slides were deparaffinized and 
rehydrated by sequential incubations in a series of alcohol solutions comprised of 2x xylene for 
10 minutes, 2x 90% ethanol for 3 minutes, 2x 70% ethanol for 3 minutes, 2x 50% ethanol for 3 
minutes, and 2x diH20 for 1 minute. Antigen retrieval was performed by heating under pressure 
for 15 minutes in citrate buffer (10 mM citric acid, 0.05% Tween 20, pH 6.0). Samples were 
transferred to 3% H2O2 in water for 5 minutes, rinsed in TBS-T, and then permeabilized for 15 
minutes in 0.5% Triton X-100 in PBS. Samples were then rinsed in TBS-T, followed by blocking 
for 1 hour in 3% BSA (m:v)/ 10% goat serum (v:v) and/or 10% horse serum (depending on the 
host species of antibodies to be used in each panel) in TBS. Slides were then incubated with 
the primary antibodies: rabbit anti-Sox9 (Millipore Cat# AB5535, RRID:AB_2239761); rat anti-
CD44 (Thermo Fisher Scientific Cat# 14-0441-82, RRID:AB_467246); rabbit anti-SPC (Seven 
Hills Bioreagents Cat# WRAB-76694, RRID:AB_2938817); rabbit anti-RNA polymerase II CTD 
phospho S5 (Abcam Cat# ab5131, RRID:AB_449369) diluted in 3% BSA (m:v)/ 10% goat serum 
(v:v) and/or 10% horse serum (depending on the host species of antibodies to be used) in TBS 
in a humid container at 4°C overnight. The next day, slides were washed 2x 5 minutes in TBS-T 
and incubated for 30 minutes at RT with ImmPRESS HRP anti-rabbit (MP-7451-15, Vector 
Laboratories) or anti-rat polymer detection reagent (MP-7444-15, Vector Laboratories). Samples 
were then washed 2x 5 minutes in TBS-T and developed using the ImmPACT DAB HRP 
Substrate Kit (Vector Laboratories), followed by counterstaining with hematoxylin (Vector 
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Laboratories). Slides were then washed 2x for 1 minute each in 100% isopropanol, mounted 
using Vectamount Express Mounting Medium (Vector Laboratories, H-5700-60), and dried at 
room temperature overnight before imaging on an Aperio imager (Leica Biosystems, Nussloch, 
Germany) at 20x magnification.  

 
Tissue immunofluorescence 

Mouse lung tissue samples were dissected and fixed in 10% formalin. After 24 hours, samples 
were transferred to 70% ethanol for storage. Paraffin-embedded tissue cassettes were prepared 
and cut into sections by IDEXX BioAnalytics (Westbrook, ME, USA). Slides were deparaffinized 
and rehydrated by running them through an alcohol series of 2x xylene for 10 minutes, 2x 90% 
ethanol for 3 minutes, 2x 70% ethanol for 3 minutes, 2x 50% ethanol for 3 minutes, and 2x 
diH20 for 1 minute. Antigen retrieval was performed by heating under pressure for 15 minutes in 
Citrate buffer (10mM citric acid, 0.05% Tween 20, pH 6.0) or Tris-EDTA buffer (10 mM Tris, 1 
mM EDTA, 0.05% Tween 20, pH 8.0), depending on primary antibody recommendations. 
Samples were rinsed in TBST and then permeabilized for 15 minutes in 0.5%Triton X-100 in 
PBS. Samples were then rinsed in TBST followed by blocking for 1 hour in 3% BSA (m:v)/ 10% 
goat serum (v:v) and/or 10% horse serum (depending on the host species of antibodies to be 
used) in TBS. Slides were then incubated with the primary antibodies : rabbit anti-SPC (Seven 
Hills Bioreagents Cat# WRAB-76694, RRID:AB_2938817) ; rat anti-KRT8 (DSHB Cat# TROMA-
I, RRID:AB_531826); goat anti-Pdpn (R and D Systems Cat# AF3244, RRID:AB_2268062); 
mouse anti-P53 (Proteintech Cat# 60283-2-Ig, RRID:AB_2881401); rabbit anti-RNA polymerase 
II CTD phospho S5 (Abcam Cat# ab5131, RRID:AB_449369); goat anti-Pdgfrα (R and D 
Systems Cat# AF1062, RRID:AB_2236897); mouse anti-Tenascin C (Thermo Fisher Scientific 
Cat# MA5-16086, RRID:AB_11152811); rabbit anti-CD8 AF488 (Abcam Cat# ab237364, 
RRID:AB_2940904); rabbit anti-NKG2A (Bioss Cat# bs-2411R, RRID:AB_10860210), rabbit 
anti-Strep-tag II(Abcam Cat# ab307676, RRID:AB_3674753) diluted in 3% BSA (m:v)/ 10% goat 
serum (v:v) and/or 10% horse serum (depending on the host species of antibodies to be used) 
in TBS in a humid container at 4°C overnight. The next day, slides were washed 2x 5 minutes in 
TBS-T and incubated for 1 hour at RT with secondary fluorescence antibodies: rabbit anti-goat 
IgG AlexaFluor 488 (Thermo Fisher Scientific Cat# A-11078, RRID:AB_2534122); donkey anti-
rat IgG AlexaFluor 555 (Thermo Fisher Scientific Cat# A78945, RRID:AB_2910652); donkey 
anti-mouse IgG IRDye 680RD (LI-COR Biosciences Cat# 926-68072, RRID:AB_10953628); 
donkey anti-Rabbit IgG CF750 (Sigma-Aldrich Cat# SAB4600372-50UL, RRID:AB_3674754); 
goat anti-Rabbit IgG AlexaFluor 594 (Thermo Fisher Scientific Cat# A32740, 
RRID:AB_2762824). The secondary antibody solution was then replaced with DAPI (0.2 µg/ml) 
in PBS and incubated for 10 minutes before mounting using VECTASHIELD Antifade Mounting 
Medium with DAPI (Vector Laboratories), and coverslips were sealed with nail polish. Slides 
were imaged using an Akoya Biosciences HT system (Akoya Biosciences) at 20x.  

QuPath analysis 

Whole slide ScanScope Virtual Slide (SVS) image files were imported into QuPath(55) (version 
0.4.1), and tumors were annotated using the wand tool. For IHC analyses, cell detection was 
performed using either optical density sum or hematoxylin (depending the presence or absence 
of hematoxylin counterstain) to detect all cells with a 10 µm nuclear size minimum threshold and 
a 5 µm cell expansion radius when profiling a non-nuclear (cytoplasmic or membrane) stain. 
Positive cell detection was used using a single positivity threshold using the following thresholds 
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for the corresponding stains: P16, 0.4 (DAB); p-H2A.X, 0.35 (DAB); Sox9, 0.5 (DAB); CD44, 
0.25 (DAB); SPC, 37 (fluorophore); RNA Pol II CTD-pSer5, 0.45 (DAB); CD8, 27 (fluorophore); 
NKG2A, 32 (fluorophore); Pdgfrα, 8.5 (fluorophore); Tnc, 28 (fluorophore); Pdpn, 45 
(fluorophore); Krt8, 19 (fluorophore); P53, 22 (fluorophore). For immunofluorescence cell typing 
analyses, a single measurement classifier was performed for each color, with the positivity 
threshold selected based on the signal intensity histogram and using a secondary-only negative 
control as a guide. All single object classifiers were then compiled into one composite classifier 
to obtain the number of cells under each combination of fluorescence markers. 

Tumor histological grading 

Whole slide image files of hematoxylin & eosin-stained mouse lungs were analyzed using 
GLASS-AI(14) v1.1 (https://github.com/jlockhar/GLASS-AI). GLASS-AI is a purpose-built tool for 
automatically analyzing mouse models of LUAD and uses the tumor grading conventions 
developed in the Tyler Jacks laboratory(55). Regions of stromal desmoplasia, which correspond 
to Grade 5 and are not recognized by GLASS-AI, were manually annotated and integrated with 
the GLASS-AI output using the GLASS-AI Annotation Editor 
(https://github.com/jlockhar/GLASS-AI-annotation-editor). Individual tumors were assigned 
overall grades based on the highest morphological grade present that comprised at least 10% of 
the tumor’s area. The results of these analyses were summarized in R using GLASS-AI 
ReportR (https://github.com/jlockhar/GLASS-AI-ReportR).  

Flow Cytometry  

Mice were euthanized via CO2 inhalation followed by cervical dislocation, and lungs were 
collected in PBS on ice. Lungs were minced using scissors and a razor blade until no visible 
chunks remained. Minced lungs were transferred to a 5 ml epitube containing 4ml of 
dissociation buffer composed of 2 mg/ml Collagenase I (Worthington), 0.5 mM CaCl2 in 
DMEM/F12 1:1 media (Corning). Samples were placed on a rotor in a 37°C incubator for 30 
minutes. Undigested tissue was spun down at 300xg for 45 seconds. The supernatant of 
released cells was transferred to a tube containing 5 ml of FBS on ice to inactivate the 
dissociation enzymes. The undissociated tissue was triturated using a P1000 pipette and 2.5 ml 
of fresh dissociation buffer was added to the remaining tissue. The samples were dissociated 
once more for 30 minutes. Cells from both dissociations were combined and passed through a 
70 µm cell strainer. The blunt end of the inner plunger of a 5 ml syringe was used to force any 
remaining tissue pieces through the strainer. The filtered sample was centrifuged at 300xg for 7 
minutes. The cell pellet was resuspended in PBS and stained for viability with LIVE/DEAD 
Fixable Near-IR Dead Cell Stain (Life Technologies) for 15 minutes at room temperature, 
washed in PBS, and spun down at 300xg for 7 minutes. Cells were then resuspended in 100µl 
PBS with Trustain FcX PLUS (anti-mouse CD16/32) (BioLegend), True-Stain Monocyte Blocker 
(BioLegend), and Super Bright staining buffer (eBioscience) for 10 minutes before adding in the 
following antibody cocktails and incubating for 15 minutes at room temperature: immune cell 
panel: rat anti-CD3-BUV395 (BD Biosciences Cat# 740268, RRID:AB_2687927), rat anti-
CD11b-BV785 (BioLegend Cat# 101243, RRID:AB_2561373), hamster anti-CD11c-BV605 
(BioLegend Cat# 117333, RRID:AB_11204262), rat anti-IA/IE-BV650 (BioLegend Cat# 107641, 
RRID:AB_2565975), rat anti-CD24-BV421 (BioLegend Cat# 101825, RRID:AB_10901159), rat 
anti-Ly6G-BV510 (BioLegend Cat# 127633, RRID:AB_2562937), rat anti-CD25-BB515 (BD 
Biosciences Cat# 564424, RRID:AB_2738803), rat anti-Ly6C-PerCP-Cy5.5 (BioLegend Cat# 
128028, RRID:AB_10897805), rat anti-CD45-PE (BioLegend Cat# 103105, RRID:AB_312970), 
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rat anti-Gr1-Pe/Dazzle594 (BioLegend Cat# 108452, RRID:AB_2564249), mouse anti-CD64-
PECy7 (BioLegend Cat# 139313, RRID:AB_2563903), rat anti-CD8a-AF647 (BioLegend Cat# 
100724, RRID:AB_389326), rat anti-CD4-R718 (BD Biosciences Cat# 566939, 
RRID:AB_2869957); stromal cell panel: rat anti-EpCAM-BV421 (BioLegend Cat# 118225, 
RRID:AB_2563983), rat anti-CD90-BV605 (BioLegend Cat# 105343, RRID:AB_2632889), rat 
anti-IA/IE-BV650 (BioLegend Cat# 107641, RRID:AB_2565975), rat anti-CD146-FITC 
(BioLegend Cat# 134706, RRID:AB_2143525), rat anti-CD45-PE (BioLegend Cat# 103105, 
RRID:AB_312970), rat anti-CD31-PECy7 (BioLegend Cat# 102417, RRID:AB_830756), rat anti-
CD34-R718 (BD Biosciences Cat# 567304, RRID:AB_2916545). Samples were washed with 
PBS containing 2%FBS and then resuspended in PBS for analysis using a BD LSR II Flow 
cytometer (BD Biosciences) running BD FACSDiva software (BD Biosciences). After data 
collection, flow data was analyzed using FlowJo software (version 10.8.1, BD Biosceinces). 
Gating strategies were adapted from Hasegawa K. et al.(56) and Yu YRA, et al.(57). 

Bronchioalveolar Lavage 

Mice were anesthetized using xylene/ketamine solution following institutional guidelines. An 
incision was created to expose the trachea, and a catheter was inserted into the trachea. A 
syringe loaded with 1 ml of PBS + protease inhibitor solution (5 µg/ml Leupeptin, 1 µg/ml  
Aprotinin,  0.5 µg/ml Pepstatin A; Research Products International) was injected via the catheter 
into the trachea and aspirated back to collect bronchioalveolar lavage fluid (BALF). This lavage 
was repeated for a total of 5 times to recover approximately 5 ml of total BALF. Mice were then 
euthanized via cervical dislocation. BALF samples were centrifuged at 300xg for 5 minutes to 
remove any cells. The BALF supernatant was then concentrated into powder form using a 
Speed vac at room temperature and resuspended in 500 µl of PBS + protease inhibitor solution. 
One-third (166 µl) of this solution was utilized to run the Proteome Profiler Mouse XL Cytokine 
Array (R&D Systems) following the manufacturer’s instructions, followed by imaging using an 
Odyssey LI-COR Imager.  

Bulk RNA-Seq 

RNA was extracted from cultured KP cells (from 3 different passages) using the RNeasy Mini Kit 
(Qiagen). RNA samples were sent to Novogene Corporation Inc. (Sacramento, CA) for RNA-
Seq library preparation and sequencing. A total of 140,783,878 reads were generated by a 
NextSeq 500 with a 151-base paired-end read run. Adapter sequences were trimmed using 
Novogene’s in-house Perl scripts, and the raw reads were then aligned to the mouse genome 
(mm39) using Hisat2(58) v2.0.5. Gene expression was assessed as read count at the gene 
level with featureCounts(59) v1.5.0-p3. Fragments Per Kilobase of transcript per Million mapped 
reads (FPKM) for each gene were calculated for the correlation analysis between scRNA-seq 
epithelial malignant clusters and bulk RNA-seq samples. The FPKM values were later used to 
calculate correlation with scRNAseq data. 

Single-Cell RNA-Sequencing sample preparation 

KP tumors were micro-dissected using scissors and fine tip forceps from lungs collected from 
tumor-bearing mice and transferred to a 6cm petri dish. Tumors were minced into a fine slurry 
using scissors and a razor blade, and transferred to a 5ml tube containing 2.5 ml of digestion 
buffer from the Miltenyi mouse tumor dissociation kit (Miltenyi Biotec, Cat# 130-096-730). 
Tumors were placed on a rotor in a 37°C incubator. After 20 minutes of dissociation, samples 
were centrifuged at 300xg for 45 seconds to pellet undigested tissue, and the supernatant 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 24, 2025. ; https://doi.org/10.1101/2025.01.20.633951doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.20.633951
http://creativecommons.org/licenses/by-nc-nd/4.0/


containing released cells was transferred to a tube containing 3 ml FBS on ice. 2.5 ml of 
digestion buffer was added back to the original tube and the remaining tissue was triturated 
using a P1000 pipette. After another 20 minutes of dissociation, both cell suspensions were 
combined and filtered through a 70 µm cell strainer. Cells were centrifuged for 7 minutes at 
300xg, the supernatant was removed and cells were resuspended in 200-500 µl of PBS 
containing 0.04%BSA depending on the size of the cell pellet. Cells were counted using a 
manual hemocytometer and the concentration was adjusted to 1000 cells/µl in PBS containing 
0.04% BSA for library preparation by the Molecular Genomics core at the Moffitt Cancer Center. 

Single-cell sequencing  

Single-cell RNA sequencing was performed using the 10X Genomics Chromium System (10X 
Genomics, Pleasanton, CA) by the Molecular Genomics Core at the Moffitt Cancer Center.  The 
cell viability and counts were obtained by AO/PI dual fluorescent staining and visualization on 
the Nexcelom Cellometer K2 (Nexcelom Bioscience LLC, Lawrence, MA). Cells were then 
loaded onto the 10X Genomics Chromium Single Cell Controller to encapsulate 7000 cells per 
sample.  Single cells, reagents, and 10X Genomics gel beads were encapsulated into individual 
nanoliter-sized Gelbeads in Emulsion (GEMs), and reverse transcription of poly-adenylated 
mRNA was performed inside each droplet at 53°C. The cDNA libraries were then completed in a 
single bulk reaction by following the 10X Genomics Chromium NextGEM Single Cell 3’ Reagent 
Kit v3.1 user guide, and 50,000 sequencing reads per cell were generated on the Illumina 
NovaSeq6000 instrument. The Demultiplexing, barcode processing, alignment, and gene 
counting were performed using the 10X Genomics CellRanger v7.1.0 software. The results of 
the analysis were visualized using the 10X Genomics Loupe browser v6.4.1.  

Single-cell RNA-seq data processing, filtering, batch effect correction, and clustering  

Raw sequencing reads from scRNA-seq were processed using Cell Ranger (v7.1.0, 10X 
Genomics). Briefly, the base call (BCL) files generated by Illumina sequencers were 
demultiplexed into fastq files based on the sequences of the sample index, and aligned against 
the GRCm38 mouse transcriptome using STAR(60). Cell barcodes and UMIs associated with 
the aligned reads were subjected to correction and filtering. Filtered gene-barcode matrices 
containing only barcodes with UMI counts passing the threshold for cell detection were imported 
to Seurat v4.0(61) for downstream analysis. Barcodes with fewer than 200 genes expressed or 
more than 10% UMIs originating from mitochondrial genes were filtered out; genes expressed in 
fewer than three barcodes were also excluded. This process resulted in 11,320 cells from three 
young KP mice, and 11,893 cells from three old KP mice. For each sample, standard library size 
and log-normalization were performed on raw UMI counts using NormalizeData, and the top 
5000 most variable genes were identified by the “vst” method in FindVariableFeatures.  

In each study, individual data were further integrated to remove batch effects using an anchor-
based method(62) implemented in Seurat v4.0 using FindIntegrationAnchors and IntegrateData 
functions in Seurat with 8,000 “anchors” and top 40 principal components. Briefly, dimension 
reduction was performed on each data set using diagonalized canonical correlation analysis 
(CCA), and L2-normalization was applied to the canonical correlation vectors to project the 
datasets into a shared space. The algorithms then searched for mutual nearest neighbors 
(MNS) across cells from different datasets to serve as “anchors” which encoded the cellular 
relationship between datasets. Finally, correction vectors were calculated from “anchors” and 
used to integrate datasets. 

From the integrated data, scaled z-scores for each gene were calculated using the ScaleData 
function in Seurat by regressing against the percentage of UMIs originating from mitochondrial 
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genes, S and G2/M phase scores, and total reads count. A shared nearest neighbor (SNN) 
graph was constructed based on the first 40 principal components computed from the scaled 
integrated data. Louvain clustering (Blondel et al., 2008) was performed using the FindClusters 
function at resolution 1.2 for major cell type scRNA-seq data (15 clusters). Uniform manifold 
approximation and projection (UMAP) was used to visualize single-cell gene expression profile 
and clustering, using the RunUMAP function in Seurat with default settings. Differential 
expression analysis was performed using the FindAllMarkers function in Seurat with 
logfc.threshold=0.25, min.pct=0, and test.use=”wilcox”. Cells within each cluster were compared 
against all other cells. Genes with Bonferroni-corrected p-value < 0.05 and an average log-fold 
change > 0.25 and were considered differentially expressed. Clusters were annotated by 
comparing differential genes with canonical markers for major populations: B cells (Cd79a, 
Cd79b, Cd19), T cells (Cd3e, Cd3d, Cd8a, Cd4), NK cells (Klrb1c, Ncr1, Nkg7), Macrophages 
(Cd68, Mrc1, C1qc, C1qb), Monocytes (Lyz2, Vcan, Chil3, Fn1), Neutrophils (S100a8, S100a9, 
Cxcl2), cDC1 (Xcl1, Cd36, Itgae),  cDC2 (Itgax, H2-DMb1, Mgl2), mregDC (Fscn1, Ccl22, 
Cacnb3), pDC (Siglech, Ccr9, Bsl2), Epithelial cells (Sftpc, Krt7, Krt18), Endothelial cells 
(Pecam1, Cdh5), Fibroblasts (Col1a1, Col1a2).  

Annotation of epithelial cells subtypes from scRNA-Seq data 

Epithelial cells were extracted for further clustering analysis with resolution = 1.0 and yielded 11 
clusters. Clusters 9-11 were annotated as normal epithelial cells based on their positive 
expression of KP mouse model genes (Tp53, Kras, and their targets(63, 64)), as well as the 
absence of tumor markers (Krt7, Krt18, Krt19). These three normal epithelial cells were further 
annotated as club/ciliated cells (Tppp3, Tmem212, Dynlrb2), alveolar type 2 (AT2) cells (Sftpc, 
Lyz2, Slc34a2), proliferative cells (Mki67, Cdk1, Ccna2) respectively, based on previously 
reported markers(65) (fig. S3B). We also observed that proliferative cluster 11 co-express 
markers of Krt8+ alveolar differentiation intermediate (ADI) cells(46), such as Krt8, Plaur, Cldn4, 
Areg, and Hbegf. Clusters 1-8 with positive expression of tumor markers were annotated as 
malignant cells.  

Copy number variation patterns in malignant cells were extracted using InferCNV(66) R 
package v3.1.5. Normal epithelial cells identified above were selected as “reference” cells for 
de-noise control. InferCNV analysis was performed using “denoise” mode to correct for batch 
effects from different mice, with tumor_subcluster_partition_method = ‘qnorm’, HMM=TRUE, 
and analysis_mode = 'subclusters'. The “cluster by group” parameter was turned off to allow the 
observation cells to cluster unbiasedly based on CNV patterns. The CNV score for each cell 
was calculated as previously described(67). Briefly, gene expression data from the 
infercnv_obj@expr.data slot were scaled to the range [-1,1], and the quadratic sum of all CNV 
regions was computed. Malignant clusters (1–8) exhibited significantly higher CNV scores 
compared to the normal epithelial clusters (9–11), further validating their malignancy (fig. S3C 
and D). 

To characterize the malignant cells, we compared gene expression of clusters 1-8 to previously 
identified cell identity signatures (24, 68, 69), embryonic stem cell-like signatures(23), and 
evolution signatures reported in a KP syngenetic transplantation model(70) (Fig. 2H, fig. S5). 
Enrichment scores of these signatures were calculated for each malignant cell using the AUCell 
algorithm implemented in SCENIC(71), and the scores were visualized in heatmaps. Ribosome 
expression was evaluated by the AddModuleScore function in Seurat using all ribosome genes. 
The number of reads per cell was calculated using SAMtools and custom Linux commands 
(https://kb.10xgenomics.com/hc/en-us/articles/360007068611-How-do-I-get-the-read-counts-for-
each-barcode) and visualized in log2 scaled across malignant clusters. G1/S phase score was 
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calculated by AddModuleScore function in Seurat using mouse gene set 
GOBP_CELL_CYCLE_G1_S_PHASE_TRANSITION from MsigDB. 

RNA velocity analysis was performed to infer the dynamic states of malignant cells. Initially, 
spliced and unspliced transcript abundances were quantified from BAM files generated from 
CellRanger count using Velocyto(72). The resulting loom files were merged across samples. 
Seurat metadata was integrated with the loom file and malignant cells were extracted for 
downstream analysis. The dynamical model of RNA velocity in the Python module scVelo(19) 
was applied to estimate transcriptional rates and compute velocity vectors for individual cells in 
“stochastics” mode. The velocity fields were visualized on the batch-corrected UMAP projection, 
with arrows overlaid to indicate the direction and magnitude of transcriptional changes.  

Trajectory analysis of malignant cells was performed using Monocle 3(20). Briefly, a cell data set 
(cds) project was constructed from the raw count matrix and cell type information of malignant 
cells obtained above. Batch-corrected UMAP projection was assigned to the reducedDims slot 
of the cds object. The trajectory was learned using the default setting in the learn_graph 
function. To determine the starting point of the trajectory, we conducted a correlation analysis 
between scRNA-seq epithelial malignant clusters and the three KP cell bulk RNA-seq samples. 
Briefly, pseudobulk expression levels of each malignant cluster were obtained using the 
AggregateExpression function in Seurat v4.0. Pearson correlation was calculated between each 
cluster pseudobulk vs. FPKM values of each KP bulk RNAseq sample. Cluster 2, which showed 
the highest correlation with KP cells, was manually selected as the root node in the graphical 
interface. Psedutime was measured by ordering cells according to their progress through the 
developmental trajectory.  

Identification of cell subtypes 

We extracted T/NK cells, myeloid cells, fibroblasts, and endothelial cells for further clustering 
analysis, respectively. We applied resolution 1.0 for myeloid scRNA-seq data (13 clusters), 1.0 
resolution for T/NK scRNA-seq data (9 clusters), 1.0 resolution for fibroblast scRNA-seq data (8 
clusters), and 1.0 resolution for endothelial scRNA-seq data (3 clusters). Differential expression 
analysis was performed to identify cluster-specific markers as described above. Each cell 
cluster was annotated according to the expression profile of these markers and other canonical 
markers associated with different cell populations based on the literature. Markers used for 
annotating clusters are shown in fig. S7-S11 and described below. 

Within fibroblast-lineage cell clusters (fig. S6), we first identified smooth muscle cells by Myh11 
and Acta2. The other fibroblast clusters were annoated by canonical markers reported in 
literature: pericytes (Cspg4, Pdgfrb)(35), adventitial fibroblasts (Pi16, Mfap5)(35), peribranchial 
fibroblasts (Hhip, Aspn)(35), mesothelial (Upk3b, Msln, Wt1)(73), and lipofibroblasts (Npnt, 
Gyp)(73). We also identified a cluster of cells co-expressing cancer-associated-fibroblasts 
markers (Ndufa4l2, Postn) and markers of a novel fibroblast subtype reported previously (Ebf1, 
Pdzd2, Higd1b, Cox4i2)(73). This cluster was annotated as Ebf1+ CAF. In addition, a cluster 
highly expressing Cthrc1, Tnc, and Fn1 matched with Cthrc1+ fibroblasts, a subtype with high 
migratory capacity that was previously reported in both human and mouse lungs(35). 

T cell clusters were first assigned to CD8+ T (Cd8a), CD4+T (Cd4), and gamma-delta T cells 
(Trdc) by corresponding canonical markers (fig. S9). Then the CD8+ T clusters were further 
annotated to subtypes based on the expression of markers previously with different CD8+ T 
cells states and function(74, 75): naïve (Tcf7, Ccr7, Il7r, Sell), effector-memory (Eomes, Gzmk, 
Ccl5, Ccr5), interferon-stimulated genes (Isg)-positive (Isg15, Isg20, Ifit3, Ifit1), and kilter cell 
immunoglobulin-like receptor (Kir)-positive (Klrc2, Klra7, Klrd1). Similarly, CD4+ T clusters were 
annotated as follows: naïve (Tcf7, Ccr7, Il7r, Sell), follicular helper (Tfh) (Tnfrsf11, Tnfrsf8, 
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Slamf6), Ifng+ T helper 1 (Th1) (Ifng, Havcr2, Lag3, Gzmb), and regulatory T (Treg) (Foxp3, 
Ctla4, Il2ra). 

Within myeloid clusters (fig. S10), we first identified cDC1 (Xcl1, Cd36, Itgae), cDC2 (Itgax, H2-
DMb1, Mgl2), mature regulatory DC (mregDC) (Fscn1, Ccl22, Cacnb3), plasmacytoid DC (pDC) 
(Siglech, Ccr9, Bsl2), 2 clusters of neutrophils (S100a8, S100a9, Cxcl2), 2 clusters of 
monocytes (Lyz2, Vcan, Chil3, Fn1), and 5 clusters of macrophages (Cd68, Mrc1, C1qc, C1qb). 
The neutrophil clusters were further annotated as Retnlg+ and Cxcl2+ as previously 
described(76), where Retnlg+ neutrophils were characterized by high expression of canonical 
neutrophil marks (Csf3r, S100a8, G0s2), while Cxcl2+ neutrophils expressed Ccl3, Cclr2 and 
were reported related to homing of tumor-associated neutrophils(77) and neutrophils aging(78). 
Monocytes clusters were further named as Ly6c2+ and Ly6c2- subtypes(76). The macrophages 
were fully annotated as follows: first, the 5 clusters were identified as alveolar macrophages 
(AM) (Atp6v0d2, Plet1, Lpl, Ctsd) and interstitial macrophages (IM) (C1qa, C1qb, C1qc) by their 
markers(79); second, a subtype of AM cells expressing lipid-associated genes (Gpnmb, Ctsb, 
Ctsl, Lgals3)(79) was defined as Lipid-associated alveolar, and the other AM cluster was found 
matching with alveolar resident cells which highly expressed Krt79, Krt19, Car4, and Chil3(79); 
third, interstitial subtypes were confirmed by specific marker genes including inflammatory 
cytokine-enriched (Ccr5, Il1b, Nrkb1), pro-angiogenic (Fn1, Thbs1, Arg1), and a proliferative 
cluster featured by ribosome genes and enriched for MYC-target gene set. 

Subtypes of endothelial cells were identified using the following markers(80): capillary A 
(Sema3c, Gpihbp1,Pttp, Plvap), capillary B (Igfbp7, Car4, Emp2), and blood vessel endothelial 
(Pf4, Nrgn, Alox12) (fig. S11). 

Stemness and ADI scores 

A stemness score was established via AddModuleScore in Seurat using the genes from the 
pathways “Mechanisms associated with Pluripotency” (WP), “Cell fate specification” (GO) and 
“cell fate commitment” (GO) obtained via GSEA analysis of malignant cells from young versus 
old KP mice in Table S5. The ADI signature score was composed of 10 established marker 
genes from the literature(46) as well as non-overlapping marker genes from our own dataset 
within the top 10 markers of the epithelial proliferative population (Table S8). We then assessed 
the expression of the genes included in the ADI score in scRNA-Seq data from 61 human 
NSCLC samples(47), and sorted them based on age. Briefly, enrichment of ADI signatures was 
calculated by AUCell for each epithelial cell extracted from the NSCLC samples. Then patient-
level ADI score was summarized as the mean across epithelial cells. A Chi2-test was employed 
to determine if a high ADI score was associated with advanced age. Age of NSCLC human 
samples(47) was divided into two groups based on the median age (64). ADI scores were 
binned into three equal quantiles, whereby low ADI score<0.04, medium ADI score=0.04-0.14, 
and highADI score ≥0.14. 

Visualization of gene signatures  

Marker genes were visualized on UMAP projections or violin plots using log-normalized counts. 
For the bubble plot of marker genes, the average expression of each gene was calculated for 
each cluster/group and then normalized by mean and standard deviation (z-scores) and the size 
of bubble was used to denote percentage of cells expressing the markers in cluster/group. To 
systematically assess the effects of aging, differential expression analysis was performed 
comparing young vs. old cells within each major cell population, as well as within subtypes of 
T/NK cells, myeloid cells, fibroblasts, endothelial cells, and epithelial cells. Following differential 
analysis, pre-ranked gene set enrichment analysis (GSEA) was performed. Genes were ranked 
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based on -log10(p-value)*(sign of log2(fold-change)), positioning the most upregulated genes at 
the top and the most downregulated genes at the bottom of the ranking. Pre-ranked GSEA was 
performed on gene rankings using R package fgsea (81) with 10,000 permutations against 
Hallmark, REACTOME, and GO databases from MsigDB (82-84) . The normalized enrichment 
scores (NES) of gene sets were visualized using heatmaps. 

Analysis and visualization of cell-cell interaction using "CellChat" 

Cell-cell communication analysis was preformed using CellChat (39) v2. Briefly, scRNA-seq 
data were first loaded into the CellChat R package with two biological conditions (young vs. old). 
The database CellChatDB.mouse from CellChatDB (39) v2 was used as the ligand-receptor 
interaction database for mouse data. The young dataset and the old dataset were processed 
separately in the following steps: scRNA-seq expression data were preprocessed using 
functions identifyOverExpressedGenes and identifyOverExpressedInteractions; the 
communication probability between each cell type within the same biological condition was 
computed and filtered using functions computeCommunProb with the method “trimean”, and 
filterCommunication with min.cells=9; the pathway-level communication probability was 
computed using function computeCommunProbPathway; the aggregated cell-cell 
communication network was calculated by function aggregateNet; the network centrality scores 
were computed by the function netAnalysis_computeCentrality. The young and old datasets 
were then merged into one CellChat object for further comparison between different biological 
conditions. The number of interactions and interaction strengths between each cell type were 
compared among young conditions and old conditions. The signaling network similarity for the 
young condition and old condition was computed using the function 
computeNetSimilarityPairwise. Manifold learning and classification learning of the signaling 
networks were conducted by netEmbedding and netClustering, respectively. Cell-cell 
communication analysis results were visualized using CellChat. The average interaction 
strength from CellChat was used as the cell-cell interaction score between different cell groups. 
Interactions between the sender and the receiver were calculated separately. 

Statistical Analysis 

Statistical analyses for mouse and histology experiments were performed using GraphPad 
Prism 9 (GraphPad Software, Boston MA, USA). Comparisons between the two groups were 
made using unpaired Student’s T-tests. Statistical significance was defined as p<0.05. For 
datasets with potential outliers, we employed the ROUT method (Q=1%) to objectively identify 
outliers using GraphPad Prism. Data points were excluded if they were confirmed as outliers by 
this test.  
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Figure Legends 

Figure 1  –  Old age alters the lung tissue landscape. 

A. Top 10 Hallmark pathways enriched in old (24-months) compared to young (6-months) non-
tumor bearing lung bulk RNA-Seq samples(7) via Gene Set Enrichment Analysis (n=3 mice per 
group) B. Quantification of the percentage of P16High cells in young (5-6 month) and old (22-24 
month) non-tumor-bearing mouse lungs, along with representative IHC images (n=4 mice per 
group, t-test). Arrows represent P16HIGH cells. C. Quantification of the percentage of p-H2A.x 

cells in young (5-6 month) and old (22-24 month) non-tumor-bearing mouse lungs along with 
representative IHC images (n=4 mice per group, t-test) Arrows represent p-H2AX+ cells. D. Flow 
cytometry immune cell type analysis in non-tumor-bearing lungs from young and old NTB mice 
(n=9-11 mice per group, t-test) E. Heat map of Log2FC of intensity values from a proteome 
profiler cytokine array ran on bronchioalveolar lavage fluid from young and old mice. (n=5 per 
group, t-test). F. Flow cytometry analysis of epithelial cell types in non-tumor-bearing lungs from 
young and old NTB mice. (n=9-11 mice per group, t-test) G. Flow cytometry analysis of  stromal 
cell types in non-tumor-bearing lungs from young and old NTB mice. (n=9-11 mice per group, t-
test) H. Quantification of blue area (ImageJ threshold hue:102-175, threshold saturation: 0-255, 
threshold brightness: 0-229) representing collagen and representative images of Masson’s 
trichrome staining of young (5-6 month) and old (22-24 month) non-tumor-bearing lungs. (n=5-6 
mice per group, t-test) Data are presented as the mean ± SD. 

Figure 2  –  Aging drives the divergence of KRAS-driven LUAD evolution. 

A. Schematic of KP transplantation and scRNA-Seq experiment B. UMAP projection of all TME 
cells from micro dissected KP tumors from young and old mice, colored by age (n=3 mice per 
group) C. UMAP projection of KP epithelial malignant cells from young and old mice, colored by 
age (n=3 mice per group) D. UMAP projection of KP epithelial malignant cells from young and 
old mice, colored by cluster (n=3 mice per group) E. Bar graph of malignant epithelial cell 
cluster proportions in young and old mice (n=3 mice per group) F. scVelo trajectory analysis on 
the UMAP projection of epithelial malignant cells isolated from young and old mice, colored by 
cluster. Arrows represent the direction of evolution. (n=3 mice per group) G. scVelo trajectory 
analysis on the UMAP projection of epithelial malignant cells isolated from young and old mice, 
colored by pseudotime. (n=3 mice per group) H. heatmap of z-scores comparing our scRNA-
Seq clusters of KP malignant cells isolated from young and old mice to the modules of KP 
evolution from Yang D., et al. Cell (2022)  I. Violin Plots showing the enrichment score for select 
KP modules in clusters from young and old KP tumor-bearing mice J. UMAP of epithelial 
malignant cells with consensus arrows depicting evolutional trajectory in F and G and labeled 
based on matching with canonical KP modules in H and I. 
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Figure 3  –  Aging drives LUAD’s differential evolution towards a primordial stem-like 
state. 

A. GSEA analysis of Canonical Pathways of epithelial malignant cells isolated from old 
compared to young mice. B. GSEA analysis of Gene Ontology terms of epithelial malignant cells 
isolated from old compared to young mice C. Stemness score generated from genes in bolded 
CP and GO pathways from A and B plotted onto the UMAP of epithelial malignant cells D. 
Log2(normalized gene expression) for Sox9 plotted onto the UMAP of epithelial malignant cells 
E. Quantification of the number of Sox9High cells in young (5-6 month) and old (22-24 month) KP 
tumor-bearing mouse lungs along with representative IHC images (n=19 tumors from 4 young 
mice, n=33 tumors from 4 old mice, t-test) F. Log2(normalized gene expression) for CD44 
plotted onto the UMAP of epithelial malignant cells G. Quantification of the number of CD44High 

cells in young (5-6 month) and old (22-24 month) KP tumor-bearing mouse lungs along with 
representative IHC images (n=49 tumors from 5 young mice, n=57 tumors from 5 old mice, t-
test) H. Log2(normalized gene expression) for Sftpc plotted onto the UMAP of epithelial 
malignant cells I. Quantification of the percentage of SPCHigh cells in young (5-6 month) and old 
(22-24 month) KP tumor-bearing mouse lungs along with representative IF images (n=24 mice 
tumors from 5 young mice, n=37 tumors from 5 old mice, t-test). J. UMAP of epithelial malignant 
cells with consensus arrows depicting evolutional trajectory from Figure 2 and boxes to 
characterize the age-related canonical and non-canonical terminal branches. Dotted lines in 
violin plots represent the median and quartiles. 

 

Figure 4  –  Age-related TME communication is mediated largely by Alveolar 
Differentiation Intermediate Cells 

A. Chord diagrams from interaction number and strength based on CellChat analysis from cells 
within the TME cells from KP tumors isolated from young and old mice. Red and blue lines 
represent interactions that are higher and lower in old tumors, respectively, compared to young 
tumors. B. UMAP projection of normal epithelial cells, colored by age. C. Bar graph of normal 
epithelial cell type proportions in KP tumors from young and old mice D. Scatterplot showing the 
incoming and outgoing interactions strength of cell types within the young (open circles) and 
aged (solid circles) KP TME E. Hallmark GSEA analysis of top 15 most enriched pathways in 
epithelial proliferative cells compared to other normal epithelial cells. F. Heat map showing z-
scores for similarity of normal epithelial subclusters with signatures of known epithelial cell 
types. G. Quantification of AT2 cells in tumors from young and old mice, defined as Spc+/P53+ 
cells or Spc+/Pdpn-/Krt8- cells (n=62 tumors from 5 young mice, n=162 tumors from 5 old mice, 
t-test) H. Quantification of AT1 cells in tumors from young and old mice, defined as Pdpn+/P53+ 
cells or Pdpn+/Spc-/Krt8- cells (n=62 tumors from 5 young mice, n=162 tumors from 5 old mice, 
t-test) I. Quantification of Krt8+/P53+ ADI cells in tumors from young and old KP tumor-bearing 
mice (n=43 tumors from 6 young mice, n=97 tumors from 5 old mice, t-test) J. Quantification of 
Krt8+/P53+ ADI cells in tumor-adjacent areas (200µm radius around tumor perimeter) from 
young and old KP tumor-bearing mice (n=26 tumor-adjacent areas from 6 young mice, n=47 
tumor-adjacent areas from 5 old mice, t-test) K. Schematic of Spc-Cre/Kb-Strep mouse 
transplantation experiment (top), and representative images of IF staining for Krt8, StrepTagII 
and DAPI in young (5-6 month) and old (22-24 month) KP tumor-bearing mouse lungs (bottom) 
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L. Quantification of Krt8+/StrepTagII+ ADI cells in tumors from young and old KP tumor-bearing 
mice (n=5 mice per group, n=207 tumors from old mice, n=179 tumors from young mice, t-test). 
Dotted lines represent tumor borders. M. Quantification of Krt8+/StrepTagII+ ADI cells in tumor-
adjacent areas (200µm radius around tumor perimeter) from young and old KP tumor-bearing 
mice (n=5 mice per group, n=80 tumor-adjacent areas from old mice, n=69 tumor-adjacent 
areas from young mice, t-test) N. Heatmap showing z-score for the ADI signature (genes 
depicted in upper schematic) in 61 lung cancer patients, ordered by age. Black line represents 
the median age. O. Pie charts showing the distribution of 61 lung cancer patient samples 
(separated by median age=64) within different bins of ADI scores (low<0.04, medium=0.04-0.14, 
high≥0.14, Chi2 test, p= 0.06334). P. GSEA analysis using Gene Ontology (GO) terms of 
differentially expressed genes in ADIs compared to other epithelial normal cells, after filtering 2 
for secreted factors using a Mouse Secreted Protein Dataset(85) Q. Violin plot showing the 
log2(Normalized gene expression) for Wnt7b in epithelial subtypes from KP tumor-bearing mice. 
R. Violin plot showing the log2(Normalized gene expression) for Dll4 in epithelial subtypes from 
KP tumor-bearing mice. Dotted lines in violin plots represent the median and quartiles. 

Figure S1  –  Lung cell type composition flow cytometry gating strategy 

A. Flow cytometry gating strategy for immune cells from young and old lungs. B. Flow cytometry 
gating strategy for non-immune cells from young and old lungs. 

Figure S2  –  Optimization of a KP syngeneic transplantation model 

A. Representative hematoxylin & eosin (H&E) staining images for grade 3, 4 and 5 tumors in 
our syngenetic KP transplantation model versus the autochthonous GEMM model. B. UMAP 
projection of malignant cells from young transplanted mice, colored by cluster. C. Heatmap 
showing similarity of clusters from KP syngeneic transplantation model compared to clusters 
from the autochthonous GEMM model (Marjanovic et al. Cancer Cell, 2020) D. Representative 
H&E images of young and old mouse lungs 4 weeks after KP cell transplantation. Yellow 
outlines represent total lung area annotations, and red outlines represent tumor annotations. E. 
Quantification of tumor burden in transplanted KP tumor-bearing lungs from young and old mice 
(n=20 young and 16 old mice, t-test). F. Quantification of tumor number in transplanted KP 
tumor-bearing lungs from young and old mice (n=20 young and 16 old mice, t-test). G. 
Representative hematoxylin & eosin (H&E) staining images for grade 3, 4 and 5 tumors in 
young and old mice transplanted with KP cells. H. Quantification of tumor grade in tumors from 
young and old mice transplanted with KP cells (n=19 young and 16 old mice, t-test). Data are 
presented as the mean ± SD. 

Figure S3  –  scRNA-Seq quality control 

A. UMAP projection of all TME cells from tumors isolated from young and old KP tumor-bearing 
mice, colored by mouse biological replicate B. Bubble plot comparison of KP transplant clusters 
versus Tumor, KP, Cell Cycle, and Atlas of the Aging lung marker genes C. Copy Number 
Variation (CNV) score in each cluster of epithelial malignant cells D. Estimation of copy number 
variants by InferCNV of KP epithelial malignant cells (bottom) with normal epithelial cells were 
used as control (top) E. Heatmap showing z-scores for the expression of various ribosome 
genes across clusters of epithelial malignant cells F. Heatmap showing the expression of 
common housekeeping genes across the different clusters of epithelial malignant cells  
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Figure S4 – Transplantation Induces Different Subpopulations with Varying Similarities to 
Parental KP Cells and Differential Expression of Key KP-Related Genes 

A. Pearson Correlation between pseudobulk gene expression of each cluster of epithelial 
malignant cells and the bulk gene expression of cultured parental KP cells. B. UMAP projection 
showing gene expression for select genes involved in epithelial lineage and stemness. 

Figure S5  –  Comparison of epithelial malignant cells from KP transplant mice with cell 
identity signatures 

A. Heatmap of transcriptional similarity between scRNA-Seq clusters of epithelial malignant 
cells isolated from young and old mice and embryonic gene signatures(23) B. Heatmap of 
transcriptional similarity between scRNA-Seq clusters of epithelial malignant cells isolated from 
young and old mice and gene signatures of different cell types(24) C. Heatmap of transcriptional 
similarity between scRNA-Seq clusters of epithelial malignant cells isolated from young and old 
mice and gene signatures of different trajectories involved in organogenesis(24) D. Heatmap of 
transcriptional similarity between scRNA-Seq clusters of epithelial malignant cells isolated from 
young and old mice and gene signatures of difference cell types(86). Shown are z-score 
enrichment scores. 

Figure S6  –  Aging drives LUAD’s gain of stemness characteristics 

A. Violin Plots showing the expression of stemness markers by scRNA-Seq subcluster of 
malignant cells B. Violin Plots showing number of reads per cell, number of gene per cell, 
Log10(Genes per UMI), G1, G2M, S, and ribosome score across different malignant clusters C. 
Representative IHC images of young and old KP tumor-bearing lungs stained for RNA-Pol II p-
Ser5 (left), with associated thresholding mask (right). D. Quantification of RNA-Pol II p-Ser5High 
cells in tumors from young and old KP tumor-bearing lungs (n=31 tumors from 3 young mice, 
n=53 tumors from 5 old mice, t-test). Dotted lines in violin plots represent the median and 
quartiles. 

Figure S7 – ScRNA-Seq cluster identification of TME cells from mice transplanted with KP 
cells 

A. UMAP projection of TME cells showing the expression of marker genes for each major cell 
type B. Bubble plot showing marker genes used to identify each cell type C. Violin plots showing 
number of unique genes detected, number of reads and S-phase score for each scRNA-Seq 
sample, stratified by mouse biological replicate D. UMAP projection of TME cells colored by 
cluster and separated by age E. Pie charts showing the proportions of major cell types within 
the TME of young vs old mice. 

Figure S8 –  Subcluster identification of fibroblasts derived from KP transplanted mice 
A. UMAP projection of fibroblast cells showing the expression of marker genes for various 
subtypes B. Bubble plot showing marker genes used to identify each fibroblast cell subcluster 
C. Violin plots showing number of unique genes detected, number of reads and S-phase score 
for each fibroblast subtype D. UMAP projection of fibroblast cells from young and old KP tumors, 
colored by subcluster E. Bar plot showing proportions of fibroblast subclusters in young and old 
mouse KP tumors F. Quantification of Tnc+/Pdgfrα+ cells in young versus old KP-tumor bearing 
mice (n=39 tumors from 5 young mice, n=55 tumors from 5 old mice, t-test). Dotted lines in 
violin plots represent the median and quartiles. G. Quantification of the percentage of 
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Tnc+/Pdgfrα+ cells over all Pdgfrα+ fibroblasts in young versus old KP-tumor bearing mice (n=39 
tumors from 5 young mice, n=55 tumors from 5 old mice, t-test). Dotted lines in violin plots 
represent the median and quartiles. H. Representative immunofluorescence images of Tnc, Pdgfrα 
and DAPI staining of lung samples from young and old KP tumor-bearing mice. Dotted squares 
represent the area shown with staining deconvoluted into different channels. 

Figure S9 –  Subcluster identification of T cells derived from KP transplanted mice 
A. UMAP projection of T cells showing the expression of marker genes CD4, CD8 and gd T cells 
B. Bubble plot showing marker genes used to identify each CD4 T cell subcluster C. Bubble plot 
showing marker genes used to identify each CD8 T cell subcluster D. Violin plots showing 
number of unique genes detected, number of reads and S-phase score for each T cell subtype 
E. UMAP projection of T cells colored by subtype cluster F. Bar plot showing proportions of T 
cell subclusters in young and old mouse KP tumors G. Quantification of the number of 
NKG2A+/CD8+ cells over area in young versus old KP-tumor bearing mice (n=15 tumors from 
n=3 young mice, n=36 tumors from n=5 old mice, t-test) H. Quantification of the percentage of 
NKG2A+/CD8+ cells over all CD8+ T cells in young versus old KP-tumor bearing mice (n=17 
tumors from n=3 young mice, n=37 tumors from n=5 old mice, t-test). Dotted lines in violin plots 
represent the median and quartiles. I. Representative immunofluorescence images of CD8, 
NKG2A and DAPI staining of lung samples from young and old KP tumor-bearing mice. Dotted 
squares represent the area shown with staining deconvoluted into different channels. 

Figure S10 – Subcluster identification of myeloid cells derived from KP transplanted 
mice.  

A. UMAP projection of myeloid cells colored by subtype cluster B. UMAP projection of myeloid 
cells showing the expression of marker genes for various myeloid subtypes C. Bubble plot 
showing marker genes used to identify each macrophage subcluster D. Bubble plot showing 
marker genes used to identify each myeloid cell subcluster E. Violin plots showing number of 
unique genes detected, number of reads and S-phase score for each myeloid subtype F. Bar 
plot showing proportions of myeloid subclusters in young and old mouse KP tumors. 

Figure S11 – Subcluster identification of endothelial cells derived from KP transplanted 
mice 

A. UMAP projection of endothelial cells colored by subtype B. UMAP projection of endothelial 
cells showing the expression of marker genes for various endothelial cell subtypes C. Bubble 
plot showing marker genes used to identify each endothelial subcluster D. Violin plots showing 
number of unique genes detected, number of reads and S-phase score for each endothelial 
subtype E. Bar plot showing proportions of epithelial subclusters in young and old mouse KP 
tumors. 
 

Figure S12 – Proliferative epithelial cells are the most communicative cell type within the 
aged TME 

A. UMAP projection of normal epithelial cells, colored by subcluster. B. Violin plot showing the 
gene expression level of Sftpc in malignant compared to normal epithelial cells C. Heatmap of 
CellChat interactions strength between the different cell types within the KP TME D. Chord 
diagrams showing interaction number and strength between of different cell types within the 
TME, with epithelial normal cells deconvoluted E. Chord diagrams showing number and 
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strength of interactions originating from other cell types onto the epithelial proliferative cells. 
Circle size represents the number of each cell type detected F. Chord diagrams showing 
number and strength of interactions originating from epithelial proliferative cells onto other cell 
types within the TME. Circle size represents the number of each cell type detected. 

Figure S13 – Aging leads to an increase in Alveolar Differentiation Intermediate cells 
upon KP transplantation.  

A. Quantification of AT2 cells in tumor-adjacent areas (200µm radius around tumor perimeter) 
from young and old KP tumor-bearing mice, defined as SPC+/P53+ or SPC+/Pdpn-/Krt8- cells 
(n=42 tumors from 5 young mice, n=48 tumors from 5 old mice, t-test) B. Quantification of AT1 
cells in tumor-adjacent areas (200µm radius around tumor perimeter) from young and old KP 
tumor-bearing mice, defined as Pdpn+/P53+ or Pdpn+/Spc-/Krt8- cells (n=42 tumors from 5 young 
mice, n=48 tumors from 5 old mice, t-test) C. Quantification of the number of Krt8+/P53+ cells in 
young versus old non-tumor-bearing (NTB) mouse lungs D. Chord Diagram from CellChat data 
showing signaling interactions originating from ADI cells towards epithelial malignant cells. E. 
Pie chart showing the categories of cell-cell interactions originating from ADIs towards the 
malignant cells (related to Table S9) F. Violin plots showing the log2(Normalized gene 
expression) for Wnt5a and Jag1 in epithelial subtypes from KP tumor-bearing mice. 
 

 

Supplementary Materials 

Table S1. Gene Set enrichment analysis of RNA-Seq data from non-tumor bearing lungs from 
3-month-old versus 24-month-old mice from Kawaguchi K, et al. Exp Anim (2023) 

Table S2. List of marker genes for each cluster of epithelial malignant cells isolated from young 
and old KP tumor-bearing mice. 

Table S3. List of differentially expressed genes in malignant epithelial cells isolated from young 
versus old KP tumor-bearing mice. 

Table S4. Table of the number of unique molecular indices (UMIs) per gene detected via single-
cell RNA-Sequencing of malignant epithelial cells isolated from young and old KP tumor-bearing 
mice. 

Table S5. Gene Set enrichment analysis of epithelial malignant cell isolated from young versus 
old KP-tumor bearing lungs. 

Table S6. List of differentially expressed genes between young and old KP tumor-bearing mice 
for all major cell types within the TME 

Table S7. List of differentially expressed genes between young and old KP tumor-bearing mice 
for all minor cell types within the TME 

Table S8. List of marker genes for each subpopulation of normal epithelial cells. 

Table S9. List of CellChat interactions between ADIs/epithelial proliferative cells and other cells 
within the TME 
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Table S10. Gene Set enrichment analysis of genes differentially expressed in ADIs compared to 
other epithelial normal cells. 

Table S11. List of genes constituting the ADI signature score 

Table S12. Gene Set enrichment analysis of secreted factors derived from ADIs. 
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